Going Beyond the Higgs Discovery

Zhiqing Zhang LAL, IN2P3/CNRS, Univ. Paris-Sud

Comprendre le monde, construire l'avenir®

Outline of the talk

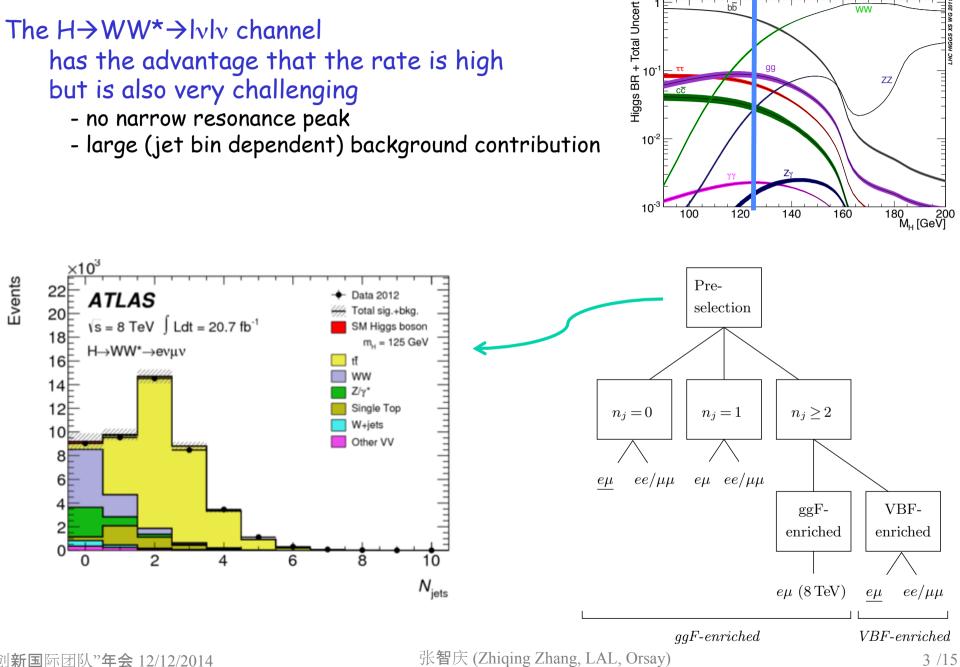
- Introduction
- Summary of (our) recent activities
- (Personal) plan for the next years
- Some thoughts on CEPC (for discussions)

Introduction

When I joined ATLAL-LAL group late 2008, there were already 2 strong $H \rightarrow \gamma\gamma$, ZZ(41) groups, so I initiated a new $H \rightarrow WW(I_VI_V)$ group.

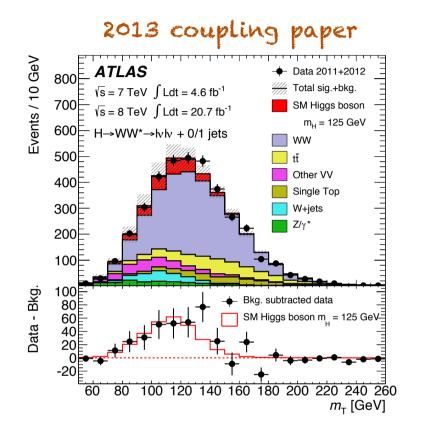
Shan & I co-supervised the thesis of Xifeng Ruan (2009-2012), luckily be (small) part of the effort resulting in the Higgs discovery

Now the new challenge is to understand the newly discovered Higgs


My current research focus in ATLAS @LHC:

- property measurements (in $H \rightarrow WW^* \rightarrow I_V I_V$)
 - * improved coupling measurement ·
 - * spin/CP measurement
 - * width constraint With Yanping Huang (DESY fellow) and Yichen Li
- Search for additional heavy Higgs boson(s) With Padraic Calpin (Imperial College London)

"创新国际团队"年会 12/12/2014


(Joint PhD LAL-Nanjing U.)

