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Many Channels

Di-bosons:  ATALS  WZ 3.4, WW 2.6, ZZ 2.9 sigma; 
(sigma 2.5 sigma);  

VH channel: CMS 2 sigma

Di-leptons: tiny bumps around 1~2 sigma.

Di-jets: CMS 1~ 2 sigma

It is interesting to see small “bumps” in 
many channels around 2 TeV. 
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New game begin?

True excitement haven’t begun: (stay 
stunned as in Adam’s blog) 

However, there might be some thing at 2 TeV 
that we can think about; What if ???

Therefore, I believe it is not very meaningful to 
consider a global fit on ALL excess right now 
since some actually conflict with others. Let’s 
think about SOME possible excesses right now. 

What is our attitude?
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CCWZ

Di-bosons:  Without distinguish the W, Z (10 GeV 
errors);  Excess 

VH channel: Excess

Di-leptons: very small bumps around 2 sigma. Excess or 
Constraint

Di-jets: CMS ~ 2 sigma (too large to be consistent with 
Di-leptons) Constraint
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Explanation with EWSB

Let’s consider a spin-one SU(2)_L weak triplet 
resonance, which is actually from many models 

explain the EWSB with custodial symmetry;

It is natural to think about the resonance here has something 
to do with EWSB since it is so close related to W/Z

However, the 1st obvious obscure is the S 
parameter and EWPT
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EWPT

S =
4πv2

m2
ρ

= 0.2

Multi-moose or RS model usually 
has a factor more than one S

T

SU(2)1 × SU(2)2 × U(1)X

SU(2)L × U(1)Y

∆

Kinetic term of    and 
Higgs gives you S

∆

Marginal 
fit
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Why reject marginal fit?

Weak triplet vector meson alone can not trigger 
EWSB, we need other sources.

Those other sources usually gives you more positive 
S and other EW precision deviations: Like a 
composite Higgs, top partner, etc.

If one requires more room to fit the diboson excess, 
that may gives extra EW precision deviations: partially 
composite fermions.

There are actually more reasons to 
consider beyond this marginal fit.
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Solution

With axial vector mesons transform as the 
(2,2) of (SU(2)_L, SU(2)_R)

Small positive S (can be negative)

Arbitrary rho fermion couplings (split the lepton 
quark couplings)

Small or zero shift on the couplings between partially 
composite fermion and SM W/Z gauge bosons
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Higgs as pNGB
Minimal Composite Higgs Model (MCHM)

E

-   Λ

-   f SO(5)/SO(4)

Loop corrections of elementary SM fields, will generate a 
potential for the modulus of the NGB 4-vector, which 
will get a vev:             . 

vacuum is arbitrary and one can suitably set θ = 0 (so that SO(4)� = SO(4)). With this
choice, the four NG bosons of SO(5)/SO(4) transform as a a complex doublet of the gauged
SU(2)L, and none of them is eaten. Loop corrections will however generate a potential for
the NG bosons and can lead to a non-vanishing vev for the modulus of the NG 4-vector:
�π� �= 0 (see Fig. 1). As a result, SO(4) is spontaneously broken to (a custodial) SO(3), and
three of the original NG bosons are eaten. The field Φ can be recast in the form of eq.(12)
by identifying θ = �π�/f and the field h(x) as the fluctuation of the modulus of the NG
4-vector around its vev. One can thus think of the electroweak symmetry breaking as a two-
step process: a first spontaneous breaking, SO(5) → SO(4), occurs at the scale f , giving
rise to an SU(2)L doublet of NG bosons; at a lower scale v = f sin(�π�/f) ≡ f sin θ the
electroweak symmetry is spontaneously broken, SO(4) → SO(3), leaving an approximate
custodial symmetry.

