Xabier Cid Vidal (CERN) on behalf of the LHCb collaboration Flavor and top physics @ 100 TeV workshop March 6th, 2015

Outline

Introduction to LHCb

Electroweak physics

Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau^-$ production H^0 decays to long-lived particles A_C in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow b\bar{b}$

Conclusions

Introduction to LHCb

LHCb detector

Electroweak, top and exotics physics at LHCb: present and future

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_C in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow b^0$

Conclusions

• LHCb is a single-arm spectrometer with forward angular coverage from 10 mrad to 300 (250) mrad in the bending (non-bending) plane [equivalent to $2 < \eta < 5$]

LHCb detector

Electroweak, top and exotics physics at LHCb: present and future

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+$, production H^0 decays to long-lived particles A_c in $b\overline{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow b\bar{b}$

Conclusions

• LHCb is a single-arm spectrometer with forward angular coverage from 10 mrad to 300 (250) mrad in the bending (non-bending) plane [equivalent to $2 < \eta < 5$]

LHCb detector

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□≥ ◇◇◇

Electroweak, top and exotics physics at LHCb: present and future

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

- Exotics physics
- Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles

 A_c in $b\overline{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow b^0$

Conclusions

- LHCb is a single-arm spectrometer with forward angular coverage from 10 mrad to 300 (250) mrad in the bending (non-bending) plane [equivalent to $2 < \eta < 5$]
- Initially conceived for *b*-physics, current physics goals have been widely extended
- LHCb strong points:
 - \rightarrow Particle identification (including K/π separation)
 - → Vertexing and IP
 - → Momentum and mass resolution
 - \rightarrow Unique coverage in η !
- More details about LHCb (and its upgrade): see talks by V. Vagnoni and M. Gersabeck!

LHCb complementarity

Electroweak, top and exotics physics at LHCb: present and future

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_c in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow H^0$

Conclusions

 η coverage

- LHCb can offer unique coverage at the LHC
- However *b* physics imposes dealing with lower luminosities
 - ightarrow 2010: 37 pb $^{-1}$ at $\sqrt{s}=$ 7 TeV
 - \rightarrow 2011: 1 fb⁻¹ at \sqrt{s} = 7 TeV
 - \rightarrow 2012: 2 fb⁻¹ at \sqrt{s} = 8 TeV
- As a benefit, very stable conditions in terms of trigger/luminosity (luminosity leveling)

Electroweak physics

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_c in $b\overline{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow$

Conclusions

New regions to probe

Q² momentum transfer

- LHCb EW production measurements probe two Bjorken $x Q^2$ regions
 - \rightarrow Low *x*, high Q^2 previously unexplored
 - \rightarrow LHCb produces W/Z by collisions between low-*x* and high-*x* partons
 - → Overlap region allows direct ATLAS/CMS comparison

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

production H⁰ decays to long-lived

 A_c in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow H^0$

Conclusions

Z/W cross sections analyses

 LHCb has measured the cross sections of Z and W using 2010, 2011 and 2012 datasets

 \rightarrow Z and W, μ decays (2010): 7 TeV JHEP 1206 (2012) 058, [arXiv:1204.1620]

 $\rightarrow Z \rightarrow e^+e^-$:

7 TeV JHEP 1302 (2013) 106, [arXiv:1212.4620] 8 TeV arXiv:1503.0963 (submitted to JHEP)

 $ightarrow Z
ightarrow \mu^+ \mu^-$: LHCb-CONF-2013-007

→ $Z \to \tau^+ \tau^-$: JHEP 1301 (2013) 111, [arXiv:1210.6289]

 $\rightarrow W \rightarrow \mu \nu_{\mu}$: JHEP 1412 (2014) 079, [arXiv:1408.4354]

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_c in $b\bar{b}$

Future

Prospects on EW How about top?