Introduction

"创新国际团队"年会 12/12/2014

Improved Higgs Coupling Measurement (1)

ATLAS: arXiv:1412.2641 ATLASH→WW* Events / 10 GeV 800 \sqrt{s} = 8 TeV, 20.3 fb⁻¹ \sqrt{s} =7 TeV. 4.5 fb⁻¹ (a) *n_i* ≤ 1, *e* μ+*ee*/μμ 600 Obs ± stat ∦ Bkg±syst 400 Higgs 🗖 WW Misid 🛛 VV 200 doT 📃 DÝ 0 (b) Background-subtracted Events / 10 GeV 150 Obs - Bka ₩ Bkg±syst Higgs 100 50 0 50 100 150 200 250

 $m_{ op}$ [GeV]

Huge effort, long list of improvements including, e.g.

- > Enhanced signal acceptance
- Reduced systematic uncertainties

(just to mention two main contributions from us)

"创**新国**际团队"年会 12/12/2014

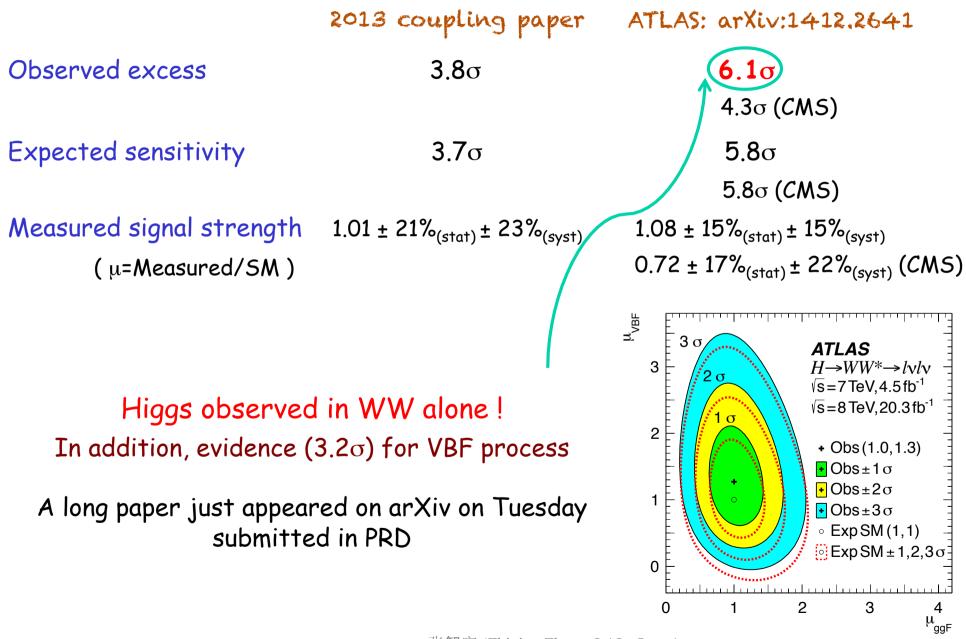
Review Article on Top Estimation Methods

Y. Li, X. Ruan, L. Yuan & Z. Zhang, LAL preprint 13-373

Comparison of relative uncertainties (in %) for Oj channel

Method	JVSP (Eq. (3))	Temp. (Eq. (5))	Extrap. (Eq. (6))	In-situ (Eq. (11))
Stat	2.2	7.3	6.8	7.3
Exp.	4.6	17.5	13.6	9.0
Theo.	3.8	4.4	3.6	1.9
Non-top	1.5	2.3	1.8	2.0
Total	6.5	19.6	15.7	11.9

JVSP method proposed by B. Mellado, X. Ruan & Z. Zhang, PRD84 (2011) 096005 Baseline method for ATLAS H→WW analyses since beginning (also applied to SM WW)

