# Multiple Top Quark Production at 100 TeV

Qing-Hong Cao Peking University



March 06, 2015

## Top Quark and New Physics



#### Top quark as a probe of new physics It appears often in the decay of NP resonances



## Vector Quarks

Common in many NP models, Economics for model building

#### Mass Mixing and Heavy Quark Couplings to Higgs

#### SU(2) triplet

Exotic Q=5/3 fermion

 $\begin{aligned} -\mathcal{L}_{\Sigma} &= Y_t \, \overline{q_{0L}} \, \widetilde{\Phi} \, t_{0R} + Y_T \, \overline{q_{0L}} \, \tau^a \, \widetilde{\Phi} \, \Sigma_{0R} + M \, \overline{\Sigma_{0L}} \Sigma_{0R} + \text{H.c.} \\ -\mathcal{L}_{\Sigma'} &= Y_t \, \overline{q_{0L}} \, \widetilde{\Phi} \, t_{0R} + Y_T \, \overline{q_{0L}} \, \tau^a \, \Phi \, \Sigma'_{0R} + M \, \overline{\Sigma'_{0L}} \Sigma'_{0R} + \text{H.c.} \\ \Sigma_{0L} &= \begin{pmatrix} X_{0L} \\ T_{0L} \\ B_{0L} \end{pmatrix}, \, \Sigma_{0R} &= \begin{pmatrix} X_{0R} \\ T_{0R} \\ B_{0R} \end{pmatrix} \, \Sigma'_{0L} = \begin{pmatrix} T_{0L} \\ B_{0L} \\ X_{0L} \end{pmatrix}, \, \Sigma'_{0R} = \begin{pmatrix} T_{0R} \\ B_{0R} \\ X_{0R} \end{pmatrix} \end{aligned}$ 

/ Quarks, 20-21 Dec 2011

Koji Tsumura (ntu)

Exotic Q=-4/3 fermion  $_4$ 

del Aguila Perez-Victoria Santiago (2000)

> Angular-Saavedra (2009)

Cacciapaglia, Deandrea, Harada, Okada (2010)

### Vector Quarks

 $T \to W^+ b/Zt/Ht$  $B \to W^+ t/Zb/Hb$ 

 $Y \to W^+ t$  $X \to W^- b$ 



#### Very Rich Collider Signatures

| Extra Color Gauge Boson                            |                   |                   |               |  |
|----------------------------------------------------|-------------------|-------------------|---------------|--|
| $SU(3)_1 \times SU(3)_2 \to SU(3)_C$               |                   |                   | a=u.d.c.s     |  |
| Model                                              | $SU(3)_1$         | $SU(3)_2$         |               |  |
| Classic<br>Axigluon<br>Frampton,<br>Glashow (1987) | $t_R \ b_R \ q_R$ | $q_L \ (t,b)_L$   | dijet, AFB(t) |  |
| New<br>Axigluon<br>Frampton, Shu,<br>Wang (2010)   | $q_L t_R b_R$     | $(t,b)_L q_R$     | dijet, AFB(t) |  |
| Topgluon<br>Hill (1991)                            | $q_L q_R$         | $(t,b)_L t_R b_R$ | dijet, FCNC   |  |
| + Extra color scalars                              |                   |                   |               |  |

### Extra Weak Boson and Quarks

G(221) Model

 $SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_X$ 



# $\frac{SU(3)_C \times SU(3)_W \times U(1)_X}{G(331) \text{ Model}}$

#### Extra Weak Gauge Bosons 221 Model: $SU(2)_1 \otimes SU(2)_2 \otimes U(1)_X$



### Extra Weak Gauge Bosons 221 Model: $SU(2)_1 \otimes SU(2)_2 \otimes U(1)_X$



 $\mathcal{L} = \bar{q}\gamma^{\mu}(g_L^{Z'}P_L + g_R^{Z'}P_R)q\ Z'_{\mu} + +\bar{q}\gamma^{\mu}(g_L^{W'}P_L + g_R^{W'}P_R)q'\ W'_{\mu} + h.c.$ 

|                      | W'tb                                                                     | $Z't\bar{t}$                                                                                                                                   |
|----------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| $\operatorname{SSM}$ | $\frac{g_2}{\sqrt{2}}\bar{b}\gamma_{\mu}P_L tW'^{\mu}$                   | $\frac{g_2}{6c_w}\bar{t}\gamma_\mu((-3+4s_w^2)P_L+4s_w^2P_R)tZ'^\mu$                                                                           |
| LRM                  | $\frac{g_2}{\sqrt{2}}\bar{b}\gamma_{\mu}P_R tW'^{\mu}$                   | $\frac{g_2 t_w}{6} \bar{t} \gamma_\mu \left(\frac{1}{\alpha_{LR}} P_L + \left(\frac{1}{\alpha_{LR}} - 3\alpha_{LR}\right) P_R\right) t Z'^\mu$ |
| Top-Flavor           | $\frac{g_2 \sin \tilde{\phi}}{\sqrt{2}} \bar{b} \gamma_\mu P_L t W'^\mu$ | $\frac{g_2 \sin \tilde{\phi}}{\sqrt{2}} \bar{t} \gamma_\mu P_L t Z'^\mu$                                                                       |

