Searching for highly boosted new physics signatures: moving from LHC run I to higher energies

Thomas Flacke

C. Delaunay, TF, J. Gonzales-Fraile,

S.J. Lee, G. Panico, G. Perez [JHEP 02 (2014) 055]

TF, J.H. Kim, S.J. Lee, S.H. Lim [JHEP 1405 (2014) 123]

M. Backović, TF, S.J. Lee, G. Perez [arXiv: 1409.0409]

M. Backović, TF, J.H. Kim, S.J. Lee [arXiv: 1410.8131]

M. Backović, TF, J.H. Kim, S.J. Lee [arXiv: 1501.07456]

Flavor and top physics @ 100 TeV IHEP

Outline

- Motivation
- A sample model: minimal composite Higgs from SO(5)/SO(4) breaking
 - The Lagrangian
 - Overview on quark partner phenomenology
- · Constraints on composite quark partners from run I
- · Prospects for composite quark partners at higher energies
- Conclusions and Outlook

Motivation / Overview

- C Atlas and CMS found a Higgs-like resonance with a mass m_h ~ 125 GeV and couplings to γγ, WW, ZZ, bb, and ττ compatible with the Standard Model (SM) Higgs.
- ③ The Standard Model suffers from the hierarchy problem.
- \Rightarrow Search for an SM extension with a Higgs-like state which provides an explanation for why m_h , $v \ll M_{pl}$.
- \rightarrow requires new particle content "near" the EW scale.
- To evade detection until today, the new sector needs to be
- 1. hidden (mainly interacting with the SM through the Higgs)
- 2. and/or heavy (charged under SM but avoiding copious production by mass)

Following option 2): If the new particle(s) can decay into SM particles, the decay products are highly boosted

- For high- p_T decay products, the backgrounds are low \bigcirc
- Signal efficiencies are altered (top,Z,W identification, *b*-tagging, ...)
- For high M_X , the production cross section is reduced \bigcirc
- \Rightarrow "Golden" channels for new particle searches depend on M_X (and \sqrt{s}).

A sample model: Composite Higgs

- Consider a model which gets strongly coupled at a scale $f \sim O(1 \text{ TeV})$. \rightarrow Naturally obtain $f \ll M_{pl}$.
- Assume a global symmetry which is spontaneously broken by dimensional transmutation → strongly coupled resonances at *f* and Goldstone bosons (to be identified with the Higgs sector).
- Assume that the only source of explicit symmetry breaking arises from Yukawa-type interactions.
 - \rightarrow The Higgs-like particles become pseudo-Goldstone bosons
 - \Rightarrow Naturally generates a scale hierarchy $v \sim m_h < f \ll M_{pl}$.

Simplest realization:

The minimal composite Higgs model (MCHM) $_{\text{Agashe, Contino, Pomarol [2004]}}$ Effective field theory based on $SO(5) \rightarrow SO(4)$ global symmetry breaking.

- The Goldstone bosons live in $SO(5)/SO(4) \rightarrow$ 4 d.o.f.
- $SO(4) \simeq SU(2)_L \times SU(2)_R$

Gauging $SU(2)_L$ yields an $SU(2)_L$ Goldstone doublet.

Gauging T_R^3 assigns hyper charge to it. Later: Include a global $U(1)_X$ and gauge $Y = T_R^3 + X$.

 \Rightarrow Correct quantum numbers for the Goldstone bosons

to be identified as a non-linear realization of the Higgs doublet.

A sample model: Composite Higgs

We use the CCWZ construction to construct the low-energy EFT. ^{Coleman, Wess, Zumino [1969], Callan, Coleman [1969]} Central element: the Goldstone boson matrix $U(\Pi) = \exp\left(\frac{i}{l}\Pi_{l}T^{i}\right)$, where $\Pi = (0, 0, 0, \overline{h})$ with $\overline{h} = \langle h \rangle + h$ and T^{i} are the broken SO(5) generators.

From it, one can construct the CCWZ d^i_{μ} and e^a_{μ} symbols (see e.g. talk by Juan Jose Sanz-Cillero) *E.g.* kinetic term for the "Higgs":

$$\mathcal{L}_{\Pi} = \frac{f^2}{4} d^{i}_{\mu} d^{i\mu} = \frac{1}{2} \left(\partial_{\mu} h \right)^2 + \frac{g^2}{4} f^2 \sin^2 \left(\frac{\overline{h}}{f} \right) \left(W_{\mu} W^{\mu} + \frac{1}{2c_w} Z_{\mu} Z^{\mu} \right)$$
$$\Rightarrow v = 246 \text{ GeV} = f \sin \left(\frac{\langle h \rangle}{f} \right) \equiv f \sin(\epsilon).$$

How to include the quarks?

