BEPCII BEAM FOR INTERNAL TARGET EXPERIMENTS

Gang XU

Institute of High Energy Physics
7th Hadron physics, AUG.,7,Duke Kunshan University

Outline

- Introduction to BEPCII machine
- Parameters for BEPCII colliding beam
- Position for the Internal target
- Energy for internal target experiments
- Beam effects from internal target
- Beam parameters for internal target experiments
- Next to do
- Summary

Introduction to BEPCII machine

Beam parameters for the colliding mode

Beam energy E	GeV	1.89	Energy spread $\sigma_{\!arepsilon}$		5.16×10 ⁻⁴
Circumference C	m	237.53	Momentum compact α_p		0.0235
Frequence f_0	MHz	1.2621	Bunch length σ_z	cm	1.5
Harmonic nymber h		396	Emittance $\varepsilon_x/\varepsilon_y$	nm∙rad	144/3.2
RF frequence f_{rf}	MHz	499.8	β_x^*/β_y^*	m	1/0.015
RF Voltage V_{rf}	MV	1.5	beam size σ_x^*/σ_y^*	μm	380/5.7
Energy loss/turn U_0	keV	121	Working points $v_x/v_y/v_s$		6.53/7.58/0.034
Damping time $\tau_x/\tau_y/\tau_E$	ms	25/25/12.5	Natural chromaticities v_x'/v_y'		-12.5/-25.5
Beam current I	A	0.91	Crossing angle ϕ_c	mrad	11×2
SR Power P	kW	110	Piwinski angle Φ	rad	0.435
Particles in total N		4.5×10 ¹²	Bunchspacing s_b	m	2.4
Bunch Number n_B		93	Beam-beam parameters ξ_x/ξ_y		0.04/0.04
Bunch current I_b	mA	9.8	Luminosity L	cm ⁻² s ⁻¹	$1.0 \times 10^{33} (0.85)$

North crossing region

Possible position for the Internal target

electron only:
 injection region of inner ring(west injection region)
 need re-arrange several magnets in the region

both electron and positron:
 only detector region(south IP)
 only after BESIII experiments

Internal target experiments (because the detector) have the directivity: it is different from colliding beam experiments (detector is symmetric about IP)

Injection region

Injection region

Beam energy

- Colliding ring: 1~2.3GeV
- SR ring 1~2.5GeV
- The electron and positron can not be switched in a short time because our power supply is not bipolar. Changing the polarity may take a couple of weeks.

Beam effects of internal target

- Life time decrease
 electron gas H2 Coulomb scattering: elastic,
 inelastic
 electron gas H2 nucleus elastic scattering
- Beam halo increase

Electron-Gas scattering

Inelastic

Scattering with $\ \ \,$ nucleus $\ \ \sigma_{A}$ Scattering with outer electrons $\ \ \, \sigma_{B}$

Elastic

Scattering with $nucleus \sigma_c$

Scattering with outer electrons $\sigma_D(\sigma_C >> \sigma_D)$

Inelastic scattering

Scattering with nucleus

$$\left(\frac{d\sigma}{d\epsilon}\right)_{A} = \alpha \frac{4Z^{2} r_{0}^{2}}{\epsilon} \left\{ \left[\frac{4}{3} \left(1 - \frac{\epsilon}{E} \right) + \frac{\epsilon^{2}}{E^{2}} \right] \left[\frac{\phi_{1}(0)}{4} - \frac{1}{3} \ln Z \right] + \left[\frac{1}{9} \left(1 - \frac{\epsilon}{E} \right) \right] \right\}$$

Scattering with outer electrons

$$\left(\frac{d\sigma}{d\epsilon}\right)_{B} = \alpha \frac{4Z r_0^2}{\epsilon} \left\{ \left[\frac{4}{3} \left(1 - \frac{\epsilon}{E} \right) + \frac{\epsilon^2}{E^2} \right] \left[\frac{\psi_1(0)}{4} - \frac{2}{3} \ln Z \right] + \left[\frac{1}{9} \left(1 - \frac{\epsilon}{E} \right) \right] \right\}$$

Elastic scattering σ_{C}

$$\frac{d\sigma}{d\Omega} = 4Z^2 r_e \frac{1}{(\theta^2 + \theta_{min}^2)^2} \left(\frac{m_e c}{\beta p}\right)^2$$

$$\theta_{min} \approx \alpha Z^{\frac{1}{3}}(\frac{m_e}{p})$$

$$\sigma = \frac{2\pi Z^2 r_0^2}{\gamma^2} \cdot \frac{\overline{\beta} \, \hat{\beta}}{H^2}$$

Typical value for BEPCII

- $\sigma_{A}^{\sim} 10^{-29}$
- $\sigma_{\rm B}^{\sim} 10^{-29}$
- $\sigma_{\rm C}^{\sim} 10^{-24}$
- Main effect of gas is from elastics scattering with nucleus

Beam lifetime

- For BEPCII, dynamic pressure is 10⁻⁹Torr consist of 10% N2(or CO) and 90% H2, the life time from gas scattering is about 10hrs, the main contribution come from N2(Z~7*2)
- For 10cm 10⁻⁴Torr H2 target, it is equivalent gas pressure increase to 10⁻⁴ * 10cm / 24000cm ~ 10⁻⁷Torr H2~10⁻⁸Torr N2~1hrs lifetime
- So even with internal gas target the beam will not lose immediately.

Halo issue

- Since beam still has a certain lifetime, and due to damping effect, the core of beam should be a Gaussian beam, and the halo could be simulated by Monte Carlo method.
- Similarly to lifetime issue, Halo issue is also considered the elastic scattering from nucleus
- Preliminary results: See nothing from accelerator view. Need help from experiment physicist or cooperation with them.

horizontal-halo

 $f[x]=N0*exp[-X2/2], Log[f[x]]=-x^2/2$

H2 pressure 10⁻⁴Torr, different turns

vertical-halo

H2 pressure 10⁻⁴Torr, different turns

longitudinal-halo

H2 pressure 10⁻⁴Torr, different turns

Beam parameters for internal target experiments

- In the previous simulation, the beam parameters except the beta function ($\beta_{x,y}^*$ are replaced by injection region value i.e. $\beta_x \sim \beta_y \sim 20$ m) are same as the parameters' table.
- Since all quadrupoles are independently powered, the beta functions at the target are tunable. Many other parameters are also tunable although the tuning range is different
- Some parameters need input from experiments
- The luminosity for internal target is depend on beam current and thickness of target. But it will be limited by detector capability including time resolution, background requirement(γ from beamstrahlung and e from halo), etc
- 900mA, 10^{15} A/cm², L \sim 5E33. In previous the thickness of target is 2 * 10^{13} A/cm², L \sim 10³²

Next to do

- Communication with experiment physicist get more input
- Cooperation with experiment to improve the halo simulation
- How about the radiation damage to the detector during BEPCII and BSRF operation?

Summary

- The possible positions where the internal target will be placed have been located for different experiments
- The target will reduce the beam lifetime
- The preliminary simulation for the halo have been made, further work is necessary
- Communication between accelerator and experiment people need enhance