## Extra Weak Gauge Bosons

331 Model:  $SU(3)_C \otimes SU(3)_W \otimes U(1)_X$ 

 $SU(3) \times U(1)_X \xrightarrow{H_1} SU(2)_L \times U(1)_Y \xrightarrow{H_2} U(1)_{em}$  $\begin{pmatrix} u \\ d \\ D \end{pmatrix} \begin{pmatrix} c \\ s \\ S \end{pmatrix} \begin{pmatrix} b \\ -t \\ T \end{pmatrix}$  $3 \qquad 3 \qquad 3 \qquad 3$ 

Z-prime: flavor changing coupling to u- and top-quark also the chiral coupling to light-quarks and top-quarks

> Diaz, Martinez, Ochoa, hep-ph/0309280 Barreto, Coutinho, Sa Borges, 1103.1266 Buras, Fazio, Girrbach, Carlucci, 1211.1237

### Exotic Colored Scalars/Vectors Effective Lagrangian:

$$\begin{aligned} \mathcal{L} &= \left(g_{1L}\overline{q_{L}^{c}}i\tau_{2}q_{L} + g_{1R}\overline{u_{R}^{c}}d_{R}\right)\Phi_{6,1,1/3} & q_{L} = \left(\begin{array}{c}u_{L}\\d_{L}\right) \\ &+ g_{1R}^{'}\overline{d_{R}^{c}}d_{R}\Phi_{6,1,-2/3} + g_{1R}^{''}\overline{u_{R}^{c}}u_{R}\Phi_{6,1,4/3} & q_{L} = \left(\begin{array}{c}u_{L}\\d_{L}\right) \\ &q_{L}^{c} = C\overline{q}^{T} \\ &+ g_{3L}\overline{q_{L}^{c}}i\tau_{2}\tau q_{L} \cdot \Phi_{6,3,1/3} & q^{c} = C\overline{q}^{T} \\ &+ g_{2}\overline{q_{L}^{c}}\gamma_{\mu}d_{R}V_{6,2,-1/6}^{\mu} + g_{2}^{'}\overline{q_{L}^{c}}\gamma_{\mu}u_{R}V_{6,2,5/6}^{\mu} + h.c. , \\ &\Phi_{6,3} & \downarrow^{t_{L}} & \Phi_{6,1} & \downarrow^{t_{R}} & V_{6,2} \\ &\downarrow^{t_{L}} & \Phi_{6,1} & \downarrow^{t_{R}} & U_{1} \\ &\downarrow^{t_{R}} & U_{1} & U_{1} \\ &\downarrow^{t_{R}} & U_{2} & U_{1} \\ &\downarrow^{t_{R}} & U_{2} & U_{1} \\ &\downarrow^{t_{R}} & U_{2} \\ &\downarrow^{t_{R}} & U_{2}$$

nold,

ott,

11

## Top Quark and New Physics



## Single Top Quark Production

Production

Others

Proton



Proton

# Single Top Quark Production

 $\mathcal{U}$ bWs-channel  $Q_W^2 > 0$ 



New resonance

t-channel

 $\begin{array}{c} u \longrightarrow u \\ \overbrace{z' s_0} \\ u/c \longrightarrow t \end{array}$ 

 $Q_W^2 < 0$ 

FCNC



 $Q_W^2 = m_W^2$ 



Excited quark

Tait, Yuan, hep-ph/0007298 QHC, Wudka, Yuan, 0704.2809 Drueke, Schwienhorst, Vignaroli, Walker, Yu, 1409.7607

# Single Top Quark Production

(s-channel excitation quark)



Nutter, Schwienhorst, Walker, Yu, 1207.5179

$$\mathcal{L} = g_s \bar{B}' \gamma^{\mu} B' + \frac{v}{\sqrt{2}\Lambda^2} G_{\mu\nu} \bar{b} \sigma^{\mu\nu} \left(\kappa_L^b P_L + \kappa_R^b P_R\right) B' + h.c.$$
$$\mathcal{L} = \frac{g_W}{\sqrt{2}} W^+_{\mu} \bar{t} \gamma^{\mu} (f_L P_L + f_R P_R) B' + h.c.$$

# Single Top Quark Production

(s-channel excitation quark)

b

*b* '



$$\mathcal{L} = g_s \bar{B}' \gamma^{\mu} B' + \frac{v}{\sqrt{2}\Lambda^2} G_{\mu\nu} \bar{b} \sigma^{\mu\nu} \left(\kappa_L^b P_L + \kappa_R^b P_R\right) B' + h.c.$$
$$\mathcal{L} = \frac{g_W}{\sqrt{2}} W^+_{\mu} \bar{t} \gamma^{\mu} (f_L P_L + f_R P_R) B' + h.c.$$

