Higgs, Flavor, CP @100 TeV

Roni Harnik, Fermilab IHEP 2015

Chen, RH, Vega-Morales - 1404.1336 and 1503.xxxxx. RH, Kopp, Zupan - 1209.1397

100 TeV

- * For me, a Higgs factory + 100 TeV pp collider is the most exciting path for our field.
- * Exploration of the unknown, is the central physics case.
- * More specific opportunities certainly exist, see e.g. LianTao's talk.
- * Here, I'll focus on exploring the Higgs boson and its connection to flavor and CP.

Higgs at 100 TeV

- Precision Higgs studies are often associated with e⁺e⁻ "Higgs factories".
- * However, a 100 TeV machine produces many more Higgs bosons.

Higgs at 100 TeV

- Precision Higgs studies are often associated with e⁺e⁻ "Higgs factories".
- * However, a 100 TeV machine produces many more Higgs bosons.

CepC A Higgs "designer store"

SppC A true factory

Nice and clean.

Dirtier, but more productive.

109 Higges

- * (1 nb x 1 ab⁻¹) ~ 10⁹ Higges!
- * What can we do with 10⁹ Higges?
 10⁸ VBF Higgses?
 But in a messy hadronic environment...
- * Obviously: Focus statistically limited channels.
- * Example: Higgs trilinear (see LianTao's talk)

Higgs, Flavor, CP

- * The Coupling of Higgs to Fermions has given us the flavor and CP structure of the SM.
- * SM: Higgs couplings conserve flavor and CP.

$$\mathcal{L}_{SM} \supset \frac{m_z^2}{v} h Z_\mu Z^\mu + \frac{m_W^2}{v} h W_\mu W^\mu$$
$$\frac{\alpha}{\pi v} h F_{\mu\nu} F^{\mu\nu} + \frac{2\alpha}{\pi v} h F_{\mu\nu} Z^{\mu\nu} + \frac{m_i}{v} h \overline{f_i} f_i$$

* BSM: Not Necessarily! NP can violate both.

hff Couplings

* With NP we can add CP or Flavor Violation:

$$\mathcal{L}_{FV} = m_i \overline{F_i} f_i + Y_{ij} h_i \overline{F_i} f_i$$

$$\mathcal{L}_{CPV} = \frac{m_i}{v} h \overline{F_i} (\cos \Delta + i \sin \Delta \gamma_5) F_i$$

Of course, we could add both.

hvv Couplings

* NP \rightarrow Higgs interactions can be more general:

$$\frac{CP \ Even}{L_{Z,\delta}} = \frac{h}{4v} \left(2m_z^2 A_{11}^{ZZ} Z_{\mu} Z^{\mu} + A_{22}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{33}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} + A_{22}^{YZ} Z_{\mu\nu} F^{\mu\nu} + A_{33}^{YY} F_{\mu\nu} \tilde{F}^{\mu\nu} + 2A_{22}^{YZ} Z_{\mu\nu} F^{\mu\nu} + 2A_{33}^{ZY} Z_{\mu\nu} \tilde{F}^{\mu\nu} \right)$$

My homework for this talk:

what are the best opportunities for Higgs Flavor & CPV at 100 TeV?

(Look for the statistically dominated channels where we can benefit from 10⁹/ab⁻¹)

Outline

- * Two parts:
 - Opportunities with $h \rightarrow 4l$.
 - O Lepton Flavor violating Higgs decays

Chen, RH, Vega-Morales - 1404.1336 and 1503.xxxxx.

 $h \rightarrow 4l$

* The decay $h \rightarrow 4\ell$ was vitally important in discovering the Higgs. Determining its mass.

- Very clean.
- · Many things to measure.
- · Low background.
- Will remain statistic limited.

 $\rightarrow 4\ell$

* The search was optimized for discovery via ZZ*.

* Its time to optimize the search for new discoveries.