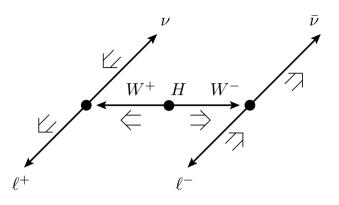

Method	1 <i>j</i>		$\geq 2j$			
	Extrap.	In-situ (1b)	Extrap.	In-situ (1b)	In-situ ($\geq 1b$)	In-situ $(1b')$
Stat.	1.3	2.4	9.4	9.5	7.7	9.5
Exp.	9.5	4.9	7.9	4.5	5.4	4.5
Theo.	3.2	2.6	18.6	16.8	19.5	17.8
Non-top	0.3	0.4	0.4	0.5	0.4	0.6
Total	10.1	6.1	22.3	19.8	21.7	20.7

Similar comparison for 1j and 22j channels

In-situ b-tagging efficiency based method improved & implemented in ATLAS H→WW analysis by L. Yuan & Z. Zhang

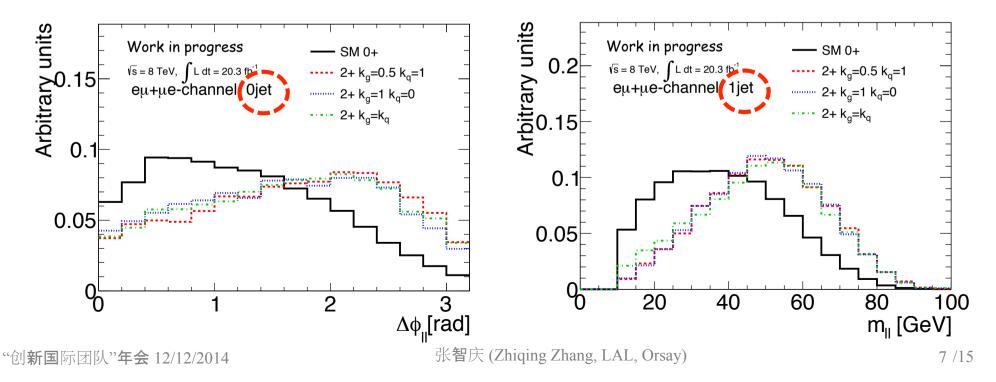
"创**新国**际团队"年会 12/12/2014

Improved Higgs Coupling Measurement (2)


"创新国际团队"年会 12/12/2014

张智庆 (Zhiqing Zhang, LAL, Orsay)

6 /15


Spin/Parity Property with WW

SM Higgs boson: spin 0, CP even WW channel provides several variables in discriminating SM O+ with other alternatives

Spin 2+ minimal coupling scenarios:

- at LO, ggF (k_g =1) and VBF (k_q =1) independent Beyond LO, both k_q , k_q contribute with k_q = k_q being a special universal coupling case

Our Contribution to the Spin Analysis

For previous spin property results, only 0-jet channel was used

We have helped in adding 1-jet channel with all associated studies, e.g.

- signal and background separation with an MVA technique
- systematic uncertainty evaluation

→ 1-jet channel is necessary as it's sensitive to higher-order effects
→ Signal significance substantially improved, e.g. for one spin-2 model:

Channel	Z ⁰ _{exp}	Z ² _{exp}	¢(x)	
0-jet	1.35 ± 0.02	1.94 ± 0.03		
1-jet	1.30 ± 0.02	1.23 ± 0.02	p-value	
0+1-jet	1.89 ± 0.02	2.29 ± 0.04		

$$(k_q=0.5, k_q=1)$$

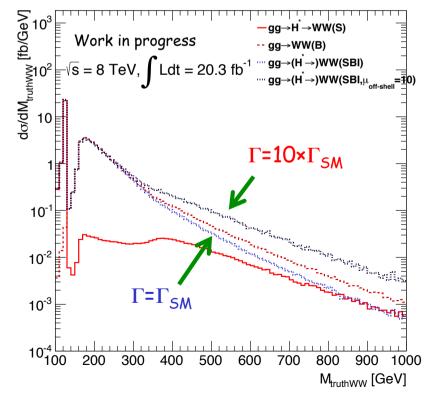
A publication is in preparation

х

κ− Z→

Constraint on the Higgs Width

SM Higgs boson width ~4MeV much smaller than detector resolution \rightarrow Very difficult to measure at LHC, see indeed the direct width limits


