The 7th Workshop on Hadron Physics in China and Opportunities Worldwide Duke Kunshan University, Kunshan, China, August 3-7, 2017

Overview of Hadron Physics in the United States

Jian-Wei Qiu

Brookhaven National Laboratory

Acknowledgement:

Much of the materials presented here are from "QCD & Hadron Physics", Town Meetings of on-going Nuclear Physics Long Range Planning process in US [arXiv:1502.05728, ...]

Outline

- **Questions defining the field**
- □ Facilities and theoretical approaches
- □ Hadron structure at short distances
- □ Hadron structure at long distances
- □ Hadron spectroscopy
- **QCD** and nuclei
- □ Future opportunities EIC

Questions for QCD and hadron physics

□ What does QCD predict for the properties of hadrons?

□ What is the internal structure of hadrons?

How hadrons are emerged from quarks and gluons?

□ How do the nuclear forces arise from QCD?

□ What is the role of glue in all of these?

Without the glue, there would be no hadrons, no atomic nuclei, no human, ..., and no visible world!

The Challenge:

Probe hadron structure without "seeing" quarks and gluons directly?

Theoretical approaches – approximations

□ Effective field theory (EFT):

– Approximation at the Lagrangian level

Soft-collinear effective theory (SCET), Non-relativistic QCD (NRQCD), Heavy quark EFT, chiral EFT(s), ...

□ Other approximate approaches:

Light-cone perturbation theory, Dyson-Schwinger Equations (DSE), Constituent quark models, AdS/CFT correspondence, ... See Brodsky's talk

□ Lattice QCD:

- Approximation due to computer power

USQCD: hadron structure, hadron spectroscopy, nuclear structure, ...

USQCD – a collaboration of collaborations

Credit to M. Savage

□ Low-lying hadron mass spectrum:

S. Durr et al. Science 322, 1124 2008

Predictions with limited inputs

Predictions with limited inputs

□ Meson resonances:

Dudek et al, Phys.Rev. D88 (2013) 094505

Physics of nuclei from Lattice QCD

□ Magnetic moments:

S.R. Beane et al., Phys.Rev.Lett. 113 (2014) 252001

Theory at m_{π} = 806 MeV vs. the nature!

Nuclei are (nearly) collections of nucleons – shell model phenomenology!

See talks by Chen, Ji, Ma, Yuan, ...

Hadron physics landscape

 xp,k_{T}

X

□ Short distance structure:

- $\Leftrightarrow \text{ PDFs: } q(x), \Delta q(x), \overline{q}(x), \Delta \overline{q}(x), g(x), \Delta g(x) \text{ } \textit{Proton spin, } \ldots$
- \diamond TMDs: $f(x, k_T)$ Confined motion, Sivers sign change, ...
- \Rightarrow GPDs: $\widetilde{f}(x, b_T)$ Spatial distribution, quark radius, gluon radiius, ...
 - $x \rightarrow 1$: Hadron's small configuration confinement sensitive, ...
 - $x \rightarrow 0$: High density of gluons condensed matter of QCD, CGC, ...

Hadron physics landscape

 $xp,k_{\rm T}$

Х

□ Short distance structure:

- $\Leftrightarrow \mathsf{PDFs:} \ q(x), \Delta q(x), \overline{q}(x), \Delta \overline{q}(x), g(x), \Delta g(x) \text{ Proton spin, } \dots \ \widehat{q}(x), \Delta q(x), \Delta$
- \diamond TMDs: $f(x, k_T)$ Confined motion, Sivers sign change, ... \swarrow
- \Leftrightarrow GPDs: $\widetilde{f}(x, b_T)$ Spatial distribution, quark radius, gluon radiius, ...
 - $x \rightarrow 1$: Hadron's small configuration confinement sensitive, ...
 - $x \rightarrow 0$: High density of gluons condensed matter of QCD, CGC, ...

□ Long distance structure:

- ♦ Form factors: $G_E(Q^2), G_M(Q^2), F_{\pi}(Q^2), ...$ Proton radius, structure, ...
- \diamond Transition form factors: $F_{\gamma^*\gamma\pi^0}(Q^2), F_{\gamma NN^*}(Q^2),$ Distribution amplitude, ...
- \diamond Spectroscopy: N^*, X, Y, Z, \dots Fundamentals of QCD bound states?