Signal and Background

* Amplitudes that contribute to $h \rightarrow 4l$ include-

$$\begin{split} \mathscr{I} &= \frac{h}{4\nu} \left(2m_z^2 A_{11}^{ZZ} Z_{\mu} Z^{\mu} + A_{22}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{33}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} + A_{22}^{XZ} Z_{\mu\nu} F^{\mu\nu} + A_{33}^{XY} F_{\mu\nu} \tilde{F}^{\mu\nu} + A_{22}^{XY} F_{\mu\nu} F^{\mu\nu} + A_{33}^{XY} F_{\mu\nu} \tilde{F}^{\mu\nu} + 2A_{22}^{ZY} Z_{\mu\nu} F^{\mu\nu} + 2A_{33}^{ZY} Z_{\mu\nu} \tilde{F}^{\mu\nu} \right) \end{split}$$

Signal and Background

 $\mathscr{A} = \frac{h}{4v} \left(2m_z^2 A_1^{ZZ} Z_\mu Z^\mu \right)$ $+ A_{2}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{3}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$ + $A_2^{\gamma\gamma} F_{\mu\nu} F^{\mu\nu}$ + $A_3^{\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu}$ $+2A_{2}^{zv}Z_{\mu\nu}F^{\mu\nu}+2A_{3}^{zv}Z_{\mu\nu}\tilde{F}^{\mu\nu})$

Signal and Background

 $=\frac{h}{4v}\left(2m_z^2 A_1^{zz} Z_{\mu} Z^{\mu} Background\right)$ $+ A_{2}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{3}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$ + $A_2^{\gamma\gamma} F_{\mu\nu} F^{\mu\nu}$ + $A_3^{\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu}$ $+2A_{2}^{z\nu}Z_{\mu\nu}F^{\mu\nu}+2A_{3}^{z\nu}Z_{\mu\nu}\tilde{F}^{\mu\nu})$

Signal and Background

Signal and Background

 $= \frac{h}{4v} \left(2m_z^2 A_1^{zz} Z_\mu Z^\mu Background \right)$ $+ A_{2}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{3}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$ Lesson: + $A_2^{xx} F_{\mu}$ We expect to be most Signal sensitive to the signal that +2AZZ Z is most different from BG. Highest sensitivity is to Zr and rr.

hVV: Measurements

- * There are many constraints on our signal operators, mainly from $h \rightarrow \gamma \gamma$ and EDM limits.
- * It is worth emphasizing what we do not know:
 - · Don't know the sign of the hyp vertex.
 - Don't know its phase w/o assumptions
 (EDM constraint requires an assumption of e Yukawa).
 - Constraints on Zy and ZZ high-dim operators are very poor, and will remain so for a while.

Y. Chen, N. Tran, and R. Vega-Morales, 1211.1959 Y. Chen and R. Vega-Morales, 1310.2893 Earlier MEM work by Ian Low et al.

Method

* A simple procedure:

- Calculate the fully differential cross section analytically* for including interference.
- A big function of $(A_2, A_3, A_2, A_3, A_2, A_3, A_2, A_3)$ & phase space.
- · Include dominant backgrounds.
- Fit to the data. Extract A's directly.

In Flavor lingo: a double Dalitz analysis

* Keeps all operators simultaneously. No hypothesis testing, etc.

*Done in a heroic effort by youngsters Chen and Vega-Morales.

Distributions

72

Zγ

88

Distributions

Distributions

ZZ

Zγ

88

Results

* Estimate for HL-LHC (4000 h→4ell events):

Results

* Estimate for HL-LHC (4000 h→4ell events):

How about 100 TeV? The dominant effect is an increase in statistics.

What happens if we take HL-LHC x 5? (that's 20,000 4l events)

(different kinematic distributions and acceptance may also make a difference. Future work)

Results

* Five times LHC statistics:

Thoughts on Higgs and Flavor @ 100 TeV

 $\mathcal{L}_{FV} = m_i \overline{f_i} f_i + Y_{ii} h \overline{f_i} f_i$

How do we generate these interaction? What are the constraints? What are opportunities for SppC?