Obs (exp) upper limits [GeV] @95%CL	Н→үү	H→ZZ(4I)
ATLAS	5.0 (6.2)	2.6 (6.2)
CMS	2.4 (3.1)	3.4 (2.8)

In narrow width approximation:

$$\sigma_{i \to H \to j} \propto \frac{g_i^2 g_f^2}{\Gamma_h}$$

→ Without knowing Γ_h , g cannot be precisely determined from σ at LHC

Several groups (1206.4803, 1307.4935, 1311.3589, 1312.1628) point out the off-shell Higgs production is sizable

"创**新国**际团队"年会 12/12/2014

[→]Measured off-shell production can be used to constrain the off-shell signal strength, Higgs width

Expected Results

Campbell & Ellis estimated in arXiv:1312.1628 the Higgs width upper limit

- ≻ Γ < (100-500) Γ_{SM} based on ATLAS' 125GeV coupling analysis cuts Γ < (25-50) Γ_{SM}
 - best potential limits

We designed a powerful and optimum off-shell selection which allowed

- > minimize the contamination of the on-shell resonance
- > efficient background rejection
- > maximize the off-shell contribution
- > keep the analysis as inclusive as possible for NNLO k-factor correction

Upper limits @95%CL	Stat	Stat + Exp	Stat + Exp + Theo
Expected ($\times \Gamma_{SM}$)	18.3	18.5	20.3

A publication with combined WW(I_VI_V)+ZZ($4I+II_{VV}$) is being finalized

Search for Heavy Higgs Boson

Is an alternative and efficient way for answering the question $H = H^{SM}$?

Extended Higgs sector predicted by several BSM models, e.g.:

- > 2HDMs (Two Higgs Doublet Models)
- EWS (ElectroWeak Singlet) Models

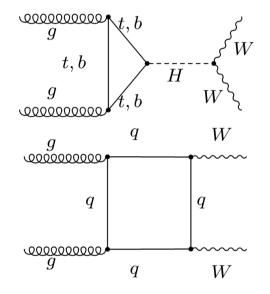
ATLAS analysis performed for 4 interpretations:

- Heavy Higgs boson with SM-like width (performed in mass range [200, 1000]GeV)
- Heavy Higgs boson with narrow width (performed in mass range [300, 2000]GeV)
- Heavy Higgs boson in the EWS model (performed m_H=[200,1000]GeV, Γ_H=[0.1,1]×Γ_{SM})
- Heavy Higgs boson in Type-I & -II 2DHMs

Our Contribution to the Heavy Higgs Search

 \square Checked the contribution of other Higgs decay modes ttbar, ZZ, $\tau\tau$

□ Studied the Higgs lineshape (i.e. Higgs invariant mass distribution), found/confirmed


> Breit-Winger distribution provides a good approximation for $m_{H}^{<\sim}400 GeV$

> Need Complex Pole Scheme (CPS) at higher m_H and/or larger Γ_H

Investigated signal & background interference effects: missing in our current MC samples, important when the width is SM-like (very broad @ high mass)

□ Compared difference between dynamic scale $(m_{WW}/2)$ vs. fixed scale $(m_H/2)$

(SM continuum WW is known at LO as well as the interference, \rightarrow need theoretical improvement)

Results not yet fully approved, but we expect a big improvement over what's published based on 7TeV data (133GeV < mH < 261GeV at 95%CL for SM-like)

A publication in combination with other channels (e.g. $WW \rightarrow I_Vqq$) expected early next year