Conclusions

 $Z
ightarrow e^+ e^-$

8 TeV, arXiv:1503.0963 (submitted to JHEP)

 $Z \rightarrow \tau^+ \tau^-$

(example: $\mu h \text{ mode}$) JHEP 1301 (2013) 111, [arXiv:1210.6289]

 $W \rightarrow \mu \nu_{\mu}$ JHEP 1412 (2014) 079, [arXiv:1408.4354]

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X $(1/\sigma)d\sigma/dy_{\rm Z}$

1/σ)dσ/dφ*

 10^{-1}

 10^{-2}

 10^{-3}

0.7

0.6 0.5

0.4

0.3

0.2E

0.1

0.9 LHCb

8 TeV Z $\rightarrow e^+e^-$

Data (stat.)

Pvthia8.1

Reshos

+ Powheg

8 TeV $Z \rightarrow e^+e^-$

Data (stat.) Data (tot.)

Pythia8.1 Resbos

Powheg
 10⁻²

3 3.5

y7

LHCb

ሰ*

Exotics physics Limits on $H^0 \rightarrow \tau^+ \tau^$ production H^0 decays to long-lived particles A_C in $b\overline{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow E$

Conclusions

Agreement as a function of η^Z

* different NNLO PDF sets shown * e^- and e^+ should satisfy 2.0 < η < 4.5; $p_T > 20 \text{ GeV}/c$; 60 < $m_{e^+e^-} < 120 \text{ GeV}/c^2$

Z cross section

and also as a function of Φ^\ast

^aClick here for theory references

 10^{-1}

W cross section

Electroweak, top and exotics physics at LHCb: present and future

X. Cid Vidal

Introduction to LHCk

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+$, production H^0 decays to long-lived particles

Future

Prospects on EW How about top?

Conclusions

JHEP 1412 (2014) 079, [arXiv:1408.4354]

* different NNLO PDF sets shown * μ should satisfy 2.0 < η < 4.5 and p_T > 20 GeV/*c*

NNLO agreement as a function of η^{μ}

^bClick here for theory references

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_c in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow H^0$

Conclusions

W: comparison to ATLAS and CMS

- We have compared our differential cross sections to those of ATLAS/CMS in the overlapping region with 2010 and 2011 datasets
 - $\rightarrow\,$ LHCb charge asymmetry results extrapolated to the fiducial volume of the ATLAS/CMS measurements
 - \rightarrow Results in term of charge asymmetry:

$$\mathbf{A}_{l} = \frac{\mathrm{d}\sigma/\mathrm{d}\eta(W^{+} \rightarrow l^{+}\nu) - \mathrm{d}\sigma/\mathrm{d}\eta(W^{-} \rightarrow l^{-}\bar{\nu})}{\mathrm{d}\sigma/\mathrm{d}\eta(W^{+} \rightarrow l^{+}\nu) + \mathrm{d}\sigma/\mathrm{d}\eta(W^{-} \rightarrow l^{-}\bar{\nu})}$$

JHEP 1412 (2014) 079, [arXiv:1408.4354]

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_c in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow$

Conclusions

- LHCb has measured the cross sections of associated Z production also using 2011 dataset.
- Z reconstructed in $\mu^+\mu^-$ mode in all cases
- Z+ D mesons:
 - → JHEP 1404 (2014) 091, [arXiv:1401.3245]
- *Z*+ jets:
 - → JHEP 1401 (2014) 033, [arXiv:1310.8197]
- Z + b jets:
 - → JHEP 1501 (2015) 064, [arXiv:1411.1264]

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_C in $b\overline{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow bh$

Conclusions

Z+ D meson cross section vs. different theory^c contributions JHEP 1404 (2014) 091, [arXiv:1401.3245]

^cClick here for theory references

Results: Z+D

Interesting to address the charm parton distribution inside the proton and the charm production mechanism: single- (SPS) and double-parton scattering (DPS)

D decay modes used:

 $D \rightarrow K^{-}\pi^{+}$

$$D^+
ightarrow K^- \pi^+ \pi^+$$

DPS dominates, while SPS negligible. Big uncertainty for now, will be very interesting in the future.

