ATLAS results on the Wγγ **cross section and anomalous quartic gauge couplings**

Miaoyuan Liu Duke University

IHEP Dec.19.2014

Outline

MOTIVATION

The Standard Model

Gauge boson coupling in the SM

• TGC:

Triple Gauge Boson coupling

• QGC:

Quartic Gauge Boson coupling

Gauge boson coupling in the SM

Gauge boson coupling in the SM

Gauge boson coupling with BSM physics

- Constraints on new physics presented as limits on aT(Q)GC parameters (zero in SM).
- Probes new physics at an energy scale that's beyond our reach.

Probing TGC/QGC at the LHC—ATLAS

Standard Model Production Cross Section Measurements

1011 σ [pb] Run 1 $\sqrt{s} = 7, 8 \text{ TeV}$ **ATLAS** Preliminary 10⁶ TGC $0.1 < p_{\rm T} < 2$ TeV <u>``</u> • Di-boson production well-0.3 < m_{ii} < 5 TeV **LHC pp** \sqrt{s} = 8 TeV LHC pp $\sqrt{s} = 7$ TeV 10⁵ 0 measured. Theory Theory 10^{4} njet ≥ 0 0 35 pb⁻¹ Data 4.5 - 4.7 fb⁻¹ Δ Data 20.3 fb⁻¹ QGC 10^{3} No VVV measurement njet ≥ 1 njet ≥ 0 published yet. 4.9 fb⁻¹ 95% CL 10² 0 upper Analysis published on First limit 13.0 fb⁻¹ njet \geq 3 0 njet ≥ 2 0 .7∎fb 10¹ **Evidence of Same-sign WW** 2.0 fb⁻ **0** 🗠 95% CL 0 VBS. 0 uppe 0 1 1.0 fb-• First observation of VBS. njet \geq 0 0 10^{-1} Limits on anomalous niet >Δ 0 njet ≥ 6 0 WWWW coupling. 10^{-2} njet ≥ 7 0 10^{-3} $t\bar{t}$ t_{t-chan} WW+ WW $\gamma\gamma$ Wγ Zγ tŦW tτΖ Zjj $H \rightarrow \gamma \gamma^{W^{\pm}W^{\pm}jj} t_{s-chan}$ pp Jets Dijets W Ζ WΖ ΖZ tīγ Wt R=0.4 R=0.4 WZ EWK EWK fiducial fiducial total total total total fiducial fiducial fiducial total total fiducial fiducial fiducial total total |v| < 3.0 |v| < 3.0fiducial $v^* < 3.0$ niet=0 niet=0

Status: July 2014

MOTIVATION

Probing TGC/QGC at the LHC—CMS

MOTIVATION

Probing TGC/QGC at the LHC

MOTIVATION

From previous slides: TGCs are well-understood experimentally. QGCs rarely studied.
EFT point of view: exchange of heavy bosons (X) -> tree level contribution through dim-8 operators -> one loop level through dim-6 operators.

Conclusion We need to perform QGC analyses (triboson and VBS) at the LHC to better understand dim-8 operators !

Why $W\gamma\gamma$?

- WWγγ contributes to this final state.
- Large rate compared to other VVV processes.
- —> Promising first observation of VVV production!
- Important background to searches.
 - •e.g.WH(γγ), SUSY searches with diphoton+MET.
- Large K-factor.

Why $W\gamma\gamma$?

MOTIVATION

Outline

The ATLAS detector

D712/mb-26/06/97 **Muon Detectors** Electromagnetic Calorimeters Forward Calorimeters Solenoid End Cap Toroid

Barrel Toroid

Inner Detector

 \rightarrow

Shielding

Particle detection with The ATLAS detector

The ATLAS EM calorimeter

Outline

• Analysis goal: Fiducial Cross Section Measurements + aQGC limits.

Signature : 1 lepton+ MET + 2 isolated photons.
 Inclusive (>= 0 jets) and Exclusive (==0 jet) measurements.

