quark gluon separation at LHC

Mihoko M. Nojiri (KEK and IPMU)

with Bhattacherjee(Indian Institute of Science), Mukhopadhyay (IPMU) Sakaki(KEK), Webber(Cambridge)

quark gluon separation Motivation

- at LHC collisions →quark, gluon →jet: most of present analysis assume they cannot be distinguished.
- If it is possible...
 - discriminate New physics
 - gluino/squark decay to LSP \rightarrow hard quark
 - ISR from SUSY production \rightarrow gluon rich
 - QCD process \rightarrow gluon rich EW process \rightarrow hard quark
 - Energy calibration (fake Wjj peak..)
- They have different nature and may be distinguished.

contents of this talk

- quantity that has been proposed to improve quark gluon separation
 - nch :number of charged tracks
 - jet shape (jet width -> C1)
 - jet mass
- new variable: number of associated jets
- MC simulations improvement and MC dependence

quark and gluon jet separation studies

- Number of partons at Q²(had) → number of particles
 →number of charged particles (non-perturbative physics)
- Jet shape (broadness of the jet, and mass)

Girth :
$$g = \sum_{i \in jet} \frac{p_T^i}{p_T^{jet}} r_i$$
. jet mass

 $C_1^{(\beta)} = \sum_{i < j \in J} p_{Ti} p_{Tj} (\Delta R_{ij})^{\beta}$ Larkoski et al JHEP 1306.108(2013)

Infrared safe and calculable "in principle"

Monte Carlo (Pythia, Herwig++, Shelpa) parton shower(soft collinear) + hadronization modeling (NP) Using all possible parameter to increase the separation "gluon jet" : more charged tracks and broader than "quark jet"

arXive 1211.7038 Gallicchio and Schwartz

This earlier study has shown very good separation between quark and gluon based on pythia6

ATLAS-CONF-2012-138

Nhan Tran (FNAL) for Lepton Photon

- Quark- and gluon-initiated jets have different properties
- Many search applications for distinguishing quarks and gluon jets
 - Hadronically decaying vector bosons
 - monojet, dijet searches
 - SUSY searches with high quark jet multiplicity
- Jet width and number of charged tracks provide good discrimination

need careful validation of the data

Example: for 50% quark jet efficiency, we can reject 90% gluon jets More discriminant at higher pTs

- Parton shower:Number of partons at Q²(had) → number of particles →number of charged particles
- Infrared non-safe, nonperturbative physics: ratio still can be calculated
- rejection rate is determined by tail regions.

even after tuning by low energy data number of particles of high pt jets has some uncertainty

Infrared safe quantities (width, mass etc..)

- Better understanding / theory and MC comparison
- calculation proceeds with

splitting function
$$dp(\theta) = \frac{d\theta}{\theta} \int dz \frac{\alpha_S}{\pi} P(z)$$

• Sudakov factor (probability of non-emitting)

$$\Delta(R \to \theta) = \prod_{\theta_k \in [\theta, R]} [1 - dp(\theta_k)] = \exp\left[-\int dp(\theta')\right]$$

resolution

Jet mass : Quarks vs Gluons

- Gluon mass is greater than Quarks
- Efficiency ratio from QCD prediction at LL order is

$$\frac{\ln \epsilon_G}{\ln \epsilon_Q} = \frac{C_A}{C_F} = \frac{9}{4}$$

A. Larkoski, G. Salam, J. Thaler, JHEP06(2013)108

$$C_1^{(\beta)} = \frac{\sum_{i < j} p_{T,i} p_{T,j} \Delta R_{ij}^{\beta}}{(\sum_i p_{T,i})^2}$$

$$\beta > 0$$

Larger value means better separation

• Efficiency ratio at NLL order

- Small β lead to better Quark-Gluon separation
- Contribution from 2nd-term ($\sqrt{\alpha}s$ term) looks most important
- Actually, 3rd term is most significant numerically

MC study

- C_1 with $\beta=0$ is collinear-unsafe observable
- Authors recommend $\beta = 0.2$

A. Larkoski, G. Salam, J. Thaler, JHEP06(2013)108

Further improvement Number of associated jet

gluon jet is broader and many particles spill outside jet cone (additional jets)

1.Jet clustering anti-K_T R=0.4

 Count number of jets in ΔR<0.8 but ΔR (p_{Ta}/p_{Tj})<0.4 (avoid counting accidental hard objects)

QCD :gluon emits nearby jets P(g)/P(q)~2

Can we distinguish Quarks from Gluons?

Event

Can we distinguish Quarks from Gluons?

Can we distinguish Quarks from Gluons?

jets with associated jet is more likely to be gluon

DLLA predicts P1(gluon)~2P1(quark) agree with Herwig++ Pythia P1(gluon)~P1(quark)

NDLA vs Herwig++ & Pythia8

my previous claims in some talk on large disagreement was due to pythia 6.4.26 bug (latest is 6.4.28) ported from pythia-pgs of MadGraph. (use most latest one always and check consistency even if you have generated lots of events already)

Multivariate analysis(MVA) with # of associated jet categories Delphes with track pT cuts, UE, MI etc

• # of associated jet \ge |

- Method-I: $MVA(n_{ch} + C_I)$
- Method-2: $MVA(n_{ch} + C_1)$ + associated jet information
- Method-3: MVA(n_{ch} + C₁ + m/p_T)
- Method-4: $MVA(n_{ch} + C_1 + m/p_T)$ + associated jet information

Associated jets bring information outside a leading jet, and improve the performance of Quark-Gluon separation!

Associate jet variable

- Covers finite(large) angle emission, somewhat related with mass or C1 of the jet.
- "glooming" with wider R (jet pT cut on associated jet.)
- number of associated jet distribution is "consistent" with NDLL accuracy calc. large Ra/R and pa/p and $\alpha^n \log^{2n}$ and $\alpha^n \log^{2n-1}$.
- No need to change LHC "jet analysis" anti-KT, fixed cone etc

for application

- Experimental studies using "isolated jets" : bias killing gluon jet. It is not practical because high PT jets have associated jets with high probability
- generators do not agree on number of nearby jets. They are different in shower, color connection .. -> quantity to tune MC models.
- Underlying events could be a problem, though our simulations show it is not big.