> * μ^- and μ^+ should satisfy 2.0 < η < 4.5; p_T > 20 GeV/*c*; 60 < $m_{\mu^+\mu^-}$ < 120 GeV/*c*² Standard cuts for D selection

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_c in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow$

Conclusions

Z + b jets cross section

Z+jets

JHEP 1401 (2014) 033, [arXiv:1310.8197]

Z+ (b) jets

Z+ b jets JHEP 1501 (2015) 064, [arXiv:1411.1264]

Both results are a nice test of LHCb potential with jets, use of *anti-kt* algorithm with R = 0.5

For Z+b, normalization to Z+ jets, show jet b-tagging capabilities

Results compatible with different NNLO PDF sets shown^d

* μ^{-} and μ^{+} should satisfy 2.0 < η < 4.5; p_{T} > 20 GeV/*c*; 60 < $m_{\mu^{+}\mu^{-}}$ < 120 GeV/ c^{2}

Different p_T cuts for the (b) jets (starting at

10 GeV/*c*). Also $\Delta R(\mu, jet) > 0.4$

^dClick here for theory references

Exotics physics

<□> <□> <□> <=> <=> <=> <=> <=> <=> <=> <=> <</p>

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau^$ production H^0 decays to long-lived particles A_c in $b\overline{b}$

Future

Prospects on EW How about top?

Conclusions

• First LHCb paper on search for neutral Higgs in the forward direction JHEP 1305 (2013) 132, [arXiv:1304.2591]

• No excess found \rightarrow limits set for both in a model independent way (as a function of m_H) and in one particular realization of MSSM

 $\rightarrow~$ Limits set using CL_S method at 95% CL

Limits on $H^0 \rightarrow \tau^+ \tau^-$

MSSM limit compared to ATLAS, CMS and LEP in the $m(h^0)_{max}$ scenario^e

^eClick here for theory references

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production

H⁰ decays to long-lived particles

```
Future
```

Prospects on EW How about top? Towards $H^0 \rightarrow$

Conclusions

H^0 decays to long-lived particles: Overview

 Search for Higgs decaying to Long Lived massive Particles, predicted by many BSM theories, using 0.62 fb⁻¹ of 2011 LHCb dataset

arXiv:1412.3021 (submitted to Eur. Phys. J. C)

- Examples of theory models predicting such particles:
- → SUSY models with Baryon number Violation (BV)
 - $h^0 \rightarrow \tilde{\chi}^0_1 \tilde{\chi}^0_1$, with $\tilde{\chi}^0_1$ neutralino long-lived, $\tilde{\chi}^0_1 \rightarrow 3$ quarks

Phys.Rev.Lett. 99 (2007) 211801, [hep-ph/0607204]

- \rightarrow Some Hidden Valley (HV) models
 - $h^0 \rightarrow \pi^0_V \pi^0_V \rightarrow 4$ displaced *b* quarks *Phys.Lett.* **B651** (2007) 374–379.

[hep-ph/0604261]

H⁰ decays to long-lived particles: LHCb analysis

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_C in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow b^0$

Conclusions

Experimental signature: displaced vertex with two associated jets. LHCb advantage thanks to Particle Identification, vertexing...

Important LHCb contribution, e.g., for HV models LHCb can look into a complementary phase space region with respect to ATLAS/CMS in terms of π_V^0 lifetime and mass.

H^0 decays to long-lived particles: Results

arXiv:1412.3021 (submitted to Eur. Phys. J. C)

Limits set in different regions of the BSM models phase space

 $2.5 \text{ mm} < R_{xy} < 4.0 \text{ mm}$

50

LHCb

60 70 80

mass $[\text{GeV}/c^2]$

ATLAS: Phys.Rev.Lett. 108 (2012) 251801, [arXiv:1203.1303] CMS: CMS-PAS-EXO-12-038

Electroweak, top and exotics physics at LHCb: present and future

X. Cid Vidal

Introduction to LHCt

Electroweak physics Z and W production at LHCb Z+X Candidates / $(2 \text{ GeV}/c^2)$

 10^{3}

 10^{2}

10

1

0 10 20 30 40

No excess above $b\bar{b}$ (main

Example from one of the fits to different radial distances

source of background).