Jet Pt > 30 Ge

0.5

O^L

W(ev) $\gamma\gamma$ event in ATLAS

Processes	Fake signature	Baseline Method
Wγ+jets,W+jets, Zγ+jets(missing one lep in reco)	jet faking γ	 2D isolation template fit (Data-Driven)
QCD (γ+jets,γγ+jets)	jet faking lepton	 2D sideband (ABCD method) (Data-Driven)
Zγ+jets	lep faking γ	 Highly suppressed by Pt(lγγ),M(lγγ),M(lγ)cuts Estimated from sherpa MC

The ATLAS EM calorimeter

2D template fit for jet-> γ

2D template fit for jet-> γ

Events / (1.15 GeV

2D template fit for jet-> γ

ABCD method for jet->lepton

ABCD method

- ✓Assumption:no correlation between variables on two axes.
- ✓ Define control regions B,C,D by reversing cuts.

 ✓ no correlation: NB*ND/ (NA*NC) = 1 for background events
 ✓ Count number of events in region B,C,D in data, extrapolate to region A.

Wγγ signal yield

WYY

Fiducial cross section measurement

 $\forall \gamma \gamma$

Comparison to theoretical predictions

		$\sigma^{ m fid}~[m fb]$	$\sigma^{\rm MCFM}$ [fb]
	inclusive $(N_{jet} \ge 0)$		
σ~3.7	$pp o \mu \nu \gamma \gamma$	7.1 $^{+1.3}_{-1.2}$ (stat.) $^{+1.6}_{-1.5}$ (syst.) ± 0.2 (lumi.)	2.90 ± 0.16
	$pp \to e \nu \gamma \gamma$	4.3 $^{+1.8}_{-1.6}$ (stat.) $^{+2.0}_{-1.8}$ (syst.) ± 0.2 (lumi.)	2.90 ± 0.16
	$pp \to \ell \nu \gamma \gamma$	$6.1 ^{+1.1}_{-1.0} \text{ (stat.)} ^{+1.3}_{-1.2} \text{ (syst.)} \pm 0.2 \text{ (lumi.)}$	2.90 ± 0.16
	exclusive $(N_{jet} = 0)$		
σ~2.2	$pp ightarrow \mu \nu \gamma \gamma$	3.5 ± 0.9 (stat.) $^{+1.2}_{-1.1}$ (syst.) ± 0.1 (lumi.)	1.88 ± 0.20
	$pp \to e \nu \gamma \gamma$	$1.9 \ ^{+1.4}_{-1.1}$ (stat.) ± 1.2 (syst.) ± 0.1 (lumi.)	1.88 ± 0.20
	$_ pp \to \ell \nu \gamma \gamma$	$2.9 \ ^{+0.8}_{-0.7}$ (stat.) $^{+1.1}_{-1.0}$ (syst.) ± 0.1 (lumi.)	1.88 ± 0.20

√VBFNLO (NLO) : 2.88 fb (inclusive)

 \checkmark K factor: σ NLO/ σ LO ~3.

 \checkmark Exclusive measurement agrees with the SM NLO predictions within the uncertainties.

aQGC analysis

aQGC analysis

Limits

✓ ATLAS Wyy limit on FT0 improved compared to CMS yy->WW. ✓ Exclusive candidates with Myy > 300 GeV used. ✓ Form factor approach is used for unitarity concern. $\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \right)^{-n}$

First observation of tri-boson production in the Wyy final state

with a significance of ~3.7 (2.2) σ for the Inclusive (exclusive) case.

aQGC limits provided

for selected dim-8 operators.

To be submitted to PRL shortly

Summary and prospects

Run 2 prospects ✓LHC is scheduled to deliver pp collisions in Spring, 2015.

✓ Exciting opportunities of studying
 QGCs with Run 2 data.