(Personal) Plan for the Next Years

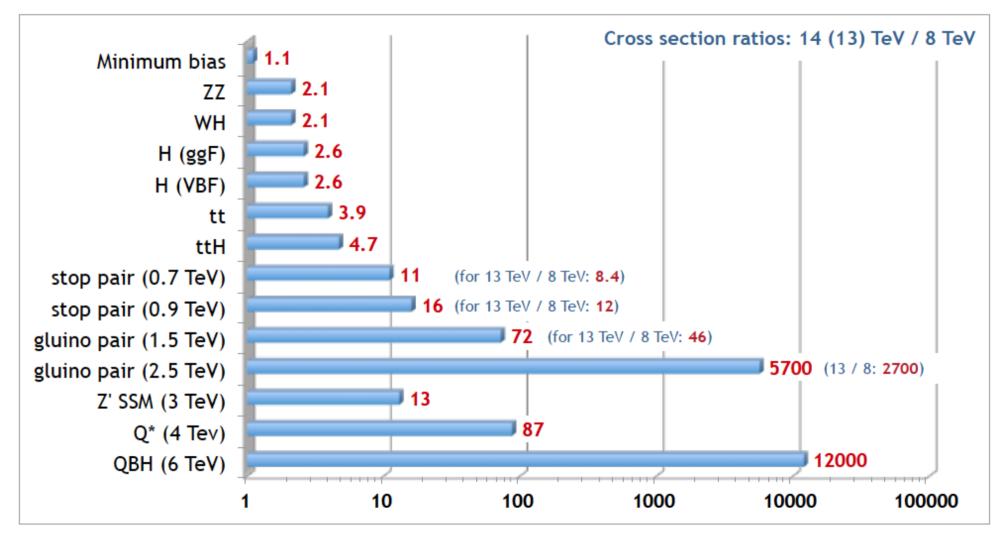
LHC is the unique energy frontier machine in the world in the next 10-20 years Fully exploit physics potential at LHC is the top priority

□ Search for new physics

Searching for additional Higgs bosons will continue with Run-2 data (Joint PhD thesis for Yongke Zhao with Shandong University)

Precision measurements/predictions

- Higgs property measurements would be a long term project
- Understanding 20% (>2σ) excess in the SM WW cross section measurement (ongoing projects with USTC, China and KTH, Sweden)
- Continue phenomenology activity on muon g-2 (in view of forthcoming Fermilab and J-PARC measurements), invitation for a chapter for a book for CERN'60


□ Try to contribute to IHEP/China's initiative for CEPC/SppC

- Close contact with Manqi Ruan (a former joint PhD student with Yanning)
- subscribed to CEPC mailing list
- trying to follow some of the weekly meetings
- invited to review the pre-CDR report

Expected Gain in Cross Sections at LHC

for selected processes

Hugely increased potential for discovery of heavy particles at 13~14 TeV

"创新国际团队"年会 12/12/2014

Some (Naïve) Thoughts on CEPC for discussion

□ Unique time window to build CEPC in China

- Europe has the LHC to explore and upgrade
- > US does not seem in a position to host a big high energy project
- > Japan keen to host ILC but insufficient world-wide financial support

□ Then which energy/luminosity option to have?

Do we want CEPC to be a LEP-like machine?

Do we want to have a "cheap" machine/detector but "expensive" running cost? (to achieve a given precision)

Do we want to leave the top precision study for SppC?

□ If not too late, is it possible to consider the following scenarios?

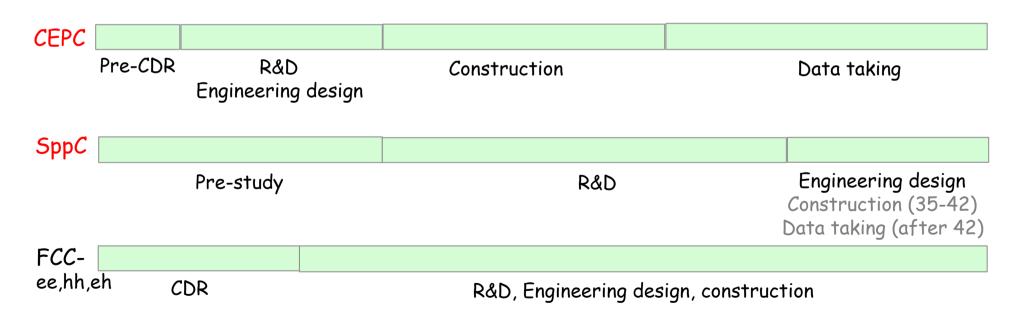
- define the minimum and cheapest option (Higgs precision physics)
- ambitious option both in energy and physics coverage (though more expensive)
- intermediate ones

and leave the decision to political/funding body?

