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Question I: What matter is possible”? — Hadron spectrum
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Question lI: How is it constituted? — Hadron Structure
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Solve QCD: Generating functional
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Solve QCD: Generating functional
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Dyson-Schwinger Equations: Equation of motion of Green functions

Quantum Field Theory

Classical Mechanics

Principle of Least Action

I
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Eauations of Motion (EoM)

Euler-Lagrange Equation Dyson-Schwinger Equation




Dyson-Schwinger Equations: Equation of motion of Green functions

G. Eichmann, arXiv:0909.0703
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Classical Mechanics I Quantum Field Theory Quark propagator: Gluon propagator:
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Dyson-Schwinger Equations: Equations for mesons
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Dyson-Schwinger Equations: Equations for mesons
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Dyson-Schwinger Equations: Equations for mesons
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Dyson-Schwinger Equations: Equations for mesons
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Dyson-Schwinger Equations: Equations for mesons
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Dyson-Schwinger Equations: A systematic truncation

4+ Gluon propagator: Solve the DSE of gluon or Extract information
from lattice QCD. The dressing function of gluon has a mass scale
as that of quark.

4+ Quark-gluon vertex: Solve the WGTIs which come from the
Lagrangian symmetries (gauge, chiral, and Lorentz symmetries).
The dressed vertex is significantly modified by DCSB.

4+ Scattering kernel: Solve the color-singlet vector and axial-vector
WGTIs. The kernel preserves the chiral symmetry which makes
pion to play a twofold role: Bound-state and Goldstone boson.



Meson spectroscopy: From ground to radial excitation states

Let the quark-gluon vertex include both longitudinal and transverse parts:

Fu(pa q) = I‘;Ii( 7Q) +I‘E(p,Q)

then the spectrum from ground to radial excitation states can be well produced:
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this work 0.220 0.092 0.84 0.83 1.24 1.28 1.40
PDG - 0.093 0.50 0.78 1.26 1.30 1.45

TABLE I: The fitted spectrum and its comparison with PDG data (Full vertex, (Dw)/3 = 0.484 GeV, w = 0.55
GeV, n = 0.5 and £ = 1.15, in the chiral limit where pion is always massless).



Off-shell pion: Bound-state as a pole of Green function

The Dyson-Schwinger equation of the four-point Green function is written as

O O —O— —O— O O
= + K@
O O —O0— —O0— O O

Assuming that there is a bound state

O O
~ H + Regular term
O O

the wave function of the bound state has to satisfy the following condition
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Off-shell pion: Bound-state as a pole of Green function

The Dyson-Schwinger equation of the four-point Green function is written as

O O —O— —O— O O
= + K@
O O —O0— —O0— O O

Assuming that there is a bound state

O O
~ H + Regular term
O O

the wave function of the bound state has to satisfy the following condition
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4 The wave function of the on-shell bound state satisfies the Bethe-Salpeter equation.
4 The physical wave function must be normalized (elementary particle vs. bound state).
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Off-shell pion: Off-shell state decomposition of Green function

For any total momentum P, the BSE can be generalized as ( \; = 1 on-shell state)

Alv;) = K@ |v;) 110 |
The kernel can be decomposed 1.05 i
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‘D1.00 ‘

K® =3 Xilvi) (vl <

i i

with 0.95
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Accordingly, the four-point Green
function can be decomposed as
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Form factor: On-shell pion in the simplest approximation

The coupling between photon and meson is O —
described by the diagram: ’ f

A

QL=

The triangle diagram of the form factor (p. =P+ 2): 4 Q*F:(Q*) keeps increasing with @
increasing. The monotonic behavior
r.(Q) is inconsistent with the sum rules of
the form factor.

= A,u(P, Q) = 2P,uF(Q2)
4 The obtained form factor is almost

identical to the monopole behavior
of vector meson.

¥(P,) O T(P.)
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Form factor: Off-shell pion in the simplest approximation

115

— 4 With the virtuality increasing, the pion
QE has a smaller radius and becomes
;“0 more point-like.

<

£ 1.05 4 With the momentum increasing, the
-%_: difference of the form factor increases

(~ 10% for 6 virtuality in the medium
momentum region).
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How to formulate the form factor of bound
state in a more sophisticated form?

