CP violation and rare decays in the *b*-quark sector at LHCb

Vincenzo Vagnoni

INFN Bologna

on behalf of the LHCb Collaboration

Workshop on flavour and top physics at 100 TeV IHEP, Beijing 2015

Consistency of global CKM fits

- Tremendous success of the CKM paradigm!
 - All of the measurements agree in a highly profound way

- The quark flavour sector is well described by the CKM mechanism
 - large sources of flavour symmetry breaking are excluded at the TeV scale
 - the flavour structure of NP should be very peculiar

Nevertheless...

- The good reasons why we believed that the SM was incomplete are still there
 - hierarchy problem
 - unification of gauge couplings
 - dark matter
 - baryon asymmetry
 - ...
- By studying CP-violating and flavour-changing processes we can accomplish two fundamental tasks
 - Identify new symmetries (and their breaking) beyond the SM
 - Probe mass scales not accessible directly
- Measurable deviations from the SM, although not large as naively hoped, are still possible
 - need to go to high precision measurements to probe theoretically clean observables

How much "natural" is Nature?

illustration by G. Villadoro

Marco Ciuchini at KEK-FF 2014

Outline

- LHCb luminosity prospects
- *CP* violation in the interference between mixing and decay
 - $-b \rightarrow c\bar{c}s$ and $b \rightarrow s\bar{s}s$ transitions
- Semileptonic asymmetries of B_d and B_s mesons
- Determination of $\boldsymbol{\gamma}$
 - from tree-level decays
 - from charmless two-body decays
- Rare decays

 $-B_{d,s} \rightarrow \mu\mu$, $B_d \rightarrow K^*\mu\mu$ and $B_u \rightarrow K^+\ell^+\ell^-$

LHCb luminosity prospects

During Run 1

- 7 and 8 TeV collisions
- luminosity levelled at 4·10³² cm⁻²s⁻¹
- software trigger running at 1 MHz after hardware trigger and record 3-5 kHz

LHC era			HL-LHC era		
Run 1 (2010-12)	Run 2 (2015-18)	Run 3 (2020-22)	Run 4 (2025-28)	Run 5+ (2030+)	
3 fb ⁻¹	8 fb ⁻¹	23 fb ⁻¹	46 fb ⁻¹	100 fb ⁻¹	

Note that beauty production cross section is roughly doubled passing from 7 TeV to 14 TeV *pp* collisions

LHCb upgrade

- running at $2 \cdot 10^{33}$ cm⁻²s⁻¹
- replace R/O, RICH photodetectors and tracking detectors
- full software trigger, running at 40 MHz and record 20 kHz

Measurement of sin(2β) [yesterday]

 CP violation due to interference between mixing and decay

$$\mathcal{A}_{J/\psi K_{\mathrm{S}}^{0}}(t) \equiv \frac{\Gamma(\overline{B}^{0}(t) \to J/\psi K_{\mathrm{S}}^{0}) - \Gamma(B^{0}(t) \to J/\psi K_{\mathrm{S}}^{0})}{\Gamma(\overline{B}^{0}(t) \to J/\psi K_{\mathrm{S}}^{0}) + \Gamma(B^{0}(t) \to J/\psi K_{\mathrm{S}}^{0})}$$
$$= S_{J/\psi K_{\mathrm{S}}^{0}} \sin(\Delta m_{d} t) - C_{J/\psi K_{\mathrm{S}}^{0}} \cos(\Delta m_{d} t).$$

 $S_{J/\psi K_{\rm S}^0} = 0.73 \pm 0.07 \,(\text{stat}) \pm 0.04 \,(\text{syst})$ $C_{J/\psi K_{\rm S}^0} = 0.03 \pm 0.09 \,(\text{stat}) \pm 0.01 \,(\text{syst})$

World average: $sin(2\beta)=0.682 \pm 0.019$ Largely dominated by BaBar and Belle

Measurement of sin(2β) [today]