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices and phases all over the place.

3. Re-diagonalize mass matrix.

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices and phases all over the place.

3. Re-diagonalize mass matrix.

 $\mathcal{L} = \lambda Hf_{f_{1}}f_{f_{2}} + \lambda' \frac{H^{3}}{\Lambda^{2}}f_{f_{1}}f_{f_{2}}$ $m_f = (\lambda + \frac{v^2}{\Lambda^2} \lambda') v$ $Y_{f} = \lambda + 3 \frac{v^{2}}{\Lambda^{2}} \lambda'$

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices and phases all over the place.

3. Re-diagonalize mass matrix.

 $\mathcal{L} = \lambda_{ij} H f_i^{i} f_j^{j} + \lambda_{ij}^{\prime} \frac{H^3}{\Lambda^2} f_i^{j} f_j^{j}$ $m_f = \left(\lambda_{1,1} + \frac{v^2}{\Lambda^2} \lambda_{1,1}'\right) v$ $Y_f = \lambda_{i} + 3 \frac{v^2}{\Lambda^2} \lambda_{i}$

* Recipe: CPV/FV Higgs

1. Rip a page from a paper that modifies Higgs couplings.

2. Sprinkle flavor indices and phases all over the place.

3. Re-diagonalize mass matrix.

 $\mathcal{L} = \lambda_{ij} H f_{l}^{i} f_{p}^{j} + \lambda_{ij}^{\prime} \frac{H^{3}}{\Lambda^{2}} f_{l}^{i} f_{p}^{j}$ $m_f = \left(\lambda_1 + \frac{v^2}{\Lambda^2} \lambda_1'\right) v$ $Y_f = \lambda_{ij} + 3 \frac{v^2}{\Lambda^2} \lambda'_{ij}$

 $Y_{f} \neq \frac{m_{f}}{V}$ and not diagonal.

 $Y_{ij} \leq (m_i m_j)^{1/2}$ is natural.

Leptonic Flavor Violation

 $\mathcal{L}_Y \supset -Y_{e\mu}\bar{e}_L\mu_R h - Y_{\mu e}\bar{\mu}_L e_R h - Y_{e\tau}\bar{e}_L\tau_R h - Y_{\tau e}\bar{\tau}_L e_R h - Y_{\mu\tau}\bar{\mu}_L\tau_R h - Y_{\tau\mu}\bar{\tau}_L\mu_R h + h.c.$

Which experiments constrain the Yij's?

RH, Kopp, Zupan - 1209.1397

RH, Kopp, Zupan 1209.1397

FV Higgs constraints

Higgs couplings to pe

µ→er wins. Will be dominated by µZe.

Probably outside of LHC reach.

Higgs couplings to pe

Higgs couplings to th 19.7 fb⁻¹, $\sqrt{s} = 8$ TeV **CMS preliminary** LHC h-> TH gives ۲ ۳ τ**→ 3**μ dominant bound. **10**⁻¹ CMS: A 2.50 excess. LHC h 10⁻² right around observed $y_{\tau\mu} \sim (y_{\tau} \cdot y_{\mu})^{1/2}$ expected h→μτ 10⁻³ Waiting for ATLAS ... BR<0. **BR<10% 10**⁻⁴ 10^{-3} 10⁻⁴ 10⁻² **10**⁻¹ RH, Kopp, Zupan 1209.1397 μτ

[&]amp; CMS

m-e asymmetry

- ★ h→cµ is statistically limited in some channels.
 How about after 10⁹ Higges plus BG's?
- For the future:
 A novel technique for reducing systematics in the fully leptonic channel: μ-e asymmetry
 - Backgrounds are symmetric under $\mu \leftrightarrow e$.
 - \circ h \rightarrow $\tau\mu$ violates this.

see Bressler, Dery, Efrati (1405.4545).

m-e asymmetry

* Use this to measure BG in a data driven way. Expected to be statistic dominated for a long time.