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_C in $b\overline{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow b$

Conclusions

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_0 in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow$

Conclusions

• Measurement of $b\bar{b}$ charge asymmetry (A_C) using 2011 LHCb dataset

Phys.Rev.Lett. 113 (2014), no. 8 082003, [arXiv:1406.4789]

$$A_C^{bar{b}} = rac{N(\Delta y > 0) - N(\Delta y < 0)}{N(\Delta y > 0) + N(\Delta y < 0)} \quad \Delta y = |y_b| - |y_{ar{b}}|$$

• Related to $t\bar{t}$ asymmetry from Tevatron, so that models to explain it predict also large A_C in $b\bar{b}$

JHEP 1201 (2012) 069, [arXiv:1108.3301] Phys.Rev.Lett. 111 (2013) 062003, [arXiv:1302.6995]

- Strategy:
 - ightarrow Reconstruct the $bar{b}$ as a pair of jets
 - $\rightarrow\,$ Use b-tagging to select jets and muon from semileptonic decays to determine their charge
 - \rightarrow Measure asymmetry in bins of $M_{b\bar{b}}$

A_C in $b\bar{b}$: Overview

A_C in $b\bar{b}$: Results

Phys.Rev.Lett. 113 (2014), no. 8 082003, [arXiv:1406.4789]

Corrected Δy distribution, L0 SM from

PYTHIA JHEP 0605 (2006) 026, [hep-ph/0603175]

Results in different mass regions (in GeV/c²)

Corrected mass distribution

Mourr [GeV/c²]

LHCb

beautv

charm

$$\begin{split} A_C^{b\bar{b}}(40,75) &= 0.4 \pm 0.4(\mathrm{stat}) \pm 0.3(\mathrm{syst})\% \\ A_C^{b\bar{b}}(75,105) &= 2.0 \pm 0.9(\mathrm{stat}) \pm 0.6(\mathrm{syst})\% \\ A_C^{b\bar{b}}(>105) &= 1.6 \pm 1.7(\mathrm{stat}) \pm 0.6(\mathrm{syst})\% \end{split}$$

→ Asymmetry is not significant and the results found are consistent with SM (expected to be O(1%) from QCD with an extra O(1%) in the Z mass region)

Electroweak, top and exotics physics at LHCb: present and future

X. Cid Vidal

Introduction to LHC

Electroweak physics Z and W production at LHCb Z+X Candidates / (20 MeV/c²)

4000

2000

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_c in $b\overline{b}$

Future

Prospects on EV How about top?

Conclusions

Prospects on EW

Electroweak, top and exotics physics at LHCb: present and future

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_{τ} in $b\bar{b}$

Future

Prospects on EW

How about top? Towards $H^0 \rightarrow b\overline{b}$

Conclusions

- An update is expected in many of the channels presented using the 2012 data sample at $\sqrt{s} = 8$ TeV
- Also, *W* + *j*(*l*, *c*, *b*) production measurements will appear in the coming months
- For RUN II, di-boson production reachable, e.g., WW. Also, \sim 10 times more W with Run II dataset (5 fb⁻¹) than in the 7 TeV measurements.

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_0 in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow t$

Conclusions

Measurements on top production, also close to become a reality

How about top?

 Yields expected in the LHCb acceptance *Phys.Rev.Lett.* 107 (2011) 082003, [arXiv:1103.3747] *JHEP* 1402 (2014) 126, [arXiv:1311.1810]

$d\sigma({ m fb})$	$7 { m TeV}$			$8 { m TeV}$			$14 { m TeV}$		
lb	285	\pm	52	504	±	94	4366	\pm	663
lbj	97	\pm	21	198	\pm	35	2335	\pm	323
lbb	32	\pm	6	65	\pm	12	870	\pm	116
lbbj	10	\pm	2	26	\pm	4	487	\pm	76
l^+l^-	44	\pm	9	79	\pm	15	635	\pm	109
l^+l^-b	19	\pm	4	39	\pm	8	417	\pm	79