14



How to formulate the form factor of bound
state in a more sophisticated form?

|. Wavefunction of bound state

Il. Quark-photon vertex
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Form factor: Wavefunction of bound state — normalization condition

Introduce two functions depending on (P, Q) as

Q+(P7Q)=:{ ( ) ~ | | }: q+

NIy

_|_

g(P,Q)—:g ( ) —7 K<2>7 }: ¢ —

o | O

Then the difference between the two functions
g(P7 Q) = g+(P7 Q) - g—(P7 Q)

satisfies the following condition

p GPQ) 0
Q—0 QM 8PM
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Form factor: Wavefunction of bound state — normalization condition

Introduce two functions depending on (P, Q) as

voo-< [V ] [

NIy

_|_

g(P,Q):{ ( ) — | K@)i }: ¢ —

o | O

Then the difference between the two functions

g(P7 Q) = g-I—(P) Q) - g—(P7 Q)
satisfies the following condition
—1
. G(PQ) 9, o 1T B
& Q. 7{{3& <+> S ]} }Z_QP“

How to take advantage of the normalization condition?
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\
Form factor: Quark-photon vertex — current conservation

Inserting the color-singlet vector Ward identity

QMFM (q+ + %7Q+ - %) = S_l (Q—i— + %) — S_l <q+ — %)

into the normalization condition, we can have

Q(Pa Q) — QuAu(R Q)

o 16



Form factor: Quark-photon vertex — current conservation

Inserting the color-singlet vector Ward identity

QUFM (q+ + %7Q+ - %) = S_l (Q—i— + %) — S_l (q+ — %)

into the normalization condition, we can have
Q(P, Q) - QuAu(Py Q)
Then, A, has the following limit

- GPQ) . QMNP _0) =
321310 0, élinm 0, =N,(P,Q =0)=2P,

Eventually, the form factor can be defined asA (P, Q) = 2P, F(Q*) with F(Q =1

w<>
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Form factor: Quark-photon vertex — current conservation

Inserting the color-singlet vector Ward identity

QUFM (q+ + %7Q+ - %) = S_l (Q—i— + %) — S_l (q+ — %)

into the normalization condition, we can have
Q(P, Q) - QuAu(Py Q)
Then, A, has the following limit

- GPQ) . QMNP _0) =
321310 0, élinm 0, =N,(P,Q =0)=2P,

Eventually, the form factor can be defined asA (P, Q) = 2P, F(Q*) with F(Q*=0) =1

w<?:>

Numerical results are in progress...
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Summary

4 A systematic and self-consistent method to construct the gluon propagator, the
quark-gluon vertex, and the scattering kernel is summarized.

4 A model-independent scheme to define the off-shell bound state is proposed. A
demonstration in the simplest approximation is presented.

4 A general scheme to compute the form factor of bound state is proposed.

Outlook

€ With the most sophisticated truncation scheme to solve the DSEs, we can compute
the form factor of on-shell and off-shell pion and work with new data in JLab12GeV.

€ Using the diquark picture, proton can be reduced as a two-body problem. Then the
scheme can be adopted to study proton from factor.

17
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Gluon propagator:

> In Landau gauge (a fixed point of the
renormalization group):
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Gluon propagator:

Model the gluon propagator as two parts: Infrared + Ultraviolet. The former is an expansion
of delta function; The latter is a form of one-loop perturbative calculation.

872y F(5)
In[z+ (1+ s/AéCD)z]

~ 8m? 2
84(]() w%O i Le—kz/a)2 g(s) — %De—.\/(u +
2wt

J The gluon mass scale is typical values of lattice QCD in our parameter range:
Mg in [0.6, 0.8] GeV.
J The gluon mass scale is inversely proportional to the confinement length.
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Quark-Gluon Vertex: (Abelian) Ward-Green-Takahashi Identities

0 Gauge symmetry (vector current conservation): vector WGTI
Px)— P(x) +igalx)f(x),

iquLyu(k,p) = S~ (k) — S (p)

P(x) = P(x) —iga(x)f(x)

Q0 Chiral symmetry (axial-vector current conservation): axial-vector WGTI

W(x) — P(x) + igalx)y’ ¥(x), - e — == ,
) _ ' A quT (k,p) = S™H(E)ivs 4 ivsS™ (p) — 2imI's (k, p)
P(x) = P(x) +igalx)w(x)y,

; 21



Quark-Gluon Vertex: (Abelian) Ward-Green-Takahashi Identities

0 Gauge symmetry (vector current conservation): vector WGTI

Px)— P(x) +igalx)f(x),
iguLpu(k,p) = S™H(k) = S™H(p)

P(x) = P(x) —iga(x)f(x)

Q0 Chiral symmetry (axial-vector current conservation): axial-vector WGTI

W(x) — P(x) + igalx)y’ ¥(x), - e — == ,
) _ ' A quT (k,p) = S™H(E)ivs 4 ivsS™ (p) — 2imI's (k, p)
P(x) = P(x) +igalx)w(x)y,