A simple way to derive the SO(5)/SO(4) chiral lagrangian at O(p2) is by adopting the
basis of fields {χi, h} and making use eq.(12). One has (see Appendix C):

L(2) =
f 2

2
(DµΦ)

T (DµΦ)
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1

2
(∂µh)

2 +
f 2

4
Tr
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(DµΣ)
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h(x)

f
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,

(14)

where Σ ≡ exp(iσiχi/v), and σi are the Pauli matrices. No covariant derivative acts on h,
as one could have anticipated by noticing that the fluctuations parametrized by this field
are SO(4)�-invariant. Choosing the unitary gauge, Σ = 1, and expanding around θ, one
immediately finds the relation m2

W = (g2f 2 sin2 θ)/4, which determines the value of the
electroweak scale v = f sin θ, and the value of the Higgs couplings to the vector bosons.

The same expression for L(2) can be obtained by using the CCWZ formalism. At the
level of two derivatives, there is only one operator which can be formed:

L(2) =
f 2

4
Tr[dµd

µ] . (15)

The equivalence with eq.(14) is proved in Appendix C, but it can be quickly checked, for
example, by monitoring the mass terms for the vector bosons. In the case of eq.(15) these
arise from the component of the gauge fields along the broken generators contained in dµ.
From eq.(1) and (9), after setting Π(x) =

√
2T â(θ)πâ(x)/f , one finds:

d
â
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Figure 7: 1-loop contribution of the SM gauge fields to the Higgs potential. A grey blob

represents the strong dynamics encoded by the form factor Π1.

section 3.3, as we are now ready to derive the Coleman-Weinberg potential for the

composite Higgs.

We will concentrate on the contribution from the SU(2)L gauge fields, neglecting the

smaller correction from hypercharge. The contribution from fermions will be derived

in section 3.4. The 1-loop Coleman-Weinberg potential resums the class of diagrams

in Fig. 7. From the effective action (48), after the addition of the gauge-fixing term

LGF = − 1

2g2ζ

�
∂µ

A
aL
µ

�2
, (58)

it is easy to derive the Feynman rules for the gauge propagator and vertex:
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2
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where (PL)µν = qµqν/q
2
is the longitudinal projector. Resumming the series of 1-loop

diagrams of Fig. 7 then leads to the potential:
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where Q2
= −q2 is the Euclidean momentum. The factor 9 originates from the sum

over three Lorentz polarizations and three SU(2)L flavors.

Let us argue on the behavior of the form factors at large Euclidean momentum and

on the convergence of the integral. We have seen that Π0 is related to the product of

two SO(4) currents

�Ja
µ(q)J

a
ν (−q)� = Π0(q

2
)(PT )µν (60)

where, we recall, the notation �O1O2� denotes the vacuum expectation of the time-

ordered product of the operators O1 and O2. The form factor Π1, on the other hand,

24

At tree level one can set ! = 0  "  SO(4)’= SO(4)

-  v = f sin(!π"/f)
SO(4)/SO(3)

This generates a vacuum misalignment as  ! = !π"/f .

EWSB arises from vacuum misalignment. 

All the explicit breaking of SO(5) comes from the
SM gauging and fermions

sabato 29 ottobre 2011

Consider the minimal group G/H

SO(5) SO(4) ∼ SU(2)L × SU(2)R SU(2)L × U(1)Y f > v (0.1)

1

at the scale          .

To have a naturally light Higgs, we can assume it to emerge as a pseudo NGB from the 
spontaneous breaking of a bigger global symmetry of a strongly interacting sector:
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Λ ∼ 4πf (4)

1

Minimal Composite Higgs Model (MCHM)

variables that transform as representations of the local symmetryH) can thus be constructed

from the field strength of the external gauge fields as follows:
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−
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â
+ (f

+
µν)

a
T

a ≡ f
−
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+
µν

f
±
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†
(Π, g) .

(10)

2.1 The SO(5)/SO(4) chiral lagrangian at O(p2) and its accidental
symmetries

The lagrangian of composite Higgs models based on the SO(5)/SO(4) coset can be easily

constructed by means of the CCWZ covariant variables defined above. In this case there are

four NG bosons associated to the breaking SO(5) → SO(4), πâ
with â = 1, 2, 3, 4, which live

on the four-sphere (SO(5)/SO(4) = S4
). They transform as a 4 of SO(4), or equivalently

as a (2,2) of SU(2)×SU(2) ∼ SO(4). The SM electroweak vector bosons gauge a subgroup

SU(2)L × U(1)Y ⊂ SU(2)L × SU(2)R ∼ SO(4)
�
contained in SO(5), such that Y = T3R.

