The Relic Neutralino Surface at a 100 TeV Collider

Michihisa Takeuchi (Kavli IPMU)

in collaboration with J. Bramante, P. J. Fox, A. Martin, B. Ostdiek, T.Plehn, T. Schell

No colored new particles beyond SM at LHC so far

We are searching for new physics beyond SM.

100 TeV prospect

T. Cohen, T. Golling, M. Hance, A. Henrichs, K. Howe, J. Loyal, S. Padhi, J. Wacker

We know there are DM (not colored particle)

 $\Omega_{\rm DM} h^2 \simeq 0.12 \simeq 1/<\sigma_a v > \simeq 1/{\rm pb}$ Lightest Neutralino is a good candidate for DM $ilde{B}, ilde{W}, ilde{H}_1, ilde{H}_2$

Split-SUSY type spectrum getting popular

Traditional EWkino search : 3 leptons

dominant production $\sigma(\chi_1^\pm\chi_2^0)$

with slepton: easy

 $\chi_1^{\pm} \to W^{\pm} \chi_1^0$ $\chi_2^0 \to Z \chi_1^0$

decay to W, Z: less sensitive due to BR

Rely on lepton trigger, need enough mass splitting

$$\Delta m = m_{\chi_1^+,\chi_2^0} - m_{\chi_1^0} > m_W, m_Z$$
$$\tilde{W} > 420 \text{ GeV}$$

ElectroWeakinos as thermal relic

Higgsino:
$$\langle \sigma_{eff} v \rangle = \frac{g^4}{512\pi\mu^2} \left(21 + 3\tan^2\theta_W + 11\tan^4\theta_W \right),$$

 $\Omega_{\tilde{H}}h^2 = 0.10 \left(\frac{\mu}{1\,\text{TeV}}\right)^2,$

Wino:

$$\langle \sigma_{eff} v
angle = rac{0g}{16\pi M_2^2},$$

 $\Omega_{\tilde{W}} h^2 = 0.13 \left(rac{M_2}{2.5 \,\mathrm{TeV}}
ight)^2$

 $3a^4$

Nucl.Phys.B741:108-130,2006 N. Arkani-Hamed, A. Delgado, G.F. Giudice

Higgsino: 1.1 TeV Wino: 2.1TeV (~3TeV including SE)

Pure states search

Disappearing track ATLAS arxiv:1310.3675

pure Wino, pure Higgsino

higly degenerate with chargino $\Delta m \sim \mathcal{O}(100 {
m MeV})$ -> long lifetime

-> disappearing charged track

We can set bound in mass and lifetime, or Δm

rapidly loose sensitivity with $\Delta m > 0.2 {
m GeV}$

mono-jet

Wino, Higgsino

Once Δm is getting larger $\Delta m = 1 \sim 10 {\rm GeV}$

They are degenerate -> decay into LSP + too soft decay products

We can set the limit on contact interaction operators

8TeV is not yet sensitive for Wino, Higgsino

pure Wino, Higgsino LSP at 14 TeV and 100 TeV

pure Wino, Higgsino LSP at 100 TeV with "NLSP"

Consider NLSP EWkinos productions at 100 TeV

NLSP	LSP
\tilde{W} —	$\rightarrow \tilde{H}$
\tilde{H} —	$\rightarrow \tilde{W}$
\tilde{H} —	$\rightarrow \tilde{B}$
\tilde{W} —	$\rightarrow \tilde{B}$

arXiv:1410.6287 S. Gori, S. Jung, L-T. Wang, and J. D. Wells

Even for Higgsino, accessible with NLSP EWkinos assuming enough mass splittings

similar work done by arXiv:1410.1532 B. Acharya, K. Bozek, C. Pongkitivanichkul, K. Sakurai

if Wino NLSPs are lighter than about 3.2 TeV Higgsino thermal dark matter ~ 1.1TeV excluded

Compressed spectra (ISR + soft-dileptons)

at 14 TeV 300fb^{-1}

Compressed spectra (ISR + soft-dileptons)

 $\Delta m = 10 \sim 50 {
m GeV}$ similar analysis done also for higgsinos

1.) $pp \to \chi_1^{\pm} \chi_1^{\mp} + j \to \ell^+ \ell'^- \nu \bar{\nu} \chi_1^0 \chi_1^0 + j$ 2.) $pp \to \chi_2^0 \chi_1^0 + j \to \ell^+ \ell^- \chi_1^0 + j$ 3.) $pp \to \chi_1^{\pm} \chi_2^0 + j \to \ell^+ \ell^- j j \chi_1^0 \chi_1^0 + j, \ \ell^+ \ell^- \ell'^{\pm} \nu \chi_1^0 \chi_1^0 + j,$

Z. Han, G. Kribs, A. Martin, and A. Menon

 $E_T > 100 \text{ GeV}$ exactly 1 hard jet: $p_{T,j} > 100 \text{ GeV}(\text{veto second jet} > 30 \text{ GeV})$ 2 isolated $\ell: p_{T,\ell} > 7 \text{ GeV}$ M1=150GeV, M2=1000GeV, µ=110GeV, tanß=10 M1=350GeV, M2=1000GeV, μ=110GeV, tanβ=10 $m_{\tau\tau} > 150 \text{ GeV} \text{ (reject } Zj)$ jπ ū ber of events / 2GeV

 $m_{\chi} \sim 200 \text{ GeV}$ can be excluded at 14 TeV 100fb^{-1}

m., (GeV)

FIG. 5. Example $m_{\ell\ell}$ distributions after all other cuts, for case II, 20 fb⁻¹ at the 8 TeV LHC.

