Recent progress in silicon sensor development for ATLAS tracking detector upgrade

Zhijun Liang University of California, Santa Cruz

Introduction

- ATLAS ITK silicon strip detector phase 2 upgrade
- Sensor status
 - Default solution : n-on-p type planar sensors
 - Fallback solution : CMOS pixel sensors

CMOS pixel sensors developments

- Implemented in commercial CMOS (HV) technologies (350nm, 180nm)
 - Collection electrode is a large n-well/p-substrate diode
- Advantage:
 - High granularity: Typical resolution is 50nm
 - low material budget : Can be thinned down to 50um
 - Monolithic: Front-end electronics and sensor can be built in the same chip
 - Low cost
- Drawback:
 - Low MIP signal : 1700e
 - capacitive crosstalk from PMOS drain/source into collection electrode

CMOS pixel sensors developments

- Three years plan for CMOS technology R & D for ATLAS ITK phase 2 upgrade
 - Aim for full size sensor designed and fabricated
 - Aim for a stave designed in middle of 2017

• AMS H35 HIGH VOLTAGE TECHNOLOGY

- http://www.europractice-ic.com/technologies_AMS.php?tech_id=hv
- Two submissions have done (April 2014, August 2014)
- Aug 2014 submission by UC Santa Cruz and SLAC
 - Evaluation of the capacity of the CMOS pixel
- TowerJazz 180 nm CMOS Image Sensor (CIS) technology
 - One submission has been sent (Dec 2014)

HV-CMOS pixel array design

- Pixel size can be reduced to IumX3 um or less in AMS H35 design
- For strip application, larger pixel size is considered in the last submission
- 45μmX100μm, 45μmX200μm, 45μmX400μm 45μmX800μm
- 30%-50% Nwell fraction
 - Expect better performance in higher Nwell fraction
- Electronics in the strip allow for strip segmentation
- –AMS provides options for high resistivity substrate
 - Substrate resistivity can be up to a few thousand Ω

HV-CMOS pixel array design

- Other designed proprities in simulation
 - Depletion region
 - Nwell capacitance
 - Charge collected
- Drift time is designed to be 0.1-0.5ns
 - Longer drift time when the hit is in center of pixel
 - low signal amplitude
 - Can not be readout directly, need amplifier

Design of amplifier

- signal to noise ratio is relatively low in HV-CMOS sensors
 - A monolithic design of a built-in low-noise amplifier is needed
 - The pixel array and amplifier are designed in the same chip
 - The noise of the monolithic amplifier Is designed to be lower than external amplifier
 - The amplifier design must be radiation hard
 - radiation tolerant layout techniques is used
 - The raise time should be fast as well for LHC application
 - I 6ns raise time for active pixel signal after amplification

radiation tolerant layout

0

Specifications	Simulated values
Rise time	16 ns (10 - 90 %)
Noise	200 e ⁻
Gain	500 mV/fC
Power consumption	210µW/ amplifier
Pulse duration	50ns

Architectures design

- Two designs are considered
- Built-in Stereo:
 - Readout binary in two set of connections on pixel matrix
 - similar to conventional planar sensor
 - not able to use the advantage of CMOS technology
- Digital Z encode: (to be test in March 2015 submission)
 - Z encoding is found to be the best design
 - Not a binary readout, readout the address of the hits
 - In the example segment : 40X800um
 - readout 9 bits of 'x; position
 - readout 5 bits of 'z' position
 - Only needed 14 wire bond in this example
 - Reduce the number of wire bonding by order of magnitude
 - Save a lot of module building time
- Amplification and digitization will be done in HV-CMOS chip
- The Frontend readout chip (ABCN130 chip) needed to be redesigned to
 - Remove the amplifier and digitization part
 - Add receiver to receive digital info z-position
 - Mainly use for data buffering

Built-in Stereo- Two set of connections on pixel matrix

Testing setup and major Challenge

- Compared to conventional planar sensors for strip detector
 - Leakage current is about lower by at least 1000 times
 - Capacitance is lower by at least 1000 times
 - Need setup for low noise measurement

Substrate: grounded Perimeter pixels: +HV Central pixel: +HV

Central pixel IV

• I-V measurement

- Can Biased up to 120V without breakdown
- Low leakage current (pA level)
- Leakage current proportional to pixel size.

Leakage current(A) 5^{×10⁻¹²} З 2 0 20 40 60 80 100 V_bias(V)

PPA #	Pixel width	Pixel length	Diode Area	Metal
		longui	Fraction	ratio
PPA01	45µm	100µm	30%	13.0%
PPA03	45µm	200µm	30%	22.7%
PPA05	45µm	400µm	30%	27.4%
PPA07	45µm	800µm	30%	29.8%

Capacitance of central pixel array with different size

The central pixel capacitance at low bias voltage is roughly proportional to pixel size.