- LHCb measurement will be very useful to reduce the uncertainty on the high-x gluon PDFs
- Possibility to measure the $t\bar{t}$ asymmetry also under study

Towards $H^0 ightarrow bar{b}$

Electroweak, top and exotics physics at LHCb: present and future

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_0 in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow b\overline{b}$

Conclusions

- LHCb is also on its way to perform a search for $H^0 \rightarrow b \bar{b}$
- → Interest: Higgs coupling to quarks
- ightarrow Probability to have both *b* quarks in LHCb acceptance: ~5% at 7 TeV
- → Our jet reconstruction has been tested to work successfully. Substantial progress in *b*-jet tagging.

- Benchmark analyses done:
 - ightarrow Measurement of the charge $bar{b}$ asymmetry
 - \rightarrow Measurement of $\sigma(b\bar{b})$ with inclusive final states LHCb-CONF-2013-002

Conclusions

<□> <□> <□> <=> <=> <=> <=> <=> <=> <=> <=> <</p>

Conclusions

Electroweak, top and exotics physics at LHCb: present and future

X. Cid Vidal

Introduction to LHCb

Electroweak physics Z and W production at LHCb Z+X

Exotics physics

Limits on $H^0 \rightarrow \tau^+ \tau$ production H^0 decays to long-lived particles A_C in $b\bar{b}$

Future

Prospects on EW How about top? Towards $H^0 \rightarrow bh$

Conclusions

- LHCb has been shown to be competitive also in measurements not directly related to flavour
- We offer unique phase-space coverage
 - \rightarrow Results in EW physics
 - Z and W cross sections in different decay modes
 - Associated Z production
 - \rightarrow Also, relevant exotica results
 - First LHCb paper on Higgs searches: $H^0 \rightarrow \tau^+ \tau^-$
 - Long lived particles decaying to jets
 - Charge asymmetry in bb
 - \rightarrow And an exciting future ahead of us...

Thanks!

<□> <□> <□> <=> <=> <=> <=> <=> <=> <=> <=> <</p>

X. Cid Vidal

Backup slides

More references

How we measure the cross sections ATLAS_CMS and LHCb on

 $H^0 \rightarrow LLP$

Limits on $H^0 \rightarrow \tau^+ \tau^-$ Analysis overview

Measurement of $\sigma(b\bar{b})$ with inclusive final states

Summary of systematics and backgrounds

Z and W production references

• Z and W

- → MSTW08: *Eur.Phys.J.* C63 (2009) 189–285, [arXiv:0901.0002]
- → ABKM09: *Phys.Rev.* D81 (2010) 014032, [arXiv:0908.2766]
- → JR09: *PoS* DIS2010 (2010) 038, [arXiv:1006.5890]
- → NNPDF: *Nucl.Phys.* **B867** (2013) 244–289, [arXiv:1207.1303]
- → HERA15: H1 and ZEUS Collaboration Collaboration JHEP 1001 (2010) 109, [arXiv:0911.0884]
- → CTEQ6m: Phys.Rev. D78 (2008) 013004, [arXiv:0802.0007]
- → DYNNLO: *Phys.Rev.Lett.* **103** (2009) 082001, [arXiv:0903.2120]
- → FEWZ: Comput.Phys.Commun. 182 (2011) 2388-2403, [arXiv:1011.3540]

X. Cid Vidal

Backup slides

More references

How we measure the cross sections

ATLAS, CMS and LHCb or $H^0 \rightarrow LLP$

Limits on $H^0 o au^+ au^-$ Analysis overview

Measurement of $\sigma(bar{b})$ with inclusive final states

Summary of systematics and backgrounds

Z and W production references

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□≥ ◇◇◇

• Z and W

- → POWHEG: JHEP 1101 (2011) 095, [arXiv:1009.5594]
- → PYTHIA: JHEP 0605 (2006) 026, [hep-ph/0603175]
- → RESBOS 1: Phys.Rev. D50 (1994) 4239, [hep-ph/9311341]
- → RESBOS 2: *Phys.Rev.* **D56** (1997) 5558-5583, [hep-ph/9704258]
- → RESBOS 3: Phys.Rev. D67 (2003) 073016, [hep-ph/0212159]
- → NNPDF23: Nuclear Physics B 867 (2013), no. 2 244 289
- \rightarrow CT10: Phys. Rev. D 89 (Feb, 2014) 033009
- \rightarrow ABM12: Phys. Rev. D 89 (Mar, 2014) 054028