In the SM, the Higgs multiplet

- induces EWSB (✓ in CHM),
- provides a scalar degree of freedom (✓ in CHM),
- generates fermion masses via Yukawa terms (← implementation in CHM?).

One solution $\kappa_{aplan [1991]}$: Include elementary fermions q as incomplete linear representations of SO(5) which couple to the strong sector via

 $\mathcal{L}_{mix} = y\overline{q}_{l_{\mathcal{O}}}\mathcal{O}^{l_{\mathcal{O}}} + \text{h.c.}\,,$

where \mathcal{O} is an operator of the strongly coupled theory in the representation $I_{\mathcal{O}}$. Note: The Goldstone matrix $U(\Pi)$ transforms non-linearly under SO(5), but linearly under the SO(4) subgroup $\rightarrow \mathcal{O}^{I_{\mathcal{O}}}$ has the form $f(U(\Pi))\mathcal{O}'_{\text{fermion}}$.

Simplest choice for quark embedding:

$$q_{L}^{5} = \frac{1}{\sqrt{2}} \begin{pmatrix} id_{L} \\ d_{L} \\ iu_{L} \\ -u_{L} \\ 0 \end{pmatrix}, \quad u_{R}^{5} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ u_{R} \end{pmatrix}, \quad \psi = \begin{pmatrix} Q \\ \tilde{U} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} iD - iX_{5/3} \\ D + X_{5/3} \\ iU + iX_{2/3} \\ -U + X_{2/3} \\ \sqrt{2}\tilde{U} \end{pmatrix}$$

BSM particle content (per *u*-type quark):

	U	X _{2/3}	D	X 5/3	Ũ
<i>SO</i> (4)	4	4	4	4	1
<i>SU</i> (3) _c	3	3	3	3	3
$U(1)_X$ charge	2/3	2/3	2/3	2/3	2/3
EM charge	2/3	2/3	-1/3	5/3	2/3

Fermion Lagrangian:

$$\mathcal{L}_{comp} = i \,\overline{Q} (D_{\mu} + i e_{\mu}) \gamma^{\mu} Q + i \overline{\tilde{U}} \overline{\mathcal{D}} \widetilde{U} - M_{4} \overline{Q} Q - M_{1} \overline{\tilde{U}} \widetilde{U} + \left(i c \overline{Q}^{i} \gamma^{\mu} d_{\mu}^{i} \widetilde{U} + \text{h.c.} \right),$$

$$\mathcal{L}_{el,mix} = i \,\overline{q}_{L} \overline{\mathcal{D}} q_{L} + i \,\overline{u}_{R} \overline{\mathcal{D}} u_{R} - y_{L} f \overline{q}_{L}^{5} U_{gs} \psi_{R} - y_{R} f \overline{u}_{R}^{5} U_{gs} \psi_{L} + \text{h.c.}$$

Derivation of Feynman rules:

- expand d_{μ} , e_{μ} , U_{gs} around $\langle h \rangle$,
- · diagonalize the mass matrices,
- match the lightest mass eigenvalue with the SM quark mass \rightarrow this fixes y_L in terms of the other parameters (light quarks: $m_q \ll v/\sqrt{2}$; if $y_R \sim 1 \Rightarrow y_L \ll 1$) (top quark: $m_t \sim v/\sqrt{2}$; requires $y_R \sim 1$ and $y_L \sim 1$)
- calculate the couplings in the mass eigenbasis.

Masses and couplings

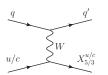
The SM like quark:

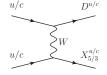
$$m_{\nu} = \frac{v}{\sqrt{2}} \frac{|M_1 - M_4|}{f} \frac{y_L f}{\sqrt{M_4 + y_L^2 f^2}} \frac{y_R f}{\sqrt{|M_1|^2 + y_R^2 f^2}} + \mathcal{O}(\epsilon^3)$$

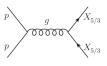
Partners in the 4:

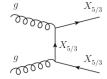
$$M_{X5/3} = M_4 = M_{Uf1} + O(\epsilon^2)$$
$$M_D = \sqrt{M_4^2 + y_L^2 f^2} = M_{Uf2} + O(\epsilon^2)$$

Singlet Partner:


$$M_{Us} = \sqrt{|M_1|^2 + y_R^2 f^2} + \mathcal{O}(\epsilon^2)$$


Couplings (examples):