3

It is possible to parametrize the orientation of the ‘gauged’ SO(4)
�
(i.e. that which contains

the SM group SU(2)L × U(1)Y ) with respect to the linearly-realized global SO(4) by an

angle θ. For example, by representing the vacuum as a 5-dimensional unit vector Φ0, and

letting the gauged SO(4)
�
act on the first four entries, one has Φ0 = (0, 0, 0, sin θ, cos θ). The

gauged SO(4)
�
thus identifies a preferred direction inside SO(5), and the angle θ precisely

measures the misalignment of the vacuum with respect to it, see Fig. 1. The field

Φ = U(x)Φ0 = e
i
√
2T â(θ)πâ(x)/fΦ0 =





π̂1
sin(π/f)

π̂2
sin(π/f)

π̂3
sin(π/f)

π̂4
sin(π/f) cos θ + cos(π/f) sin θ

−π̂4
sin(π/f) sin θ + cos(π/f) cos θ




(11)

parametrizes the massless excitations around the vacuum, where we have defined π =

�
(πâ)2

and π̂â
= πâ/π. 4

Here and in the following we denote the generators of SO(5) → SO(4) as

T a,â
= T a,â

(θ), which are related to those of SO(5) → SO(4)
�
, where SO(4)

�
is the gauged

subgroup, by a rotation of an angle θ, see Appendix A.

For θ = 0 the SM electroweak group is unbroken, being contained in the preserved global

SO(4), and the four NG bosons form a complex doublet of SU(2)L. For θ �= 0, on the other

hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,

so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one

is identified with the Higgs boson. This can be easily seen as follows. Since the gauged

SO(4)
�
acts on the first four entries of the field Φ in eq.(11), these can be conveniently

3In realistic models there is a larger pattern of global symmetries, SO(5)×U(1)X → SO(4)×U(1)X , and
hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
no role in the following discussion and will be omitted for simplicity.

4The factor
√
2 in the exponent of eq.(11) has been introduced to match the standard normalization

adopted in the literature. It can be absorbed by a redefinition of f .

3

There are four NGBs:       , with                    .
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle θ with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment θ. Even assuming no misalignment at the tree
level, a non-vanishing θ = �π�/f is generated at the loop level after the NG 4-vector acquires a vev
�π� �= 0 (black curve).

rewritten as a modulus, φ4, times a unit 4-vector. The unit vector can in turn be expressed

as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase

exp(iχi
(x)Ai/v), where Ai

are SO(4)
�/SO(3) generators. Considering that ||Φ|| = 1 implies

φ4 ≤ 1, and that in the vacuum �φ4� = sin θ, it is convenient to define φ4(x) ≡ sin(θ+h(x)/f).

Hence,
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. (12)

By construction, the three χi
are the fields eaten after the SU(2)L×U(1)Y external gauging

is turned on, while h, which parametrizes SO(4)
�
-invariant fluctuations around the vacuum θ,

remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.

By equating (11) and (12) one obtains the (non-linear) field redefinition that relates the four

NG bosons of SO(5)/SO(4), πâ
, and the ‘physical’ degrees of freedom, χi
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In realistic models, the value of θ is dynamically determined, and the breaking of the
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For θ = 0 the SM electroweak group is unbroken, being contained in the preserved global

SO(4), and the four NG bosons form a complex doublet of SU(2)L. For θ �= 0, on the other

hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,

so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one

is identified with the Higgs boson. This can be easily seen as follows. Since the gauged

SO(4)
�
acts on the first four entries of the field Φ in eq.(11), these can be conveniently

3In realistic models there is a larger pattern of global symmetries, SO(5)×U(1)X → SO(4)×U(1)X , and
hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
no role in the following discussion and will be omitted for simplicity.
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2 in the exponent of eq.(11) has been introduced to match the standard normalization

adopted in the literature. It can be absorbed by a redefinition of f .
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In the following we will neglect the additional 
U(1)X as the NGB are neutral.
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2T â(θ)πâ(x)/fΦ0 =





π̂1
sin(π/f)

π̂2
sin(π/f)

π̂3
sin(π/f)

π̂4
sin(π/f) cos θ + cos(π/f) sin θ

−π̂4
sin(π/f) sin θ + cos(π/f) cos θ




(11)

parametrizes the massless excitations around the vacuum, where we have defined π =

�
(πâ)2
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(θ), which are related to those of SO(5) → SO(4)
�
, where SO(4)

�
is the gauged

subgroup, by a rotation of an angle θ, see Appendix A.