CP violation due to interference Signal yield asymmetry $_{0.3} \downarrow \int \mathcal{L} dt = 3 \text{ fb}^{-1} \text{LHCb} \text{ preliminary}$ between mixing and decay 0.2 0.1 J/ψ -0.1u, c, t u, c, t \bar{B}^0 B^0 B^0 -0.2 La Thuile 2015 -0.3E K^0 10 15 t (ps) $\mathcal{A}_{J/\psi K^0_{\mathrm{S}}}(t) \equiv \frac{\Gamma(B^0(t) \to J/\psi K^0_{\mathrm{S}}) - \Gamma(B^0(t) \to J/\psi K^0_{\mathrm{S}})}{\Gamma(\overline{B}^0(t) \to J/\psi K^0_{\mathrm{S}}) + \Gamma(B^0(t) \to J/\psi K^0_{\mathrm{S}})}$ 2(2β) [°] $= S_{J/\psi K^0_{\mathfrak{s}}} \sin(\Delta m_d t) - C_{J/\psi K^0_{\mathfrak{s}}} \cos(\Delta m_d t).$ inputs from LHCb-PUB-2014-040 $C = -0.038 \pm 0.032 \pm 0.005$ 1 $S = 0.731 \pm 0.035 \pm 0.020$ 0.5

0

Run 1

Run 2

Run 3

- Increased data set (1 fb⁻¹→3 fb⁻¹) and improved flavour tagging
- Similar precision to *B* factories

Run 5

Run 4

CP violation induced by B_s mixing

• $B_s \rightarrow \phi \phi$ is $b \rightarrow s \overline{s} s$ penguin-dominated

NP can show up in the mixing and/or in the decay

- P→VV decays
 - Full angular analysis is needed to disentangle CP-even and CP-odd amplitude components

- Phys. Rev. Lett. **114** (2015) 041801 $\phi_s = -58 \pm 49 \pm 6 \text{ mrad}$
- B_s→J/ψπ⁺π⁻ (3 fb⁻¹) − Phys. Lett. **B736** (2014) 186 $\phi_s = 70 \pm 68 \pm 8 \text{ mrad}$
- $B_s \rightarrow D_s^+ D_s^-$ (3 fb⁻¹)
 - Phys. Rev. Lett. **113** (2014) 211801 $\phi_s = 20 \pm 170 \pm 20 \text{ mrad}$

CP violation in $B_s \rightarrow \phi \phi$

- Gluonic b→sss penguin
 - Provides an excellent probe of new heavy particles entering the penguin quantum loops
- Latest LHCb result with full Run 1 data set – Phys. Rev. **D90** (2014) 052011 $\phi_s^{\phi\phi}$ = -170 ± 150 ± 30 mrad
- No sign of discrepancy yet, but overall precision comparable to golden b→ccs modes

Semileptonic asymmetries

- We have measured a_{sl}(B⁰) with 3 fb⁻¹
 Phys. Rev. Lett. **114** (2015) 041601
- and a_{sl}(B_s) with 1 fb⁻¹
 Phys. Lett. **B728** (2014) 607
- The measurements agree with the SM, but do not exclude the D0 samesign dimuon result yet

Tree-level determination of γ

- γ is experimentally the least known angle of the UT
- Two main routes
 - Time-independent, $B^{\pm} \rightarrow DK^{\pm}$, $B^{\pm} \rightarrow D\pi^{\pm}$ and $B^{0} \rightarrow DK^{*0}$ decays
 - $B^+ \rightarrow Dh^+, D \rightarrow hh, \text{GLW/ADS}$ Phys. Lett. **B712** (2012) 203
 - $B^+ \rightarrow Dh^+$, $D \rightarrow K\pi\pi\pi$, ADS Phys. Lett. **B723** (2013) 44
 - $B^+ \rightarrow DK^+, D \rightarrow K^0_{
 m s} hh, {
 m GGSZ}_{
 m s}$ JHEP **10** (2014) 097
 - $B^+ \to DK^+, D \to K^0_{s}K\pi$, GLS Phys. Lett. **B733** (2014) 36
 - $B^0 \rightarrow DK^{*0}, D \rightarrow hh, \text{GLW/ADS}$ Phys. Rev. **D90** (2014) 112002
 - Time-dependent, $B_s \rightarrow D_s K$ JHEP 11 (2014) 060
- Possible interplay with charmless *B* decays
 - Also sensitive to γ , but including penguin diagrams \rightarrow NP could show up, but much more difficult to control theoretically
- Combining several independent decay modes is the key to achieve the ultimate precision