X. Cid Vidal

Backup slides

More references

How we measure the cross sections

 $H^0 \rightarrow LLP$

Limits on $H^0 \rightarrow \tau^+ \tau^-$ Analysis overview

Measurement of $\sigma(b\overline{b})$ with inclusive final states

Summary of systematics and backgrounds

Z+X production references

- Z+X
 - → POWHEG: JHEP 1101 (2011) 095, [arXiv:1009.5594]
 - → PYTHIA: JHEP 0605 (2006) 026, [hep-ph/0603175]
 - → MSTW08: *Eur.Phys.J.* C63 (2009) 189–285, [arXiv:0901.0002]
 - → CTEQ10: *Phys.Rev.* D82 (2010) 074024, [arXiv:1007.2241]
 - → NNPDF: *Nucl.Phys.* **B867** (2013) 244–289, [arXiv:1207.1303]
 - → FEWZ: Comput.Phys.Commun. 182 (2011) 2388-2403, [arXiv:1011.3540]
 - → MCFM: Nuclear Physics B Proceedings Supplements 205 -206 (2010), no. 0 10 – 15

X. Cid Vidal

Backup slides

- More references
- How we measure the cross sections
- $H^0 \rightarrow LLP$
- Limits on $H^0 \rightarrow \tau^+ \tau^-$ Analysis overview
- Measurement of $\sigma(b\bar{b})$ with inclusive final states
- Summary of systematics and backgrounds

SM prediction

- \rightarrow hep-ph/9510347
- → Comput.Phys.Commun. 124 (2000) 76–89, [hep-ph/9812320]
- $m(h^0)_{max}$ scenario: Eur.Phys.J. C26 (2003) 601-607, [hep-ph/0202167]
- ATLAS on $H \rightarrow \tau^+ \tau^-$:
 - → Phys.Lett. B705 (2011) 174-192, [arXiv:1107.5003]
 - → JHEP 1302 (2013) 095, [arXiv:1211.6956]
- CMS on $H \rightarrow \tau^+ \tau^-$:
 - → Phys.Rev.Lett. 106 (2011) 231801, [arXiv:1104.1619]
 - → Phys.Lett. B713 (2012) 68-90, [arXiv:1202.4083]
- LEP on $H \to \tau^+ \tau^-$: Eur.Phys.J. C47 (2006) 547–587, [hep-ex/0602042]

$H^0 ightarrow au^+ au^-$ references

X. Cid Vidal

Backup slides

More references

How we measure the cross sections

- ATLAS, CMS and LHCb on $H^0 \rightarrow LLP$
- Limits on $H^0 \rightarrow \tau^+ \tau^-$ Analysis overview
- Measurement of $\sigma(b\bar{b})$ with inclusive final states
- Summary of systematics and backgrounds

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■□ のQ@

$$\sigma = \frac{\rho \times \mathbf{N} \times \mathbf{f}_{FSR}}{\epsilon \times \mathcal{A} \times \mathcal{L}}$$

- N: Number of observed candidates
- From simulation
 - $\rightarrow f_{FSR}$: final state radiation correction
 - $\rightarrow \mathcal{A}$: acceptance
- Data driven
 - $\rightarrow \rho$: purity
 - $\rightarrow \epsilon$: efficiency
 - $\rightarrow \mathcal{L}$: integrated luminosity

X. Cid Vidal

Backup slides

More references How we measure the cross sections ATLAS, CMS and LHCb on $H^0 \rightarrow IIP$