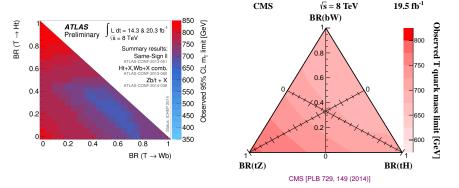

$$\begin{vmatrix} g_{XWu}^{R} \end{vmatrix} = \frac{g}{\sqrt{2}} \frac{\epsilon}{\sqrt{2}} \begin{vmatrix} \frac{y_{R}f M_{1}}{M_{4}M_{US}} - \sqrt{2}c_{R}\frac{y_{R}f}{M_{US}} \end{vmatrix} + \mathcal{O}(\epsilon^{3}) \begin{vmatrix} g_{USWd}^{L} \end{vmatrix} = \frac{g}{\sqrt{2}} \frac{\epsilon}{\sqrt{2}} \left(\frac{y_{L}f (M_{1}M_{4} + y_{R}^{2}f^{2})}{M_{UI2}M_{US}^{2}} - \frac{\sqrt{2}c_{L}y_{L}f}{M_{UI2}} \right) + \mathcal{O}(\epsilon^{3})$$


Production and decays

Production mechanisms (shown here: $X_{5/3}$ production)

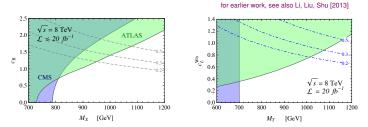
(a) EW single production

(b) EW pair production


(c) QCD pair production

Decays:

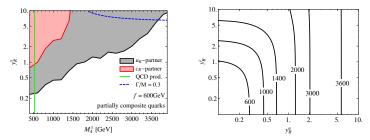
- $X_{5/3} \to W^+ u$ (100%),
- $D \rightarrow W^- u$ (~ 100%),
- $U_{f1} \rightarrow Zu$ (dominant),
- $U_{f2} \rightarrow hu$ (dominant),
- light quark partner: $U_s \rightarrow hu$, top partner: also $U_s \rightarrow Zu$, U_s . $\rightarrow Wb$


Bounds on top partners from run I

- ATLAS and CMS determined bounds on (QCD) pair-produced top partners with charge 5/3 (the $X_{5/3}$) in the same-sign di-lepton channel. $M_{X_{5/3}} > 770 \text{ GeV}$ ATLAS [1409.5500] , $M_{X_{5/3}} > 800 \text{ GeV}$ CMS [PRL 112 (2014) 171801]
- ATLAS and CMS determined a bound on (QCD) pair-produced top partners with charge 2/3 (applicable for the T_s, T_{f1}, T_{f2}). [Similar bounds for B]

Bounds on top partners from run I

Bounds including single-production channels: Matsedonskyi, Panico, Wulzer [2014]


Note: In the above plots $c_R = 2g_{XWJ}^R/g$ and $c_L^{Wb} = 2g_{USWd}^L/g$ as compared to the coupling formulae given earlier.

Determining bounds on partners of light quarks from run I

• Bounds on partners of light quarks in the 4

Delaunay, TF, Gonzales-Fraile, S.J. Lee, Panico, Perez [JHEP 02 (2014) 055]

- From QCD pair production: M^{u,d,s,c} > 530 GeV (from ATLAS and CMS searches applicable to WWjj, ZZjj final states)
- Single production: (from ATLAS and CMS searches applicable to Wjj, Zjj final states)

· Bounds on partners of light quarks in the singlet

TF, J. H. Kim, S. J. Lee, S. H. Lim [JHEP 1405 (2014) 123] $pp \rightarrow U_s \overline{U}_s \rightarrow jjhh \rightarrow \gamma \gamma X \quad \Rightarrow \quad M_1^{u,d,s,c} > 310 \, {\rm GeV}$

boosted top and boosted *W* boosted top and *Z* boosted Higgs

Prospects for composite quark partners at higher energies

At run II, we have more energy

 \Rightarrow searches are sensitive to higher quark partner masses.

However, for composite quark partners there are two additional genuine aspects:

- 1. Single-production channels (if present) will become more important as compared to QCD pair production channels.
- For heavier quark partners, their decay products become strongly boosted
 ⇒ we need dedicated search strategies for boosted tops, Higgses, EW
 gauge bosons.

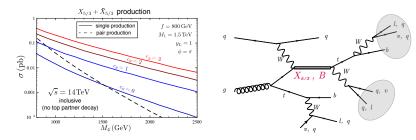
Three examples:

1. Maximizing the sensitivity for the "most visible" quark partner: An optimized search strategy for top partners in the **4**.