0 Lorentz symmetry + (axial-)vector current conservation: transverse WGTIs

au vk, p) = qulu(k, p) = SN (P)ouy + 0, S ' (k)

Or$*1) = Otonaa(09°()) = = ;_ e” l‘.‘slj;'b“ (5 ¢ (x)). +2imIyy (K, p) + €5 0p rpA(k. p)
S = %(r“ o (SU)E = i(858.p — 85 8up); + A}, (k. p),
He, PRD, 8(;, 016004 (2009) quf k. p) —qu I (k.p)=S""(p)a;,, — 0,5 " (k)

+ tenpvp p (k. p)

+ VA, k. p), 02, = VsOuv

21



Quark-Gluon Vertex: (Abelian) Ward-Green-Takahashi Identities

0 Gauge symmetry (vector current conservation): vector WGTI

Px)— P(x) +igalx)f(x),
iguLpu(k,p) = S™H(k) = S™H(p)

P(x) = P(x) — iga(x)if(x)

Q0 Chiral symmetry (axial-vector current conservation): axial-vector WGTI

W(x) — P(x) + igalx)y’ ¥(x), e — ,
) i co g0 (k,p) = 871 (k)is + i75S* (p) — 2imLs (k, p)
P(x) = P(x) +igalx)w(x)y,

0 Lorentz symmetry + (axial-)vector current conservation: transverse WGTIs

qulv(k, p) —quluk, p) = S~ (P)ouw + 030 S 1 (k)

S vy — 8 BN ¢ . . ! vl 0d?) s , A

(5'/'(!)‘ (x) = ()I.mcnl/( ()d) "(x)) = — 5 ekt ‘S# v ((5(/) “(x)). + 2im1"uv(k, p)+ t}.g).uvpr;(k. p)
spinor 1 : olvector)s ‘-. “ " .

S = L (S = i3580 — 558, + ALk P,

au T k. p) = qu T . p) =57 (), — 07,57 ()
He, PRD, 80, 016004 (2009) 4t r,k. p)
rEapvpd p(K, p

>
+ VS,,(k, P, Opv = Vs50uv

The longitudinal and transverse WGTIs express
the vertex divergences and curls, respectively. V-& Vxo




Quark-Gluon Vertex: Solution of WGTIs

Define two projection tensors and contract them

with the transverse WGTIs,
1

1
Tllw = 55u11|>ﬁtu‘JﬁlD~ T,2“~ = Z€upvpYalp-

2

one can decouple the WGTlIs and obtain a group

of equations for the vector vertex:

Quilyu(k, p)=S"'(k)— S~ (p).

q-tt-I'k,p) =T, [S" (pog, — 05,5 ()]

+t2q- I'(k.p)+ T}, V1, (k. p).

q-ty- r(k' p) = T;zu.v[s—l(p)oﬁv - O'ZUS_](R)]

+y-tq-T'k.p)+Tr, Vi, k. p).

Qin et. al., PLB 722, 384 (2013)
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Quark-Gluon Vertex: Solution of WGTIs

Define two projection tensors and contract them
with the transverse WGTls,

1 1
T/l“e = Eé'u/urﬁtu(TﬁID- leu- = it‘fu/u'ﬁ Yadp-

one can decouple the WGTlIs and obtain a group
of equations for the vector vertex:

Quily(k, p) = STk — s (p).

q-tt-I'k,p)=Th,[S" (P03, — 05,5 (k)]

+t2q- I'(k.p)+ T,V (k. p).
q-ty-I'tk.p)=T: [N oy, —02,5 (k)]

+y-tq- Tk, p)+T5, Vi, (k. p).

They are a group of full-determinant linear equations.

Thus, a unique solution for the vector vertex is exposed:

I (k,p) =TRC(k,p) + T} (k,p) + )" (k,p).

Qin et. al., PLB 722, 384 (2013)
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Quark-Gluon Vertex: Solution of WGTIs

D_eflne two projection tensors and contract them Quilu(k, p)=S~"0k) — S~ (p).
with the transverse WGTls,
1 I q-tt-I'k,p)=T,,[S" (p)o,; k)
T/lll — ié'uuvﬁtu(wlﬂ Tﬁ‘_ = ig_tu,“.ﬂyuqﬁ_ ulz[ ul ]m ) ]
+tqr(k‘P)+T“pV |(k P)
one can decouple the WGTIs and obtain a group q-ty - I'k.p)=Tp, [T (P)ag, — 02,57 (k)]
of equations for the vector vertex: +y-tq-T'k.p)+Tr, Vi, k. p).
They are a group of full-determinant linear equations. Full BO T FP
: . ! " (k,p) =T"(k,p)+T,(k,p)+ 1" (k,p).
Thus, a unique solution for the vector vertex is exposed: | * (.p) = 7k p) + Ly (R p) 1,7 (o p)