Limits on $H^0 \rightarrow \tau^+ \tau^-$ Analysis overview

inclusive final states

Summary of systematics and backgrounds • ATLAS and CMS: Two triggering approach

→ Displaced vertex object dedicated trigger ATLAS → sensitivity to low masses not to low proper time ($c\tau_{min} \sim 1 \text{ m}$) Phys.Rev.Lett. **108** (2012) 251801, [arXiv:1203.1303]

 \rightarrow Inclusive jet trigger in CMS \rightarrow sensitivity to low proper time not to low masses CMS-PAS-EXO-12-038

- Displaced vertex object dedicated trigger at LHCb
 - \rightarrow Region of sensitivity \rightarrow complementary to GPDs: low mass (20 $<\pi_V^0<$ 50 GeV/ c^2) and low proper time ($c\tau\sim$ O cm)
 - $\rightarrow\,$ Trigger strategy for semi-leptonic and fully leptonic decay of LLP in place too.

X. Cid Vidal

Backup slides

More references How we measure the cros sections ATLAS, CMS and LHCb or H⁰ → LLP

Limits on ${\cal H}^{\rm 0} ightarrow \tau^+ \tau^-$: Analysis overview

Measurement of $\sigma(bar{b})$ with inclusive final states

Summary of systematics and backgrounds

Limits on $H^0 \rightarrow \tau^+ \tau^-$: Analysis overview

• First LHCb paper on search for neutral Higgs in the forward direction

JHEP 1305 (2013) 132, [arXiv:1304.2591]

 Using 2011 dataset Search using different τ decay modes: τ_μτ_μ,

 $au_{\mu} au_{e}, au_{e} au_{\mu}, au_{\mu} au_{h}, au_{e} au_{h}$

 Discrimination based on having isolated leptons, lifetime of the τ and back-to-back objects

Yields using all samples combined

Measurement of $\sigma(b\bar{b})$ with inclusive final states

X. Cid Vidal

Backup slides

- More references
- How we measure the cross sections
- ATLAS, CMS and LHCb on $H^0 \rightarrow LLP$
- Limits on ${\it H}^{\rm 0}
 ightarrow \tau^+ \tau$ Analysis overview

Measurement of $\sigma(b\overline{b})$ with inclusive final states

Summary of systematics and backgrounds

- Measurement with a fraction of 2010 data
- Use of b seeding technique

- → Measurement of cross sections done with a fit of the shape of a multivariate discriminant, built to isolate $b\bar{b}$ from $c\bar{c}$ events (shapes from simulation)
- Results for 2.5 $< \eta <$ 4 and $p_T >$ 5 GeV/c:

$$\begin{aligned} \sigma(b\bar{b}) &= [7.7 \pm 0.1 \text{ (stat)} \pm 0.8 \text{ (syst)}] \text{ pb} \\ \sigma(c\bar{c}) &= [104.6 \pm 2.7 \text{ (stat)} \pm 11.4 \text{ (syst)}] \text{ pb} \end{aligned}$$

X. Cid Vidal

Summary of systematics and backgrounds

Backup slides	
Summary of systematics and backgrounds	

Channel	Dominant	Main	
	background	systematics	
$Z ightarrow e^+ e^-$	Had. misID	L	
$Z ightarrow \mu^+ \mu^-$	H. flavour	L	
$Z \rightarrow \tau^+ \tau^-$	QCD	\mathcal{L}	
$W ightarrow \mu u_{\mu}$	Had. misID	\mathcal{L}	
	$Z ightarrow \mu^+ \mu^-$		
Z + D	B semil.	Efficiency	
Z+ jets	H. flavour	Jet-energy scale,	
		resolution and rec.	
Z + b jets	Z + I/c	M _{corr} template and	
	jets	b-tagging	
$H^0 ightarrow au^+ au^-$	$Z \rightarrow \tau^+ \tau^-$	Exp. bkg.	
$H^0 ightarrow ext{LLP}$	bb	$\epsilon^{TRIGGER}$	
		SV reconstruction	
$A_C^{b\overline{b}}$	_	Flav. tagging	
$\sigma(ar{b}ar{b})$	сē	Simulation sample size	
	1	- 	হান ৩৫৫