M. Backović, TF, S. J. Lee, G. Perez [arXiv: 1409.0409]

2. $T \rightarrow tZ$: leptonic Z vs. $Z \rightarrow \nu \overline{\nu}$. Who wins?

M. Backović, TF, J. H. Kim, S. J. Lee [arXiv: 1501.07456]


 Maximizing the sensitivity for the "least visible" quark partner: An optimized search strategy for singlet partners of light quarks.

M. Backović, TF, J. H. Kim, S. J. Lee [arXiv: 1410.8131]

boosted top and boosted W boosted top and Z boosted Higgs

Prospects for composite quark partners at LHC run II

Search for top partners in the $q\bar{t}tW$ final state with semi-leptonic decay of tW.

	C	The final state is characterized by	
--	---	-------------------------------------	--

- a high energy forward jet
- two <mark>b</mark>'s
- a highly boosted *tW* system with:
- one hard lepton,
- missing energy,
- "fat jets",

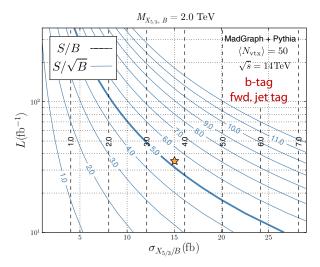
- We use this by used as a tag
- ⇒ demand two b-tags
- $\rightarrow p_T' > 100 \, \text{GeV}$ cut
- → reconstruct boosted t/W using Template Overlap Method (TOM)

boosted top and boosted M boosted top and Z boosted Higgs

Prospects for composite quark partners at LHC run II

Search for top partners in the $q\bar{t}tW$ final state with semi-leptonic decay of tW.

M. Backović, TF, S. J. Lee, G. Perez [arXiv: 1409.0409]

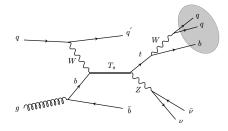

$x_{5/3/B} = x_{5/3+B} = x_{5$																
$X_{5/3} + B$	σ_s	[fb]	$\sigma_{t\bar{t}}$	[fb]	$\sigma_{W+j\epsilon}$	ets [fb]	e	8	ϵ	tī	ϵ_W	⊦jets	S_i	B	S/	\sqrt{B}
Fat jet candidate	t	W	t	W	t	W	t	W	t	W	t	W	t	W	t	W
Basic Cuts	1.6	2.3	76.0	556.0	5921.0	3879.0	0.36	0.51	0.06	0.46	0.19	0.12	3×10^{-4}	4×10^{-4}	0.1	0.1
$p_T > 700 \text{ GeV}$	1.3	2.0	60.0	506.0	1322.0	1082.0	0.28	0.45	0.05	0.42	0.04	0.04	9×10^{-4}	$8 imes 10^{-4}$	0.2	0.2
$p_T^l > 100 \text{ GeV}$	1.2	1.9	23.0	349.0	912.0	733.0	0.27	0.41	0.02	0.29	0.03	0.02	0.001	0.001	0.2	0.2
Ov > 0.5	1.0	1.3	12.0	170.0	354.0	254.0	0.23	0.30	0.01	0.14	0.01	0.008	0.003	0.002	0.3	0.3
$M_{X_{5/3}/B} > 1.5 \text{ TeV}$	0.9	1.2	0.7	106.0	168.0	160.0	0.20	0.26	$6 imes 10^{-4}$	0.09	0.006	0.005	0.005	0.003	0.4	0.3
$m_{jl} > 300 \text{ GeV}$	0.8	0.4	0.5	12.0	111.0	27.0	0.17	0.08	$4 imes 10^{-4}$	0.01	0.004	$9 imes 10^{-4}$	0.007	0.02	0.4	0.7
b-tag & no fwd. tag	0.3	0.1	0.08	2.7	0.2	0.5	0.07	0.03	$7 imes 10^{-5}$	0.002	5×10^{-6}	$2 imes 10^{-5}$	1.3	0.09	3.7	1.0
fwd. tag & no $b\text{-tag}$	0.5	0.3	0.2	3.7	32.0	7.8	0.10	0.06	$2 imes 10^{-4}$	0.003	0.001	$3 imes 10^{-4}$	0.02	0.05	0.6	0.9
b-tag and fwd. tag	0.2	0.1	0.03	0.9	0.03	0.1	0.05	0.02	$2 imes 10^{-5}$	7×10^{-4}	1×10^{-6}	4×10^{-6}	3.7	0.2	5.3	1.3