A promising approach for a future hadron machine.

Still, may be hard to beat CepC/ILC/FCC-ep.

see Bressler, Dery, Efrati (1405.4545).

Conclusion

- * Massive Higgs production rate at 100 TeV. An opportunity for clean, low rate channels.
- * Examples of statistically limited searches:
 - Double Higgs production.
 - $h \rightarrow 4l$ for hVV couplings and CP properties.
 - · Leptonic Flavor violating Higgs decays.
 - Top FCNC's (e.g. $top \rightarrow hc$).
 - o ...?

Deleted Scenes

hVV: Measurements

* We already have some searches for our signal:

$$\begin{split} \checkmark &= \frac{h}{4\nu} \left(2m_z^2 A_{11}^{ZZ} Z_{\mu} Z^{\mu} + A_{22}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{33}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} + A_{22}^{XZ} Z_{\mu\nu} F^{\mu\nu} + A_{33}^{XY} F_{\mu\nu} \tilde{F}^{\mu\nu} + 2A_{22}^{ZY} Z_{\mu\nu} F^{\mu\nu} + 2A_{33}^{ZY} Z_{\mu\nu} \tilde{F}^{\mu\nu} \right) \end{split}$$

hVV: Measurements

* We already have some searches for our signal:

 $\mathscr{I} = \frac{h}{4\nu} \left(2m_z^2 A_1^{ZZ} Z_\mu Z^\mu \right)$ $+ A_{2}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{3}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$

hVV: Measurements

* We already have some searches for our signal:

 $\mathscr{I} = \frac{h}{4v} \left(2m_z^2 A_1^{zz} Z_\mu Z^\mu \right)$ $h \rightarrow 4l:$ for $Z^{\mu\nu} + A_3^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu}$ scalar vs. pseudoscalar. (Hypothesis test). vs = 7 TeV, L = 5.1 fb⁻¹vs = 8 TeV, L = 12.2 fb⁻¹ Generated experiments 3000 SM, 0+ A good first step, but 2500 Scalar 0-2000 CMS data this is not the way to go preferred 1500 forward with this search. 1000 @ 3σ 500 (CMS already started this change) -20 10 20 -10 0 $-2 \times \ln(L_{0^{-}}/L_{0^{+}})$

hVV: Measurements

* We have some measurements of A's:

$$= \frac{h}{4\nu} \left(2m_z^2 A_{11}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{23}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} + A_{22}^{ZZ} Z_{\mu\nu} Z^{\mu\nu} + A_{33}^{ZZ} Z_{\mu\nu} \tilde{Z}^{\mu\nu} + A_{22}^{XY} F_{\mu\nu} F^{\mu\nu} + A_{33}^{YY} F_{\mu\nu} \tilde{F}^{\mu\nu} + 2A_{22}^{ZY} Z_{\mu\nu} F^{\mu\nu} + 2A_{33}^{ZY} Z_{\mu\nu} \tilde{F}^{\mu\nu} \right)$$

hVV: Measurements

* We have some measurements of A's:

 $\mathscr{A} = \frac{h}{4\nu} \left(2m_z^2 A_1^{ZZ} Z_\mu Z^\mu \right)$ + $A_2^{\gamma\gamma} F_{\mu\nu} F^{\mu\nu}$ + $A_3^{\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu}$

hVV: Measurements

* We have some measurements of A's:

LHC $h \rightarrow \gamma \gamma$ rate (assuming standard production): $|A_2^{\gamma \gamma}|^2 + |A_3^{\gamma \gamma}|^2 \sim SM$ value

Motivation

- * Why look for Zx and xx in four leptons? Isn't it clear we will loose to direct searches?
 - Yes, but backgrounds are also smaller.
 - Interference = Sensitivity to CP violation.
 - Many observables = discriminating power.
 - Interference also gives 4l a head start. e.g., $A_2^{Z_8}$'s effect the rate like -

Zy:	AzxAz~small ²
4l:	A1xA2 ~ big*small

Y. Chen, N. Tran, and R. Vega-Morales, 1211.1959 Y. Chen and R. Vega-Morales, 1310.2893 Earlier MEM work by Ian Low et al.