Improvements in γ from tree-level decays over the last decade

Experimental status for γ

• LHCb is now starting to dominate the world average

γ and φ_s from charmless two-body decays

- Determination of γ and ϕ_s using $B^0 \rightarrow \pi^+ \pi^-$, $B^0 \rightarrow \pi^0 \pi^0$, $B^{\pm} \rightarrow \pi^{\pm} \pi^0$ and $B_s \rightarrow K^+ K^-$
 - approaches described in Phys. Lett. **B459** (1999) 306 and
 JHEP **10** (2012) 029
 - based on use of isospin and U-spin symmetries
 - impact of non-factorisable U-spin breaking effects taken into account
- Results published in Phys. Lett. **B741** (2015) 1

$$\gamma = (63.5^{+7.2}_{-6.7})^{\circ}$$
$$\phi_s = -0.12^{+0.14}_{-0.16} \text{ rac}$$

Up to 50% non-factorizable U-spin breaking effects included

to be updated to 3 fb⁻¹

$B_{d,s} \rightarrow \mu^+ \mu^-$ from CMS and LHCb

 CMS and LHCb have now performed a combined fit to their full Run 1 data sets

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 2.8^{+0.7}_{-0.6} \times 10^{-9}$$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) = 3.9^{+1.6}_{-1.4} \times 10^{-10}$

- Significance of B_s→μμ 6.2σ: first observation!
 - Compatibility with the SM at 1.2σ
- Excess of events at the 3σ level observed for the $B^0 \rightarrow \mu\mu$ hypothesis with respect to background-only
 - Compatible with SM at 2.2σ

CMS-BPH-13-007, LHCb-PAPER-2014-049: submitted to Nature

Prospects with $B_{d,s} \rightarrow \mu^+ \mu^-$

- Focus here on the ratio between BR($B_d \rightarrow \mu^+ \mu^-$) and BR($B_s \rightarrow \mu^+ \mu^-$)
- Measurement will still be dominated by experimental uncertainty by the end of the present programme

• With increased statistics, the measurement of effective $B_s \rightarrow \mu^+ \mu^-$ lifetime and possibly time-dependent CP violation will become possible

Status of $B_d \rightarrow K^* \mu^+ \mu^-$

- Observables are q² (dimuon mass squared) and 3 angles
 - distributions are quite precisely predicted in the SM
- A_{FB}: LHCb presently giving the most precise results

A_{FB} **Prospects with** $B_d \rightarrow K^* \mu^+ \mu^-$

LHCb expects to reach an accuracy of better than 2% of the in the zero-crossing of the forward-backward asymmetry

Expected relative sensitivity on the zero-crossing point

- A_{FB} is not necessarily the best variable
- Lot of phenomenological work ongoing to define observables where hadronic uncertainties are partially cancelled

B_d →K*⁰µ⁺µ⁻: P'₅ anomaly Differential decay rate

$$P_{i=4,5,6,8}' = \frac{S_{j=4,5,7,8}}{\sqrt{F_{\rm L}(1-F_{\rm L})}}.$$

Interesting feature in one of the observables (P'₅)

- No definitive conclusion yet
- Additional statistics and theoretical studies are needed
- LHCb has great potential to improve in this sector
- On the long run, progresses on the theory side are needed for a clean interpretation of the measurements

Phys. Rev. Lett. 111 (2013) 191801

$B^+ \rightarrow K^+ \ell^+ \ell^-: R_{\kappa}$ anomaly

- $R_{K} = \mathfrak{B}(B^{+} \rightarrow K^{+} \mu^{+} \mu^{-}) / \mathfrak{B} (B^{+} \rightarrow K^{+} e^{+} e^{-})$
 - expected in the SM to be 1 with great accuracy