 $M_{X_{5/3}/B} = 2.0$ TeV, $\sigma_{X_{5/3}+B} = 15$ fb, L = 35 fb⁻¹, $\langle N_{\rm vtx} \rangle = 50$

Table 5. Example cutflow for signal and background events in the presence of $\langle N_{vtx} \rangle = 50$ interactions per bunch crossing, for $M_{X_5/3/B} = 2.0$ TeV and inclusive cross sections $\sigma_{X_5/3/B}$. No pileup subtraction/correction techniques have been applied to the samples. $\sigma_{x,it,W\rightarrow jets}$ are the signal/background cross sections including all branching ratios, whereas ϵ are the efficiencies of the cuts relative to the generator level cross sections. The results for $M_{X_5/3/B} = 2.0$ TeV assume both $X_{5/3}$ and B production.

boosted top and boosted *V* boosted top and *Z* boosted Higgs

Prospects for composite quark partners at LHC run II


M. Backović, TF, S. J. Lee, G. Perez [arXiv: 1409.0409]

boosted top and boosted *W* boosted top and *Z* boosted Higgs

Prospects for composite quark partners at LHC run II

Search for top quark singlet partners in the $j\overline{b}tZ$ final state:

M. Backović, TF, J. H. Kim, S. J. Lee [arXiv: 1501.07456]

Similar topology to the previous signature. We again use:

- high H_T-cut [500 (750) GeV for 1 (1.5) TeV search],
- Ov_3^t top-template with *b* tag,
- forward-jet-tag,
- this time no additional *b* tag,

boosted top and boosted *W* boosted top and *Z* boosted Higgs

Prospects for composite quark partners at LHC run II

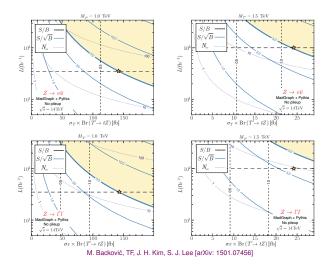
Search for top quark singlet partners in the $j\overline{b}tZ$ final state:

The $\not\!\!\!E_T$ has a big advantage $(BR(Z \to \not\!\!\!E_T)/BR(Z \to \not\!\!\!\!E_T) \approx 3)$...and a big disadvantage $(t + \not\!\!\!\!E_T$ has $t\bar{t}$ background).

For a "fair" comparison between the channels, we use the same cuts on both channels w.r.t the " $j\overline{b}t$ - part" of the event.

For the di-lepton channel, we apply "typical" cuts.

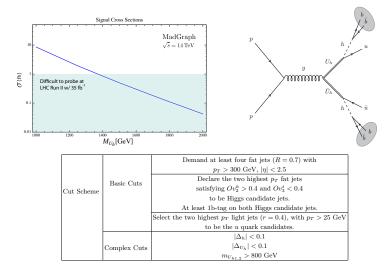
For the $\not\!\!\!E_T$ channel, we instead demand:


- No isolated lepton in the event,
- ∉₇ > 500 (750) GeV for the 1 (1.5) TeV search,
- "isolated" $\not\!\!\!E_T$ (meaning: $\Delta \phi_{\not\!\!\!E_T,i} > 1.0$).

...so what wins??

boosted top and boosted *W* boosted top and *Z* boosted Higgs

Prospects for composite quark partners at LHC run II


Search for top quark singlet partners in the $j\overline{b}tZ$ final state:

boosted top and boosted *W* boosted top and *Z* boosted Higgs

Prospects for composite quark partners at LHC run II

Search for light quark singlet partners in the *hhjj* final state with $h \rightarrow b\overline{b}$ decays. M. Backović, TF, J. H. Kim, S. J. Lee [arXiv: 1410.8131]

boosted top and boosted *W* boosted top and *Z* boosted Higgs

Prospects for composite quark partners at LHC run II

Search for light quark singlet partners in the *hhjj* final state with $h \rightarrow b\overline{b}$ decays. M. Backović, TF, J. H. Kim, S. J. Lee [arXiv: 1410.8131]