ATLAS and CMS are both general-purpose detectors located at the LHC

Muon Detectors Electromagnetic Calorimeters		ATLAS	CMS
Solenoid Forward Calorimeters End Cap Toroid	Magnetic field	2 T solenoid + toroid: 0.5 T (barrel), 1 T (endcap)	4 T solenoid + return yoke
	Tracker	Silicon pixels and strips + transition radiation tracker $\sigma/p_T \approx 5 \cdot 10^{-4} p_T + 0.01$	Silicon pixels and strips (full silicon tracker) $\sigma/p_T \approx 1.5 \cdot 10^{-4} p_T + 0.005$
	EM calorimeter	Liquid argon + Pb absorbers $\sigma/E \approx 10\%/\sqrt{E} + 0.007$	PbWO ₄ crystals $\sigma/E \approx 3\%/\sqrt{E} + 0.003$
	Hadronic calorimeter	Fe + scintillator / Cu+LAr (10 λ) $\sigma/E \approx 50\%/\sqrt{E} + 0.03 \text{ GeV}$	Brass + scintillator (7 λ + catcher) $\sigma/E \approx 100\%/\sqrt{E} + 0.05 \text{ GeV}$
	Muon	σ/p _T ≈ 2% @ 50GeV to 10% @ 1TeV (Inner Tracker + muon system)	$\sigma/p_T \approx 1\%$ @ 50GeV to 10% @ 1TeV (Inner Tracker + muon system)
Barrel Toroid Inner Detector Hadronic Calorimeters Shielding	Trigger	L1 + HLT (L2+EF)	L1 + HLT (L2 + L3)

- Link to supporting note.
- Electron channel background studies: https://indico.cern.ch/event/219384/contribution/5/material/slides/0.pdf
 Pt acceptance
- studies:
- to summarize, reduced the jet—>photon background by 50%, smaller systematic uncertainties.

Category	Description	Name	Loose	Tight
Acceptance	$ \eta < 2.37, 1.37 < \eta < 1.52$ excluded	_	\checkmark	\checkmark
Hadronic leakage	Ratio of $E_{\rm T}$ in the first sampling of the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $ \eta < 0.8$ and $ \eta > 1.37$)	$R_{\rm had_1}$	V	\checkmark
	Ratio of $E_{\rm T}$ in all the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $0.8 < \eta < 1.37$)	<i>R</i> _{had}	\checkmark	\checkmark
EM Middle layer	Ratio in η of cell energies in 3 × 7 versus 7 × 7 cells	R_η	\checkmark	\checkmark
	Lateral width of the shower	w_{η_2}	\checkmark	\checkmark
	Ratio in ϕ of cell energies in 3×3 and 3×7 cells	R_{ϕ}		\checkmark
EM Strip layer	Shower width for three strips around strip with max- imum energy deposit	<i>w</i> _{s 3}		\checkmark
	Total lateral shower width	$w_{s tot}$		\checkmark
	Energy outside core of three central strips but within seven strips divided by energy within the three central strips	F _{side}		\checkmark
	Difference between the energy associated with the second maximum in the strip layer, and the energy re- constructed in the strip with the minimal value found between the first and second maxima	ΔE		\checkmark
	Ratio of the energy difference associated with the largest and second largest energy deposits over the sum of these energies	$E_{ m ratio}$		\checkmark

Table 1: Variables used for loose and tight photon identification cuts.

source	$N_{\gamma\gamma}$	$N_{\gamma j}$	$N_{j\gamma}$	N_{jj}
Control Dogion Statistics	± 5.1	± 4.5	± 3.1	± 0.7
Control Region Statistics	$(\pm 6.7\%)$	$(\pm 28\%)$	(±35%)	(±13%)
Background Model G+N	± 0.1	± 0.1	± 1.0	± 0.5
Dackground Wodel OTN	$(\pm 0.1\%)$	$(\pm 0.6\%)$	(±11%)	$(\pm 9\%)$
Background Model CB	± 0.2	±1.1	± 0.6	± 0.09
Dackground Wouch CD	$(\pm 0.3\%)$	$(\pm 7\%)$	$(\pm 7\%)$	$(\pm 1.7\%)$
Antitiabt Definition I'_{5}	± 0.6	±1.6	± 0.8	± 0.1
Antifugin Deminion L J	$(\pm 0.7\%)$	(±10%)	$(\pm 9\%)$	$(\pm 2\%)$
Antitiabt Definition I'_{3}	± 1.2	± 1.5	± 1.5	± 0.2
Antifugin Deminion L 3	$(\pm 1.6\%)$	$(\pm 9.4\%)$	(±17%)	$(\pm 3.5\%)$
MC Generator	± 0.8	±1.6	±1.3	± 0.1
IVIC UCHCIAIUI	$(\pm 1\%)$	(±10%)	(±14%)	$(\pm 2\%)$
Signal Laakaga Inputa	± 0.07	± 0.05	± 0.8	± 0.04
Signal Leakage Inputs	$(\pm 0.1\%)$	$(\pm 0.3\%)$	$(\pm 9.4\%)$	$(\pm 0.8\%)$
total	±5.3	± 5.4	±4.0	± 0.85
iviai	$(\pm 7\%)$	(±33%)	(±45%)	$(\pm 16\%)$