¥ The quark propagator contributes to the longitudinal and S(p) =

transverse parts. The DCSB-related terms are highlighted. wep AR + B

1
Yp(x,y) = §[¢(X) +oW],

Ay
IBC(k,p) = 7,24 + t,f == _
o (kD) =74 +tut 2 A¢(x’y)=qb(x})<_§§(y)'
A Ay Ly
FE(k)p) = + ’YT 2 (f}/u [g f] - ZtTg) T Xg :Xp, _ q q2qu

+* The unknown high-order terms only contribute to the transverse part, i.e., the longitudinal part
has been completely determined by the quark propagator.

Qin et. al., PLB 722, 384 (2013)
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Scattering kernel: Color-singlet vector and axial-vector WGTIs

4+ The Bethe-Salpeter equation and the quark gap equation are written as
FaHB(k7 P) — P)/CI);IB + /’C(kzlm Q:I:)aa’,B//B[S(Q+)FH(Q7 P)S(Q—)]O/B’a
q

S (k) = Sy (k) + / Dy (k — q)1S(@)T (g B),

4+ The color-singlet axial-vector and vector WGTlIs are written as

P,TIs,(k, P)+ 2imI's(k, P)
iP, I, (k,P)

1<k )’L’Y5—|—Z’Y5S (k )7

S~
S™HEky) — ST (kD).

a 23



Scatteri

4 The Be

4 The col

ng kernel: Color-singlet vector and axial-vector WGTls

the-Salpeter equation and the quark gap equation are written as
—FH (k P) ’)/cljﬁ + /’C(k:taQ:I:)oza’,ﬁ’,B[S(Q+)FH(Q7P)S(Q—)]a’ﬁ’a
q

S (k) = Sy (k) + / Dy (k — q)1S(@)T (g B),

or-singlet axial-vector and vector WGTIs are written as

P,TIs,(k, P)+ 2imI's(k, P)
iP, I, (k,P)

1<k )’L’)/5—|—Z")/5S (k )7
Hky) = S7H(k-).

S™
S™

23



..
Scattering kernel: Color-singlet vector and axial-vector WGTIs

4+ The Bethe-Salpeter equation and the quark gap equation are written as
T l5(k, P) =os + /’C(kiaQi)aa’,B’B[S(QJr)FH(qvP)S(q—)]a’5’7
q

S‘:(k) = S (k) + /Dw(k — S (T (g, k),

4+ The color-singlet axial-vector and vector WGTlIs are written as

P.Ts,(k, P) + 2imDs(k, P) =S~
S~

iP, I, (k,P)

ey )iys +ivsSTHR-),
k) = S7H(R-).
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Scattering kernel: Color-singlet vector and axial-vector WGTIs

4+ The Bethe-Salpeter equation and the quark gap equation are written as
T l5(k, P) =os + /’C(kiaQi)aa’,B’B[S(QJr)FH(qvP)S(q—)]a’5’7
q

S‘:(k) = S (k) + /Dw(k — S (T (g, k),

4+ The color-singlet axial-vector and vector WGTlIs are written as

P.Ts,(k, P) + 2imDs(k, P) =S~
S-

iP, I, (k,P)

ey )iys +ivsSTHR-),
k) = S7H(R-).

4+ The kernel satisfies the following WGTIs: quark propagator + quark-gluon vertex

[ Koo s (S(an)ls™ ) - Vs = / Dy (I Py (g k) — S(q_)To(a—. ko),

/ Koot 3518 (@)[S™ (@ )7s + 15571 Vo = / Dy (k P (g k)15 — 758(q-) T (g k).
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..
Scattering kernel: An ansatz for the kernel

Assuming the scattering kernel has the following structure:

Koo ,p8(qx:kx)[S(q+) O S(g-)lap = =Dy (k — @)vuS(g4+) O S(g-)Tw(g-.k-)
+Dy(k — @)7uS(a+) O K (g, k)
+Dul/(k - Q)’VMS(Q-F) 5 O 5 K;(Q:t» k:l:)a

which has three terms including two unknown objects.

A 24
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Scattering kernel: An ansatz for the kernel

Assuming the scattering kernel has the following structure:

Koo ,p8(qx:kx)[S(q+) O S(g-)lap = =Dy (k — @)vuS(g4+) O S(g-)Tw(g-.k-)
+Dy(k — @)7uS(a+) O K (g, k)
+Dul/(k - Q)’VMS(Q-F) 5 O 5 K;(Q:t» k:l:)a

which has three terms including two unknown objects.