	σ_s [fb]	$\sigma_{t\bar{t}}$ [fb]	$\sigma_{b\bar{b}}$ [fb]	$\sigma_{\rm multi-jet}$ [fb]	S/B	S/\sqrt{B}
Preselection Cuts	6.8	4.6×10^{2}	8.4×10^{3}	2.8×10^{5}	2.4×10^{-5}	$7.5~\times 10^{-2}$
Basic Cuts	1.2	4.6	16.0	6.8×10^{2}	1.7×10^{-3}	$2.7~{\times}10^{-1}$
$ \Delta_{mh} < 0.1$	8.2×10^{-1}	1.7	6.5	2.8×10^{2}	$2.9~{\times}10^{-3}$	$2.9~\times10^{-1}$
$ \Delta_{mU} < 0.1$		5.5×10^{-1}	-	87.0	6.3×10^{-3}	$3.5~\times10^{-1}$
$m_{U_{h1,2}} > 800 \text{ GeV}$	5.0×10^{-1}	3.6×10^{-1}	1.6	67.0	7.3×10^{-3}	$3.6~\times 10^{-1}$
b-tag	$3.4~\times 10^{-1}$	$4.4~{\times}10^{-2}$	1.1×10^{-2}	1.5×10^{-2}	4.8	7.5

Table IV: $M_{U_h} = 1$ TeV , $\sigma_s = 6.8$ fb , $\mathcal{L} = 35$ fb⁻¹

	σ_s [fb]	$\sigma_{t\bar{t}}$ [fb]	$\sigma_{b\bar{b}}$ [fb]	$\sigma_{\text{multi-jet}}$ [fb]	S/B	S/\sqrt{B}
Preselection Cuts	2.4	4.6×10^{2}	8.4×10^3	2.8×10^{5}	8.15×10^{-6}	$2.6~\times 10^{-2}$
Basic Cuts	$6.0~\times 10^{-1}$	4.6	16.0	6.8×10^{2}	$8.6~{\times}10^{-4}$	$1.4~{\times}10^{-1}$
$ \Delta_{mh} < 0.1$	3.9×10^{-1}	1.7	6.5	2.8×10^{2}	1.4×10^{-3}	1.4×10^{-1}
$ \Delta_{mU} < 0.1$	2.7×10^{-1}	5.5×10^{-1}	2.0	87.0	$3.0~\times 10^{-3}$	1.7×10^{-1}
$m_{U_{h1,2}} > 1000 \text{ GeV}$	2.2×10^{-1}	1.9×10^{-1}	1.0	45.0	4.8×10^{-3}	1.9×10^{-1}
b-tag	1.34×10^{-1}	2.2×10^{-2}	8.5×10^{-3}	1.2×10^{-2}	3.1	3.8

Table V: $M_{U_h} = 1.2 \text{ TeV}$, $\sigma_s = 2.4 \text{ fb}$, $\mathcal{L} = 35 \text{ fb}^{-1}$

Conclusions and Outlook

- Composite Higgs models provide a viable solution to the hierarchy problem. Realizing quark masses via partial compositeness requires quark partners.
- Top partners (in the MCHM) are constraint from run I to $M_X \gtrsim 800 \,\text{GeV}$.
- The phenomenology of light quark partners strongly differs from top-partner phenomenology.
 - For partially composite quarks with partners in the fourplet, we find a flavor and y_R independent bound of $M_4^{u/c} \gtrsim 525$ GeV as well as stronger flavor and y_R

dependent bounds (*e.g.* $M_4^u \gtrsim 1.8$ TeV, $M_4^c \gtrsim 610$ GeV for $y_R^{u/c} = 1$).

- For partially composite quarks with partners in the singlet, we find a flavor- and $\lambda_{\rm mix}^{\rm eff}$ independent bound of $M_{U_h} > 310 \,{\rm GeV}$ as well as increased flavor-and $\lambda_{\rm mix}^{\rm eff}$ -dependent bounds.
- For run II, single-production channels and strongly boosted top and Higgs searches become important.
 - Performing dedicated searches for boosted tops, the X_{5/3} can be discovered even at masses beyond 2 TeV.
 - Even the (currently weakest constraint) singlet partners of light quarks can be discovered at masses beyond 1 TeV.

Qualitative Conclusions and Outlook

- When very heavy new particles are produced and decay into SM particles, the decay products are highly boosted.
- The reducible SM backgrounds (typically) decrease faster with increasing p_T than the signal \Rightarrow for 'sufficiently high" M_X (high \sqrt{s}) one is left mainly with irreducible backgrounds.
- In this limit, searches including boosted tops, *Z*, *W*, Higgs, ... are most promising in the "most probable" channel (hadronic channels or $b\overline{b}$) ($S \propto B \propto BR \Rightarrow S/\sqrt{B} \propto \sqrt{BR}$)
- For low M_{χ} (low \sqrt{s}), the best search channels are "clean" channels $(Z_{ll}, W_{lep}, t_{lep}, h_{\gamma\gamma}, h_{4l})$.
- The M_X , \sqrt{s} at which "most probable" channels start dominating "clean" channels crucially depends on the efficiencies of identifying (hadronic / $b\overline{b}$) top (see talk by Michele Selvaggi), Z, W, Higgs.