## Single Heavy Quark Production



Little Higgs Perelstein, Peskin, Pierce hep-ph/0310039



Composite Higgs Li, Liu, Shu, 1306.5841 Boosted jet-substructure



Reuter, Tonini, 1409.6962

## Single Heavy Quark Production







## Mono Top Quark Production (R-parity violating SUSY inspired)

see Theveneaux-Pelzer's poster

Andrea, Fuks, Maltoni, 1106.6199 Wang, Li, Shao, Zhang, 1109.5963



## Mono Top Quark Production (R-parity violating SUSY inspired)



# Top-Antitop or Top-Top Quark Pair Production

Production

Others

Proton

21

Proton

## Top Quark AFB and NP



## 1) Same Sign Top Quark Pair

s-channel  $3 \otimes 3 = 6 \oplus \overline{3}$   $U \qquad \qquad t_L(t_R)$  $U \qquad \qquad \psi_{6,3}^{(3,1)} \qquad t_L(t_R)$ 

Mohapatra, Okada, Hai-Bo Yu, 0709.1486 Berger, QHC, Chen, Shaughnessy, Zhang, 1005.2622, 1009.5379 Aguilar-Saavedra, Perez-Victoria, 1104.1385 Atwood, Gupta, Soni, 1301.2250 t-channel



Flavor changing Z-prime Berger, QHC, Chen, Li, Zhang 1101.5625

Maximal flavor violation Bar-Shalom, Rajaraman, Whiteson, Yu, 0803.3795

FCNC effective coupling see Goldouzian's talk, 1408.0493





## 2) Top Quark Pair Plus one Jet

(Flavor Changing Interaction)







Berger, QHC, Chen, Li, Zhang, 1101.5625 Gresham, Kim, Zurek, 1102.0018

#### 3) Top Quark Pair Plus One Jet (Third Generation Favored W-prime and Z-prime)



Berger, Cao, Yu, Yuan, 1108.3613

Topflavor Seesaw Model He, Tait, Yuan (2000), Wang, Du, He (2013)



### 4) Top Quark Pair Plus One Jet (Charged Higgs Boson)



X-section is large for large tanb in MSSM or Type II 2HDB.

X-section depends on m<sub>H</sub>- and tanb

Top-quark polarization depends on tanb  $D_{\text{decay}} \sim \frac{(m_t \cot \beta)^2 - (m_b \tan \beta)^2)}{(m_t \cot \beta)^2 + (m_b \tan \beta)^2)}$ 

Huitu, Rai, Rao, Rindani, Sharma, 1012.0527 Godbole, Hartgring, Niessen, White, 1111.0759 Gong, Si, Yang, Zheng,1210.7822



QHC, Wan, Wang, Zhu, 1301.6608

## 5) Top Quark Pair Plus Jets

Heavy Quark Pair Production



Color Sextet/Triplet Scalar Pair Production

$$g \underbrace{\operatorname{ooooo}}_{I} \underbrace{\phi_{6,3}}_{I} \underbrace{\phi_{6,3}}_{\overline{b}} t$$

## 5) Top Quark Pair Plus Jets

Heavy Quark Pair Production



## 6) Top Quark Pair + Invisibles



#### Top-Quark Mediated Dark Matter Models





Dark Matter Effective Theory:
Cheung, Mawatari, Senaha, Tseng, Yuan, 1009.0618
Gomez, Jackson, Shaughnessy, 1404.1918
UV Completion Theory:
Jackson, Servant, Shaughnessy, Tait, Taoso, 1303.4717



## Triple Top Quark Production



## Triple Top Quark Production



Leptophobic Z' from U'(1) directly couples top-quark to u-quark to explain AFB(t)

Barger, Keung, Yencho, 1001.0211



Topcolor-assisted technicolor model with large FCNC top-coupling to explain AFB(t)

> Cui, Han, Schwartz (2011) Han, Liu, Wu, Yang (2012)



$$O_{uttt}^{LL} = \frac{1}{2} (\bar{u}_{Li} \gamma^{\mu} t_L) (\bar{t}_L \gamma_{\mu} t_L); \qquad O_{uttt}^{RR} = \frac{1}{2} (\bar{u}_{Ri} \gamma^{\mu} t_R) (\bar{t}_R \gamma_{\mu} t_R) O_{uttt}^{LR} = (\bar{u}_{Li} t_R) (\bar{t}_R t_L); \qquad O_{uttt}'^{LR} = (\bar{t}_L u_{iR}) (\bar{t}_R t_L), \qquad (2)$$

Chuan-Ren Chen (2014)



### Four Top Quark Production



TC2



**Top Compositeness** 



Lillie, Shu, Tait (2007) Kumar, Tait, Veg-Morale (2009)

SM QCD production @ NLO, Bevilacqua and Worek, 1206.3064 See Keaveney's poster

# Six or More Top Quark Production

Production

others

Proton

Proton

36

## Six or More Top Quark Production

#### Deandrea, Deutschmann, 1405.6119



## Summary

#### Top quark as a probe of new physics It appears often in the decay of NP resonances

![](_page_38_Figure_1.jpeg)

![](_page_39_Figure_0.jpeg)

### TOP @ inSPIRE

#### Search for papers with 'top' in title

![](_page_40_Figure_2.jpeg)