 $m_{\chi} \sim 300 \text{ GeV}$ can be excluded at 14 TeV $3ab^{-1}$

For the same trigger ISR jet pT, BG is more boosted.

arXiv:1404.0682 Mattew Low, L-T Wang,

Compressed spectra (photon+leptons)

Compressed spectra (photon+leptons)

ISR + photon+lepton $\chi_2^0 \chi_1^{\pm} j \rightarrow (\chi_1^0 \gamma) (\chi_1^0 \ell^{\pm} \nu) j$

arXiv:1409.4533 Chengcheng Han, Lei Wu, Jin Min Yang, Mengchao Zhang, Yang Zhang bino/wino

 $E_T > 300 \text{ GeV}$, only one jet with $p_{T,j} > 300 \text{ GeV}$, $10 < p_{T,\ell} < 25 \text{ GeV}$, $10 < p_{T,\gamma} < 40 \text{ GeV}$

 $5\sigma \ (\Delta m = 5 \text{ GeV}), \ 2\sigma \ (\Delta m = 15 \text{ GeV}) \quad m_{\chi} \sim 150 \text{ GeV} \text{ at } 14 \text{ TeV} \text{ with } 0.5 \text{ ab}^{-1}$

For the same trigger ISR jet pT, BG is more boosted.

EWkino search summary at LHC

 $\Delta m = m_{NLSP} - m_{LSP}$

 $\Delta m > m_Z, m_W \qquad \qquad E_T + 3\ell$

Mainly working on pure states, (target: 1.1TeV Higgsino, 3 TeV Wino) ~400 GeV would be the best reach at LHC14 once the mass splitting small

Question to ask: All possible relic EWkino DM accesible at 100 TeV?

we check it explicitly (not working on pure states)

arXiv:1412.4789 Joseph Bramante, Patrick J. Fox, Adam Martin, Bryan Ostdiek, Tilman Plehn, Torben Schell, and MT

Well Tempered relic neutralino surface

arXiv:1412.4789

J. Bramante, P. J. Fox, A. Martin, B. Ostdiek, T. Plehn, T. Schell, and MT

Split-susy type spectrum, EWkino sector has 4 parameters $M_1, M_2, \mu, aneta$

We first show 3D structure, moving animated plot available online:

http://www3.nd.edu/~bostdiek/research_welltmp.html

Mixing parameters

Direct Detection (Blind spot, Neutrino BG)

coherent neutrino scattering $\sim 10^{-48}$ for 1 TeV

Blind spot condition: $m_{\chi_1} + \mu \sin 2\beta = 0$

Direct Detection (Blind spot, Neutrino BG)

coherent neutrino scattering $\sim 10^{-48}$ for 1 TeV

Blind spot condition: $m_{\chi_1} + \mu \sin 2\beta = 0$

small Δm

other than Bino/Higgsino slope, almost entirely $\Delta m < 30~{
m GeV}$

We cannot use standard EWkino search strategy: 3leptons have to work on soft-leptons, photons

BR(photon), cross sections

For Wino/Bino LSP, photon BR is enough

Cross sections just determined by the LSP mass

$$\chi_2^0 \chi_1^{\pm} j \to (\chi_1^0 \gamma) (\chi_1^0 \ell^{\pm} \nu) j$$

$$\chi\chi j \to \chi_1^0 \chi_1^0 \ell^+ \ell^- X j$$

Analysis detail : photon + lepton

 $E_T > 1.5$ TeV, only one jet with $p_{T,j} > 1$ TeV, $5 < p_{T,\ell} < 80$ GeV, $5 < p_{T,\gamma} < 80$ GeV

as γ_{χ} is large at 100 TeV, we can resolve Δm down to ~ 1 GeV

For the same trigger ISR jet pT, BG is more boosted.

Analysis detail : photon + lepton

Analysis detail : soft di-leptons

 $\not{E}_T > 500 \text{ GeV}$ exactly 1 hard jet: $p_{T,j} > 100 \text{ GeV}(\text{veto second jet} > 100 \text{ GeV})$ 2 isolated ℓ : 10 GeV $< p_{T,\ell} < 50 \text{ GeV}$ Relic neutralino 5 σ discovery with soft dileptons (3 ab⁻¹)

 $m_{\ell\ell} < m_{\ell\ell}^{\max}$

 $m_{\ell\ell}^{\rm max}$ to optimize S/\sqrt{B}

 $m_{\chi} \sim 900 \text{ GeV}$ would be discovered

*Some of bottom row accessible at LHC 3/ab

*Some of bottom row accessible at LHC 3/ab

350 GeV ~ 400 GeV at 14 TeV with $3 {\rm ab}^{-1}$

100 TeV collider covers the relic neutralino surface (other than pure Higgsino)