ABCD method for jet->lepton

ABCD method

- ✓ Assumption:no correlation between variables on two axes.
- \checkmark Define control regions B,C,D by reversing cuts.

$W\gamma\gamma$ signal yield

	Inclusiv	e	Exclusive		
	Electron channel	Muon channel	Electron channel	Muon channel	
	Njet	$_{\rm s} \ge 0$	N _{jet}	s = 0	
Data (N_{data})	47	110	15	53	
Fake photon background	$15 \pm 5(\text{stat.}) \pm 5(\text{syst.})$	$30 \pm 8(\text{stat.}) \pm 7(\text{syst.})$	$6 \pm 2(\text{stat.}) \pm 2(\text{syst.})$	$14 \pm 5(\text{stat.}) \pm 5(\text{syst.})$	
Fake lepton background	$1.5 \pm 0.6 (\text{stat.}) \pm 1.0 (\text{syst.})$	11 ± 4 (stat.) ± 5 (syst.)	0.2 ± 0.2 (stat.) ± 0.2 (syst.)	$6 \pm 3(\text{stat.}) \pm 3(\text{syst.})$	
$Z\gamma(\gamma)$	$11.2 \pm 1.1 (\text{stat.})$	$3.9 \pm 0.2 (\mathrm{stat.})$	$2.4 \pm 0.5 (\text{stat.})$	$2.8 \pm 0.2 (\text{stat.})$	
Other backgrounds	$2.2 \pm 0.6 (\mathrm{stat.})$	$6.7 \pm 2.0 (\mathrm{stat.})$	$0.3 \pm 0.1 (\mathrm{stat.})$	$1.1 \pm 0.3 (\text{stat.})$	
Backgrounds (N_{bkg})	29.9 ± 5.2 (stat.) ± 5.1 (syst.)	51.6 ± 9.2 (stat.) ± 8.6 (syst.)	8.9 ± 2.1 (stat.) ± 2.0 (syst.)	23.9 ± 5.8 (stat.) ± 5.8 (syst.)	
$\rm N_{sig} = \rm N_{data} - \rm N_{bkg}$	17.1 ± 8.6 (stat.) ± 5.1 (syst.)	$58.4 \pm 13.9(\text{stat.}) \pm 8.6(\text{syst.})$	6.1 ± 4.4 (stat.) ± 2.0 (syst.)	29.1 ± 9.3 (stat.) ± 5.8 (syst.)	

Fiducial cross section measurement

* Maximum-log likelihood approach used in the computation for individual channels and combination of the two

anomalous Quartic Gauge boson Coupling

11

The signal $(W_{\gamma\gamma})$ and background $(W_{\gamma j}, W_{j\gamma}, W_{jj})$ yields can be obtained by fitting eq. 53 to data, i.e. by maximizing the extended likelihood function defined as:

$$\mathcal{L}(\vec{\theta}|\vec{x}_{1},\vec{x}_{2},...) = P_{W_{tot}}(N) * \prod_{i=0}^{N} F_{tot}(\vec{x}_{i}|\vec{\theta}),$$
(54)

with respect to $\vec{\theta} = (W_{\gamma\gamma}, W_{\gamma j}, W_{j\gamma}, W_{jj})$ given the data \vec{x}_i . Here, $P_{W_{tot}}(N)$ is the poisson probability of observing N events when W_{tot} events were expected.