At low bias voltage
C(A4) is about 1/2 of C(A8)
C(A6) is about 1/4 of C(A8)
C(A8) is about 1/8 of C(A8)

PPA #	Pixel	Pixel	Diode	Metal
	width	length	Area	opening
			Fraction	ratio
PPA02	45µm	100µm	50.4%	34.5%
PPA04	45µm	200µm	50.4%	44.0%
PPA06	45µm	400µm	50.4%	48.7%
PPA08	45µm	800µm	50.4%	51.0%

Capacitance of pixel array with different diode area fraction

PPA #	Pixel	Pixel	Diode	Metal
	width	length	Area	opening
			Fraction	ratio
PPA07	45µm	800µm	30%	29.8%
PPA08	45µm	800µm	50.4%	51.0%

Observe lower capacitance for pixel with lower diode fraction

100µm x 45µm pixel 50% diode fraction

 $100 \mu m$ x $45 \mu m$ pixel 30% diode fraction

 \Box C(A7) is about 70% of C(A8)

Charge collection measurements

- Use big pixel array for charge collections tests
 - ~1000 pixels connected together to give large signal in big array
 - Signal to noise ratio is about 10 using external amplifier
 - About 1700 e- are collected
 - Next step is to test the small pixel array (1000 times smaller)
 - Signal is expected to much smaller
 - Using built-in amplifier to reduce the noise

Short summary of CMOS sensor testing

- Preliminary I-V and capacitance results for HV-CMOS CHESSI chips
 - I-V measurement
 - Can Biased up to 120V without breakdown
 - Low leakage current (pA level)

• C-V measurement

- The central pixel capacitance at low bias voltage is roughly proportional to pixel size.
- Observe lower capacitance for pixel with lower diode fraction
- Charge collections efficiency
 - About 1700 e- are collected
 - Signal to noise ratio is about 10

Part 2: radiation damage study in planar sensors

- planar sensor is default solution for ATLAS phase 2 upgrade
- The study of planar sensors are quite advanced
 - Lots of study have been done for radiation hardness
 - Full size sensor has been studied

Reminder of radiation damage

What happen to Silicon sensor after bulk radiation damage:

- displacements in the silicon lattice
- Creating intermediate state
 - Lead to higher leakage current
- Defeat state will capture the charge carriers
 - lead to lower charge collection efficiency
- Lead to cross talk in signal readout
 - Lower isolation between two close-by strips or pixels
 - Higher inter-strip or inter-pixel capitance

Special design for radiation hard planar sensor

- N-on-p sensor is used as default planar strip sensor
 - Radiation hardness is not better than n-on-n
 - But it is much cheaper
- Inter-Strip Isolation is not good after radiation
 - Charge carrier can travel through surface of the silicon
 - Two strips are short together after radiation
 - degradation of the position resolution
 - Add p-stop between two close-by strips
 - Improve the isolations between strips
 - Total p stop dose is optimized to 1e12 (1/cm²) level

Inter-strip resistance measurement

- The inter-strip resistance setup as follow
 - BZ3C , BZ3C slim, BZ3F sensors
 - Measured at -20 °C, -5 °C

Measure nA current for G Ω level resistance Relative low S/N Do a careful job in grouding to reduce the noise

The impact of Radiation damage to inter-strip capacitance

- Radiation damage may also have large impact to inter-strip capacitance
 - lead to cross talk between channels
 - The ratio of R_int to R_bias reflect the cross talk
 - R_bias / R_int is designed to be >10
- The impact to readout pre-amplifier
 - The ratio of Rs to R_INT
 - Part of Signal to pre-amplifier will be lost when R_INT is too low

R_INT in different bias voltage

• Higher resistance with higher bias voltage.

R_INT VS fluence

• Inter-strip resistance drops from 38G Ω /cm level to 0.17M Ω /cm

Cross talk effect

- R_INT/ R_bias >>10 before radiation -> no cross talk
- R_INT/R_bias = 3 at 2e15 Neq/cm² cross talk expected, still acceptable

- C_int increase after radiation for slow signal (100Hz)
- Have less impact for fast signal (MHz)

Punch through protection design in planar sensor

- When the proton beam is not stable or during beam dump
 - Lots of charge particle go through the sensors
- Large amount of charge accumulated before coupling capacitance
 - This accumulated is AC signal , can go through coupling capacitance
 - Large amount of siganl will damage pre-amplifier

Punch through protection design in planar sensor

- Design punch through protection
 - P-n-p transistor structure
 - Two design:
 - Varying the distance between p stop and bias ring.
- The R_b is short when accumulated charge is large

BZ3CVS BZ3F

- BZ3C has a smaller punch-through voltage before radiation.
- After radiation, both sensors have similar punch-through voltage
- PTP structure is still working well in BZ3C

Summary

- Radiation hardness planar sensor have been studied
 - sensor performance is OK after radiation
 - The design of p stop and the punch through protection structure is working as expected.