Additional Slides

Unique Opportunity for CEPC/SppC

ILC


Decision for construction to take

ILC TDR released in 2013

CLIC Rely more on the outcome of the LHC

CLIC CDR released in 2011

Possible Scenarios In Next Years/Decade

□ LHC and/or HL-LHC find new physics:

the heavier part of the spectrum may not be fully accessible at $\int s \sim 14 \text{ TeV}$

 \rightarrow strong case for a 100 TeV pp collider:

complete the spectrum and measure it in some detail

 □ LHC and/or HL-LHC find indications for the scale of new physics being in the 10-50 TeV region (e.g. from dijet angular distributions → Λ Compositeness)
 → strong case for a 100 TeV pp collider: directly probe the scale of new physics

□ LHC and HL-LHC find no new physics nor indications of next energy scale
 → Missed due to small cross sections or difficult experimental signatures?
 → A precision e+e- machine may be a good choice to find new guidance for future direction

Hadron Collider vs. e+e-(lepton)

Hadron Collider:

SppC (Super proton-proton Collider), China FCC-hh (Future Circular Collider), CERN

e+e- Collider:

ILC (International Linear Collider), Japan? CLIC (Compact LInear Collider), CERN
← CEPC (Circular Electron Positron Collider), China
FCC-ee (TLEP), CERN Muon collider (µC), Fermilab?

+ Energy frontier

 \rightarrow large direct discovery potential

- Precision measurement challenging

- Pile-up
- UE, MPI*
- Composite proton \rightarrow PDF uncertainty
- large theoretical (QCD) corrections

+ Precision frontier

- Clean experimental environment
- Known √s
- Beam polarization (linear collider)
- Precise theoretical predictions

- Lower √s

 \rightarrow still large indirect scale reach

*UE: Underlying Event; MPI: Multi-Parton Interaction

Physics Goal vs. √s at a e+e- Collider

Circular	Energy	Reaction	Physics Goal	Linear
CEPC	91 GeV	${\rm e^+e^-} \rightarrow Z$	ultra-precision electroweak	1
	160 GeV	$e^+e^- \rightarrow WW$	ultra-precision W mass	ILC
	250 GeV	${\rm e^+e^-} \rightarrow Zh$	precision Higgs couplings	1
FCC-ee	350–400 GeV	$ e^+ e^- \to t\bar{t} e^+ e^- \to WW e^+ e^- \to \nu\bar{\nu}h $	top quark mass and couplings precision W couplings precision Higgs couplings	CLIC
♥ Multi- detector	500 GeV	$\begin{array}{l} \mathrm{e}^{+}\mathrm{e}^{-} \rightarrow f\bar{f} \\ \mathrm{e}^{+}\mathrm{e}^{-} \rightarrow t\bar{t}h \\ \mathrm{e}^{+}\mathrm{e}^{-} \rightarrow Zhh \\ \mathrm{e}^{+}\mathrm{e}^{-} \rightarrow \bar{\chi}\bar{\chi} \\ \mathrm{e}^{+}\mathrm{e}^{-} \rightarrow AH, H^{+}H^{-} \end{array}$	precision search for Z' Higgs coupling to top Higgs self-coupling search for supersymmetry search for extended Higgs states	Single detector or Push-pull
ee → pp	700–1000 GeV	$ e^+ e^- \rightarrow \nu \bar{\nu} h h e^+ e^- \rightarrow \nu \bar{\nu} V V e^+ e^- \rightarrow \nu \bar{\nu} t \bar{t} e^+ e^- \rightarrow \bar{t} \bar{t}^* $	Higgs self-coupling composite Higgs sector composite Higgs and top search for supersymmetry	Energy upgradability
	10/10/2014	心知亡(71)	aing Zhang I AI (Organ)	3TeV