 \Rightarrow requires improved jet sub-structure techniques ("software") and depends on detector resolution/performance ("hardware").

Backup

Composite Higgs Model, background

The Goldstone boson matrix (in unitary gauge)

$$U(\Pi) = \exp\left(\frac{i}{f}\Pi_i T^i\right) = \begin{pmatrix} 1 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & \cos\overline{h}/f & \sin\overline{h}/f\\ 0 & 0 & 0 & -\sin\overline{h}/f & \cos\overline{h}/f \end{pmatrix},$$

where $\Pi = (0, 0, 0, \overline{h})$ with $\overline{h} = \langle h \rangle + h$ and T^{i} are the broken *SO*(5) generators.

Definition of *d* and *e* symbols:

$$\begin{aligned} d^{i}_{\mu} &= \sqrt{2} \left(\frac{1}{f} - \frac{\sin \Pi/f}{\Pi} \right) \frac{\vec{\Pi} \cdot \nabla_{\mu} \vec{\Pi}}{\Pi^{2}} \Pi^{i} + \sqrt{2} \frac{\sin \Pi/f}{\Pi} \nabla_{\mu} \Pi^{i} \\ e^{a}_{\mu} &= -A^{a}_{\mu} + 4 \, i \, \frac{\sin^{2} \left(\Pi/2f \right)}{\Pi^{2}} \vec{\Pi}^{t} t^{a} \nabla_{\mu} \vec{\Pi} \end{aligned}$$

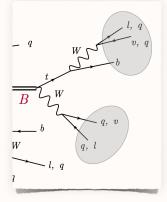
 d_{μ} symbol transforms as a fourplet under the unbroken SO(4) symmetry, while e_{μ} belongs to the adjoint representation.

 $\nabla_{\mu}\Pi$ is the "covariant derivative" of the Goldstone field Π

$$\nabla_{\mu}\Pi^{i} = \partial_{\mu}\Pi^{i} - iA^{a}_{\mu}\left(t^{a}\right)^{i}{}_{j}\Pi^{j},$$

 A_{μ} : gauge fields of the gauged subgroup of $SO(4) \simeq SU(2)_L \times SU(2)_R$

$$\begin{aligned} A_{\mu} &= \frac{g}{\sqrt{2}} W_{\mu}^{+} \left(T_{L}^{1} + i T_{L}^{2} \right) + \frac{g}{\sqrt{2}} W_{\mu}^{-} \left(T_{L}^{1} - i T_{L}^{2} \right) \\ &+ g \left(c_{w} Z_{\mu} + s_{w} A_{\mu} \right) T_{L}^{3} + g' \left(c_{w} A_{\mu} - s_{w} Z_{\mu} \right) T_{R}^{3} \end{aligned}$$

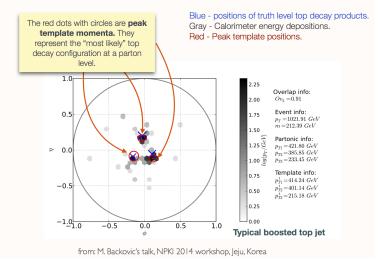

Explicit form in unitary gauge:

$$\begin{cases} e_L^{1,2} = -\cos^2\left(\frac{\overline{h}}{2f}\right) W_L^{1,2} \\ e_L^3 = -\cos^2\left(\frac{\overline{h}}{2f}\right) W^3 - \sin^2\left(\frac{\overline{h}}{2f}\right) B \end{cases} \begin{cases} e_R^{1,2} = -\sin^2\left(\frac{\overline{h}}{2f}\right) W_L^{1,2} \\ e_R^3 = -\cos^2\left(\frac{\overline{h}}{2f}\right) B - \sin^2\left(\frac{\overline{h}}{2f}\right) W^3 \end{cases}$$