Hadron physics landscape

□ Short distance structure:

- $\Leftrightarrow \text{ PDFs: } q(x), \Delta q(x), \overline{q}(x), \Delta \overline{q}(x), g(x), \Delta g(x) \text{ } \textit{Proton spin, } \ldots$
- \diamond TMDs: $f(x, k_T)$ Confined motion, Sivers sign change, ...
- \Rightarrow GPDs: $\widetilde{f}(x, b_T)$ Spatial distribution, quark radius, gluon radiius, ...
 - $x \rightarrow 1$: Hadron's small configuration confinement sensitive, ...
 - $x \rightarrow 0$: High density of gluons condensed matter of QCD, CGC, ...

□ Long distance structure:

- ♦ Form factors: $G_E(Q^2), G_M(Q^2), F_{\pi}(Q^2), ...$ Proton radius, structure, ...
- \diamond Transition form factors: $F_{\gamma^*\gamma\pi^0}(Q^2), F_{\gamma NN^*}(Q^2),$ Distribution amplitude, ...
- \diamond Spectroscopy: $N^*, X, Y, Z, ...$ Fundamentals of QCD bound states?

Nuclear medium modifications:

- ♦ EMC effect, short-range correlation, …
- ♦ Small x shadowing, saturation, …

Nuclear structure if we only see partons?

US facilities

– high energy polarized proton beams Polarized proton suns Vs = 200 GeV

roton luminosity L [pb⁻¹]

ntegrated polarized p

\diamond Longitudinal polarization:

 $A_{LL}^{\text{Jet}}(\text{STAR}) + A_{LL}^{\text{Hadron}}(\text{PHENIX}) \to \Delta G(x) > 0$ $A_{L}^{W^{\pm}}(\sqrt{s} \ge 500 \text{ GeV}) \to \Delta \overline{q}(x) \text{ Proton spin, ...}$

♦ Trasverse polarization:

 $\begin{array}{c} A_N^{\mathrm{Hadron, Jet, \dots}} \to \\ A_N^{W^{\pm}, \gamma^*} \to \end{array}$

QCD quantum correlation, confined parton motion, ..., Sivers' sign change, ...

US facilities

– high energy polarized proton beams Polarized proton runs Vs = 200 GeV

minosity L [pb⁻¹]

larized

ntegrated pol

♦ Longitudinal polarization: $A_{LL}^{\text{Jet}}(\text{STAR}) + A_{LL}^{\text{Hadron}}(\text{PHENIX}) \rightarrow \Delta G(x) > 0$ $A_{L}^{W^{\pm}}(\sqrt{s} \ge 500 \text{ GeV}) \rightarrow \Delta \overline{q}(x)$ Proton spin, ...

♦ Trasverse polarization:

 $\begin{array}{c} A_N^{\mathrm{Hadron, Jet, \dots}} \to \\ A_N^{W^{\pm}, \gamma^*} \to \end{array}$

QCD quantum correlation, confined parton motion, ..., Sivers' sign change, ...

Fermilab – high intensity proton beam

♦ **E906:**
$$p, d, A \text{ targets} \to V(\gamma^*, J/\psi, \Upsilon) \to \mu^+ \mu^-$$

Hadron's sea structure, more

US facilities

– high energy polarized proton beams Polarized proton starts Vs = 200 GeV

US facilities – JLab12

Meson spectroscopy – JLab12

□ Photoproduction – look for exotic states:

Simple (0++) exchange with L=1: 0+-, 1+-, 2+-Simple (0⁻⁺) exchange with L=1: $0^{-}, 1^{-}, 2^{-}$ Simple (1^{--}) exchange with L=1: $0^{+}, 1^{-+}, 2^{-+}$

forward drift

chambers

Nucleon form factors – JLab12

Charged pion form factor – JLab12

□ Transition from non-perturbative to perturbative regime:

♦ Models from relativistic CQM to pQCD calculations
♦ pQCD makes an exact prediction for Q² → ∞

EMC effects and SRCs – JLab12

□ Inclusive nuclear DIS cross section at x > 1:

Polarized p+A at RHIC – saturation physics

Helicity contribution to proton's spin (RHIC)

Helicity contribution to proton's spin (JLab)

PDFs at large x

\Box Testing ground for hadron structure at $x \rightarrow 1$:

PDFs at large x

\Box Testing ground for hadron structure at $x \rightarrow 1$:

 $\diamond d/u \rightarrow 1/2$

SU(6) Spin-flavor symmetry

 $\diamond d/u \rightarrow 0$

Scalar diquark dominance

 $\diamond \Delta u/u \rightarrow 2/3$ $\Delta d/d \rightarrow -1/3$

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow -1/3$

 $\diamond d/u \rightarrow 1/5$

pQCD power counting

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow 1$

 $\Rightarrow \ d/u \rightarrow \frac{4\mu_n^2/\mu_p^2 - 1}{4 - \mu_n^2/\mu_n^2} \ \ {\rm Local \, quark-hadron} \ \ {\rm der a } \ {$

duality

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow 1$

 ≈ 0.42

Upcoming experiments – JLab12

□ NSAC milestone HP14 (2018):

Plus many more JLab experiments:

E12-06-110 (Hall C on ³He), E12-06-122 (Hall A on ³He), E12-06-109 (CLAS on NH₃, ND₃), ... and Fermilab E906, ... Plus complementary Lattic

Plus complementary Lattice QCD effort

Lattice calculations of hadron structure

Lattice QCD

X-dep distributions

Ji. et al.,

arXiv:1305.1539

1404.6680

□ New ideas – from quasi-PDFs (lattice calculable) to PDFs:

 \diamond High *P*_z effective field theory approach:

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$

QCD colline \diamond

 $\tilde{q}(x,\mu^2,P_z)$

like \sqrt{s}

D collinear factorization approach:
$$x, \mu^2, P_z) = \sum_f \int_0^1 \frac{dy}{y} C_f\left(\frac{x}{y}, \frac{\mu^2}{\bar{\mu}^2}, P_z\right) f(y, \bar{\mu}^2) + O\left(\frac{1}{\mu^2}\right)$$
Ma and Qiu,
arXiv:1404.6860
1412.2688
Ishikawa, Qiu, Yoshida,ParameterFactorizationHigh twist

Power corrections

Unmatched potential: PDFs of proton, neutron, pion, ..., and TMDs and GPDs, ...

scale

The Future: TMDs, GPDs, and OAM

- Theoretical control of Q²-evolution of TMDs, and its sensitivity on Non-perturbative input TMDs – confined parton motion in hadrons
- Any connection to orbital angular momentum?

Summary

□ After 40 years, we have learned a lot of QCD dynamics, especially, at very short-distance - less than 0.1 fm

There still a long-way to go to completely understand the hadron physics from QCD

□ GPDs and TMDs are fundamental, and measurable with controlled approximation. They are necessary for getting a comprehensive 3D ``view'' of hadron's internal structure

Nuclear physics community in the US has a rigorous program to pursue the physics of hadrons, with complementary facilities: RHIC, Fermilab, JLab12, EIC

Thank you!

Backup Slides

Quark and gluon helicity contribution

QCD Factorization at the leading power:

Link the helicity distributions to the longitudinal spin asymmetries

Roberts et al. 2013

uark helicity at x ~ 1:						Roberts et al, 2013 See also Peng's tall	
	$\frac{F_2^n}{F_2^p}$	<u>d</u> u	$\frac{\Delta d}{\Delta u}$	$\frac{\Delta u}{u}$	$\frac{\Delta d}{d}$	A_1^n	A_1^p
DSE-1	0.49	0.28	-0.11	0.65	-0.26	0.17	0.59
DSE-2	0.41	0.18	-0.07	0.88	-0.33	0.34	0.88
$0^{+}_{[ud]}$	$\frac{1}{4}$	0	0	1	0	1	1
NJL	0.43	0.20	-0.06	0.80	-0.25	0.35	0.77
SU(6)	<u>2</u> 3	$\frac{1}{2}$	$-\frac{1}{4}$	<u>2</u> 3	$-\frac{1}{3}$	0	<u>5</u> 9
CQM	$\frac{1}{4}$	0	0	1	$-\frac{1}{3}$	1	1
pQCD	<u>3</u> 7	$\frac{1}{5}$	$\frac{1}{5}$	1	1	1	1

Extremely sensitive to the nucleon's partonic structure and internal spin correlation!

Big difference between two approximations of the DSE treatments

The Future: TMDs, GPDs, and OAM

Lajoie, 2014

□ Sivers Effect – from fsPHENIX:

□ Theory:

TMD approach vs high twist collinear approach, and parton correlation!

The Future: TMDs, GPDs, and OAM

□ SoLId at JLab:

 \diamond Transversity:

Chiral-odd, no coupling to gluon, Transverse spin flip, Least known PDFs...

 \diamond Tensor charges:

Fundamental, many predictions

1

See talk by Chen

SoLID projections Extractions from existing data

LQCD

DSE

0

Models

0.5 -0.5 \diamond Pretzelosity: TMD with \triangle L=2 (L=0 an L=2 interference)

Model relates it to OAM