I, K K,

Ladder-like term

A 24



..
Scattering kernel: An ansatz for the kernel

Assuming the scattering kernel has the following structure:

Koo ,p8(qx:kx)[S(q+) O S(g-)lap = =Dy (k — @)vuS(g4+) O S(g-)Tw(g-.k-)
+Dy(k — @)7uS(a+) O K (g, k)
+Dul/(k - Q)’VMS(Q-F) 5 O 5 K:; (qztv k:l:)a

which has three terms including two unknown objects.

I, K K,

Ladder-like term Symmetry-rescuing term
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..
Scattering kernel: An ansatz for the kernel

Assuming the scattering kernel has the following structure:
Koo pp(qs, k+)[S(qr) O S(q-)larp = =Dy (k = )7uS(q1) O S(g-)Tw(g-,k-)

+D,(k — ). S(ay) O K (qe, ke)
+Dy (b = @)vuS(ar) 75 O s K (q+, k+),

which has three terms including two unknown objects.

Ladder-like term Symmetry-rescuing term

Inserting the assumed form of the kernel into its WGTlIs, we have

/DNVFYIJS"l(Fj — F;) = /DNV,YNS+ (S_T_l _ S:I)IC+ /DNV,YNS‘flf)% ’}/5IC
q q

/DMV’VMS—F (Fz—i—')’t') + 50, )| = /Dw/}’us—+ (54_-175 + 955~ )’Cff /DMV'Y;LS—F (7554_ +S_175)}C;
q q q

6 24



Scattering kernel: A solution with propagators and vertices

Since the integral WGTlIs are satisfied for any model of the gluon propagator, the
integral kernels must be identical, e.g.,

/x F(x)g(x) = / Fa)d(2)

Algebraic version of the WGTIs, which the kernel satisfies, are written as

I —T, = (ST = STHKS +5(51 — SZHvsK,,,
Ty + 95T, = (71 + sSZHOKE + (81 + S” M),

25



Scattering kernel: A solution with propagators and vertices

Since the integral WGTlIs are satisfied for any model of the gluon propagator, the
integral kernels must be identical, e.g.,

/x F(x)g(x) = / Fa)d(2)

Algebraic version of the WGTIs, which the kernel satisfies, are written as

I —T, = (ST = STHKS +5(51 — SZHvsK,,,
Ty + 95T, = (71 + sSZHOKE + (81 + S” M),

The solution is following:

Iy =0f +lis I =07 -T,
BZIZB+ BA:B+—B_
An =i(y - q4) Ay —i(y - q-)A-

KE = (2BsAx) "' [(Aa T BA)TZ £+ BsT2.
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Scattering kernel: with elements of quark gap equation

Rearranging the scattering kernel as the left- and right-hand forms

Kaar,pr(qe, k£)[S(q+) O S(g-)]ap == Dpu(k — @)7u5(q+) O S(g-)Tw(g—, k-)

+ Dy (kB = @)vuS (g4
+ Dy (kb — @)vuS (g4

we have the solution as

L —1pX
,CV :BZ Fl/’

N—r

)

%(QJr% O9s)

%(Q — 75 O 75)

K2 = (BgAa) 1 (BsTS — Bal'Y).

K (s, ke)
ICI/R(qu? k:i:)a

For a given Dirac structure, only one of KAL and K*R can survive, e.g.,

O =% 5 O s = —O

O=ns Y5 O = O

KAR
KAL

4+ The form of scattering kernel is simple.
4+ The kernel has no kinetic singularities.
4+ All channels share the same kernel.
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Scattering kernel: A demonstration

In Feynman diagrams, the scattering kernel can have many pieces:

Y
Y

A
A

As an example, the kernel is written as two parts (bare + ACM), phenomenologically:
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Meson spectroscopy: From ground to radial excitation states

Let the quark-gluon vertex includes both longitudinal and transverse parts:

T =Ly -k iy, ouluk,,
7-3 :O'/ka,
78 =3 L0yl k, /(1 - 11).

D, q) =TECp,q) + Tl (p,q) Th(p.q) = nApT) + EApTS +4(n+ &) Aur,

4+ The longitudinal part is the Ball-Chiu vertex—an exact piece from symmetries.
4+ The transverse part is the Anomalous Chromomagnetic Moment (ACM) vertex.

- En(q)
— B(Q)/fy

M(p) [GeV]

q[GeV]

To generate the quark mass scale which is comparable to that of LQCD, the coupling
strength can be so small that the Rainbow-ladder approximation has NO DCSB at all.
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