Method

* A simple procedure:

- Calculate the fully differential cross section analytically*.
- A big function of $(A_2, A_3, A_2, A_3, A_2, A_3, A_2, A_3)$ & phase space.
- Fit to the data. Extract A's directly.
- * Keeps all operators simultaneously. No hypothesis testing, etc.

*Done in a heroic effort by youngsters Chen and Vega-Morales.

Phase Space

- * The relevant phase space for $h \rightarrow 4l$ can be written as:
 - two invariant masses of lepton pairs, m1 and m2.
 - two opening angles.
 - a relative azimuthal angle.
- * All other variables are the boost to the Higgs rest frame, and overall rotation. l1

l2

m7 & m2

- * We dopt the CMS/ATLAS convention for picking m1 and m2:
 - O Same flavor pairs.
 - Always pick m1>m2

Note: These choices have ZZ* in mind

- For 4e and 4µ: pick mi to be closest to the Z mass.
- * We also employ CMS-like cuts:
 - $p_{T\ell} > 20, 10, 7, 7$ GeV for lepton p_T ordering,
 - $|\eta_{\ell}| < 2.4$ for the lepton rapidity,
 - 40 GeV $\leq M_1$ and 12 GeV $\leq M_2$.

Signal 2I2I'

Signal 4I

×10⁻⁹

Signal 2l2l'

Signal 4I ×10⁻⁹ <u>چ</u> 99ج 0.5 50 0.4 40 0.3 30 0.2 20 0.1 10 0<u></u> 0 120 M₁^(A) 20 100 40 60 80

 A_3^{ZZ}

Signal 2121'

 A_{z}^{ZA}

"Wrong Pair"

- * These cuts were optimized to discover the Higgs. Motivated by ZZ*.
- * But accidentally, they have good efficiency for $\gamma^*\gamma^*$ in the 4e and 4µ channel! :-)

"Wrong Pair"

- * These cuts were optimized to discover the Higgs. Motivated by ZZ*.
- * But accidentally, they have good efficiency for $\gamma^*\gamma^*$ in the 4e and 4µ channel! :-)

"Wrong Pair"

* These cuts were optimized to discover the Higgs. Motivated by ZZ*.

e+

* But accidentally, they have good efficiency for $\gamma^*\gamma^*$ in the 4e and 4µ channel! :-)

"Wrong Pair"

- * These cuts were optimized to discover the Higgs. Motivated by ZZ*.
- * But accidentally, they have good efficiency for $\gamma^*\gamma^*$ in the 4e and 4µ channel! :-)

Lesson from Shapes

- * Not surprisingly: the **xx** shapes are most different from background (recall: BG= A1).
- * Zy is next.
- * Interesting pair selection effects in xx 4e/4µ. There is room for optimization! (more later)

Optimization

* The cuts on m1 and m2 had ZZ* in mind.

* We can relax them! (or pick "wrong pairings" on purpose..)

Optimization

* The cuts on m1 and m2 had ZZ* in mind.

* We can relax them! (or pick "wrong pairings" on purpose..)

Optimization

* Success hinges on what happens when we include non-Higgs background (in progress).

Non-Higgs Background

- * We include the leading backgrounds, $q\bar{q} \rightarrow VV \rightarrow 4l$ in our analytic framework (including interference).
- * map is a good Higgs vs non-Higgs discriminant. We smear the Higgs map by 2 GeV.
- * Include the Higgs to non-Higgs ratio as a parameter in our fit.