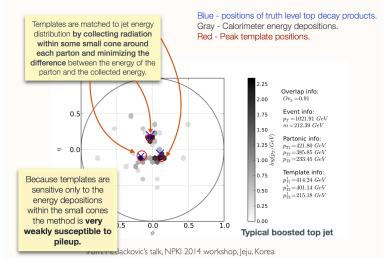
and

$$\begin{cases} d_{\mu}^{1,2} = -\sin(\overline{h}/f)\frac{W_{\mu}^{1,2}}{\sqrt{2}} \\ d_{\mu}^{3} = \sin(\overline{h}/f)\frac{B_{\mu} - W_{\mu}^{3}}{\sqrt{2}} \\ d_{\mu}^{4} = \frac{\sqrt{2}}{f}\partial_{\mu}h, \end{cases}$$

Tagging of **Boosted Objects**


Tagging of **Boosted Objects**

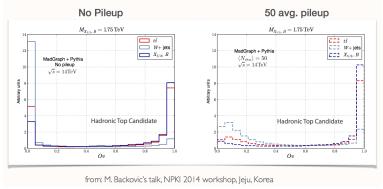
- We use the Template Overlap Method (TOM)
 - Low susceptibility to pileup.
 - Good rejection power for light jets.
 - Flexible Jet Substructure framework (can tag tops, Higgses, Ws ...)

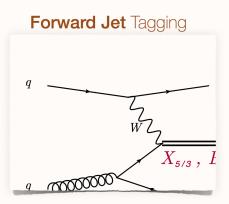

For a gruesome amount of detail on TOM see:

Almeida, Lee, Perez, Sterman, Sung - Phys.Rev. D82 (2010) 054034 MB, Juknevich, Perez - JHEP 1307 (2013) 114 Almeida, Erdogan, Juknevich, Lee, Perez, Sterman - Phys.Rev. D85 (2012) 114046 MB, Gabizon, Juknevich, Perez, Soreq - JHEP 1404 (2014) 176

Tagging of **Boosted Objects**

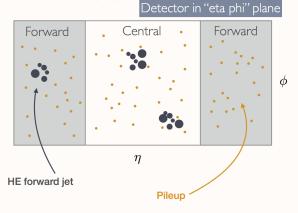
Tagging of **Boosted Objects**

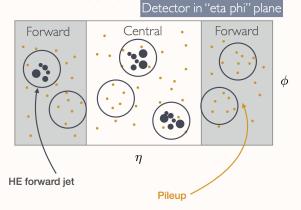



Tagging of **Boosted Objects**

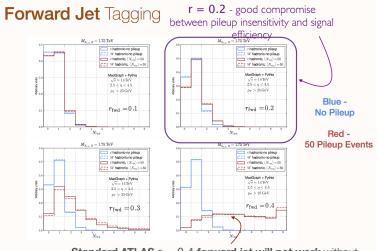
Template Overlap Method

- Good rejection power for light jets.
- Flexible Jet Substructure framework

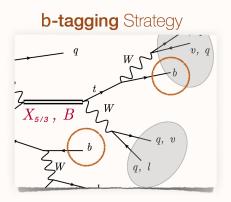

(can tag t, h, W ...)


Forward Jets as useful tags of top partner production also proposed in: De Simone, Matsedonskyi, Rattazzi Wulzer JHEP 1304 (2013) 004

Forward Jet Tagging


Seems easy, but actually quite difficult!

Forward Jet Tagging



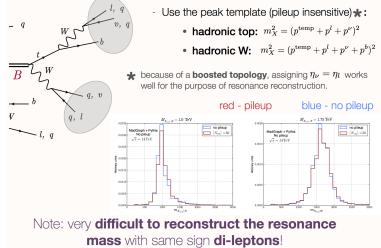
Complicated at high pileup (fake jets appear)

Forward Jet Tagging Detector in "eta phi" plane Forward Central Forward small radius pileup jets are less likely to pass a pr threshold cut η Ability to reco. the jet (Simple) Solution: energy/p_T is diminished, by we are Define forward jets as (say) r = 0.2 jets with interested in tagging $p_T^{\text{fwd}} > 25 \text{ GeV}, \quad 2.5 < \eta^{\text{fwd}} < 4.5.$ the forward jet, not measuring it

Standard ATLAS r = 0.4 forward jet will not work without some aggressive pileup subtraction technique (open problem!) from: M. Backovic's talk, NPKI 2014 workshop, Jeju, Korea

b-tagging Strategy

Full simulation of b-tagging requires consideration of complex detector effects (e.g. tracking info).


We use a simplified approach:

Assign a "b-tag" to every r = 0.4 jet which has a truth level b or c jet within dr = 0.4from the jet axis.

For each "b-tag" we use the benchmark efficiencies: $\epsilon_b=0.75,\;\epsilon_c=0.18,\;\epsilon_l=0.01$

We can reconstruct the **resonance mass**