- test of lepton universality

 Hint of a possible discrepancy with SM measured by LHCb with 3 fb⁻¹
 0.745^{+0.090}_{-0.074}(stat) ± 0.036(syst)

$$1 < q^2 < 6 \text{ GeV}^2/c^4$$

 Compatible with SM at 2.6σ at low di-lepton invariant mass

LHCb, PRL 113 (2014) 151601 Belle, PRL 103 (2009) 171801 Babar, PRD 86 (2012) 032012

Conclusions

- LHCb has performed spectacularly well in Run 1 confirming so far the robustness of the Standard Model
 - No striking smoking guns of NP
 - apart from small discrepancies here and there
 - But many new results to come, and full impact of Run 1 data is still to be seen
- Big improvements will come in Run 2, and much more are expected with the LHCb Upgrade
 - The standard detector will take data till 2018 and the upgraded detector will start taking data in 2020
- Experimental prospects are excellent
 - Key measurements are still far from being limited by systematic uncertainties
- *B* physics at LHCb has large room for improvements!

How it could look like...

 $\sigma(\beta)=0.2^{\circ}$ $\sigma(\gamma)=0.9^{\circ}$

...but maybe this!

Outlook of the Outlook

In the current confusing state of fundamental physics useful/necessary to have a diversified program (LHC, precision, flavour, astro-cosmo-particle, DM)

R. Barbieri at ZPW2015

Latest sensitivity prospects

LHCb-PUB-2014-040

Type	Observable	LHC Run 1	LHCb 2018	LHCb upgrade	Theory
B_s^0 mixing	$\phi_s(B^0_s \to J/\psi \phi) \text{ (rad)}$	0.049	0.025	0.009	~ 0.003
	$\phi_s(B_s^0 \to J/\psi \ f_0(980)) \ (rad)$	0.068	0.035	0.012	~ 0.01
	$A_{\rm sl}(B_s^0)~(10^{-3})$	2.8	1.4	0.5	0.03
Gluonic	$\phi_s^{\text{eff}}(B_s^0 \to \phi \phi) \text{ (rad)}$	0.15	0.10	0.018	0.02
penguin	$\phi_s^{\text{eff}}(B_s^0 \to K^{*0} \bar{K}^{*0}) \text{ (rad)}$	0.19	0.13	0.023	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_{\text{S}}) \text{ (rad)}$	0.30	0.20	0.036	0.02
Right-handed	$\phi_s^{\text{eff}}(B_s^0 \to \phi \gamma) \text{ (rad)}$	0.20	0.13	0.025	< 0.01
currents	$ au^{\mathrm{eff}}(B^0_s o \phi \gamma) / au_{B^0_s}$	5%	3.2%	0.6%	0.2%
Electroweak	$S_3(B^0 \to K^{*0}\mu^+\mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.04	0.020	0.007	0.02
penguin	$q_0^2 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	10%	5%	1.9%	$\sim 7\%$
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 { m GeV^2/c^4})$	0.09	0.05	0.017	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	14%	7%	2.4%	$\sim 10\%$
Higgs	${\cal B}(B^0_s o \mu^+ \mu^-) \ (10^{-9})$	1.0	0.5	0.19	0.3
penguin	$\mathcal{B}(B^0 o \mu^+ \mu^-) / \mathcal{B}(B^0_s o \mu^+ \mu^-)$	220%	110%	40%	$\sim 5\%$
Unitarity	$\gamma(B \to D^{(*)}K^{(*)})$	7°	4°	0.9°	negligible
$\mathbf{triangle}$	$\gamma(B^0_s ightarrow D^{\mp}_s K^{\pm})$	17°	11°	2.0°	negligible
angles	$eta(B^0 o J/\psi K_{ m S}^0)$	1.7°	0.8°	0.31°	negligible
Charm	$A_{\Gamma}(D^0 \to K^+ K^-) \ (10^{-4})$	3.4	2.2	0.4	-
CP violation	$\Delta A_{CP} (10^{-3})$	0.8	0.5	0.1	_

- Before the upgrade (8 fb⁻¹)
- After the upgrade (50 fb⁻¹)
- Theory uncertainty (as far as we know today)