$$\psi^{i}(\boldsymbol{\mu},\boldsymbol{\theta}) = N_{\text{sig}}^{i}(\boldsymbol{\mu}) \left\{ 1 + \sum_{k} \sigma_{ik} \xi_{k} \right\} + N_{\text{bkg}} \left\{ 1 + \sum_{k} \sigma_{(i+m)k} \xi_{k} \right\},$$

$$L(N_{\rm ps}^{i},\boldsymbol{\theta}_{0};\boldsymbol{\mu},\boldsymbol{\theta}) = \prod_{i=1}^{m} {\rm Poisson}(N_{\rm ps}^{i},\boldsymbol{\psi}^{i}(\boldsymbol{\mu},\boldsymbol{\theta})) \times \frac{1}{(2\pi)^{m}} e^{-\frac{1}{2}\left((\boldsymbol{\theta}-\boldsymbol{\theta}_{0})\cdot C^{-1}\cdot(\boldsymbol{\theta}-\boldsymbol{\theta}_{0})\right)},\tag{40}$$

The profile likelihood ratio is:

$$\lambda(N_{\rm ps}^{i}, \boldsymbol{\theta}_{0}; \boldsymbol{\mu}_{\rm test}) = \frac{L(N_{\rm ps}, \boldsymbol{\theta}_{0}; \boldsymbol{\mu}_{\rm test}, \hat{\boldsymbol{\theta}})}{L(N_{\rm ps}, \boldsymbol{\theta}_{0}; \hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\theta}})}.$$
(41)

Here, the values μ and θ which maximizes the likelihood are denoted by $\hat{\mu}$ and $\hat{\theta}$, respectively and $\hat{\theta}$ denotes the value of θ that maximizes the likelihood for a fixed value of $\mu = \mu_{\text{test}}$. The pseudo experiment is considered less likely than actual if its profile likelihood ratio is smaller than that of actual data:

$$\lambda(N_{\rm ps}^i, \boldsymbol{\theta}_0; \boldsymbol{\mu}_{\rm test}) < \lambda(N_{\rm data}^i, \boldsymbol{0}; \boldsymbol{\mu}_{\rm test})$$
(42)

The TGCLim package uses 10000 pseudo experiments, corresponding to a statistical uncertainty of $\pm 0.2\%$ on a p-value of 5%.

A negative log-likelihood function can then be defined as follows

$$-\ln L(\sigma, \{x_k\}) = \sum_{i=1}^{2} -\ln\left(\frac{e^{-(N_s^i(\sigma, \{x_k\}) + N_b^i(\{x_k\}))} \times (N_s^i(\sigma, \{x_k\}) + N_b^i(\{x_k\}))^{N_{obs}^i}}{(N_{obs}^i)!}\right) + \sum_{k=1}^{n} \frac{x_k^2}{2}.$$
 (22)

Here, the expression inside the natural logarithm is essentially the Poisson probability that the expected number of signal and background events $(N_s^i(\sigma, \{x_k\}) + N_b^i(\{x_k\}))$ will produce the number of events observed in data (N_{obs}^i) in the *i*-*th* channel and after the full analysis selection has been applied. The last addend in Equation 22 is the term that takes care of the Gaussian constraints on the nuisance parameters x_k , previously defined in equations 20 and 21. Each systematic *k* is ascribed to an independent source (if two different systematic uncertainties considered here are correlated, their linear sum is used as the total

systematic uncertainty). A single random variable x_k is used over all channels in signal and background as the effect of each systematic is 100% correlated across channels and between signal and background components. It should be noted that, since each parameter x_k is gaussianly constrained, the number of degrees of freedom of the fit is unchanged.

To find the most probable value of σ , the log-likelihood function is thus minimized by letting all the nuisance parameters x_k free in the fit. The fit thus provides a total uncertainty, that contains both the statistical and all the systematic components. In order to obtain the systematic uncertainty breakdown, the procedure described in 7.3 is used. By subtracting in quadrature the systematic component to the total uncertainty from the fit, one then obtains the purely statistical uncertainty on the cross-section measurement. The minimization and error calculation is performed by using the Minuit package [34]. To calculate the cross section (fiducial or total) in a single channel *i*, we take the Poisson probability only in channel *i* rather than the product over all channels.