For θ = 0 the SM electroweak group is unbroken, being contained in the preserved global

SO(4), and the four NG bosons form a complex doublet of SU(2)L. For θ �= 0, on the other

hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,

so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one

is identified with the Higgs boson. This can be easily seen as follows. Since the gauged

SO(4)
�
acts on the first four entries of the field Φ in eq.(11), these can be conveniently

3In realistic models there is a larger pattern of global symmetries, SO(5)×U(1)X → SO(4)×U(1)X , and
hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
no role in the following discussion and will be omitted for simplicity.

4The factor
√
2 in the exponent of eq.(11) has been introduced to match the standard normalization

adopted in the literature. It can be absorbed by a redefinition of f .

3

gauged SO(4)!

θ

tru
e 

va
cu

um

Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle θ with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment θ. Even assuming no misalignment at the tree
level, a non-vanishing θ = �π�/f is generated at the loop level after the NG 4-vector acquires a vev
�π� �= 0 (black curve).

rewritten as a modulus, φ4, times a unit 4-vector. The unit vector can in turn be expressed

as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase

exp(iχi
(x)Ai/v), where Ai
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By construction, the three χi
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�
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remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle θ with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment θ. Even assuming no misalignment at the tree
level, a non-vanishing θ = �π�/f is generated at the loop level after the NG 4-vector acquires a vev
�π� �= 0 (black curve).
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2T â(θ)πâ(x)/fΦ0 =





π̂1
sin(π/f)

π̂2
sin(π/f)

π̂3
sin(π/f)

π̂4
sin(π/f) cos θ + cos(π/f) sin θ

−π̂4
sin(π/f) sin θ + cos(π/f) cos θ




(11)

parametrizes the massless excitations around the vacuum, where we have defined π =

�
(πâ)2
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(πâ)2

and π̂â
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle θ with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment θ. Even assuming no misalignment at the tree
level, a non-vanishing θ = �π�/f is generated at the loop level after the NG 4-vector acquires a vev
�π� �= 0 (black curve).

rewritten as a modulus, φ4, times a unit 4-vector. The unit vector can in turn be expressed

as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase

exp(iχi
(x)Ai/v), where Ai

are SO(4)
�/SO(3) generators. Considering that ||Φ|| = 1 implies
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By construction, the three χi
are the fields eaten after the SU(2)L×U(1)Y external gauging

is turned on, while h, which parametrizes SO(4)
�
-invariant fluctuations around the vacuum θ,

remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.

By equating (11) and (12) one obtains the (non-linear) field redefinition that relates the four

NG bosons of SO(5)/SO(4), πâ
, and the ‘physical’ degrees of freedom, χi

, h:

sin(θ + h(x)/f) χ̂i
(x) sin(χ(x)/v) = π̂i

(x) sin(π(x)/f), i = 1, 2, 3

cos(θ + h(x)/f) = cos(π(x)/f) cos θ − π̂4
(x) sin(π(x)/f) sin θ ,
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where χ ≡
�
(χi)2, χ̂i ≡ χi/χ.

In realistic models, the value of θ is dynamically determined, and the breaking of the

electroweak symmetry can be seen as the result of a vacuum misalignment. Another point

of view, however, is possible and sometimes useful. If all the explicit breaking of the global

SO(5) comes from the SU(2)L × U(1)Y external gauging and from the couplings of other

elementary fields (in particular the SM fermions), then at tree level the orientation of the
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The SM electroweak bosons gauge a subgroup of SO(5) ! U(1)X:

SU(2)L ! U(1)Y ! SU(2)L ! SU(2)R ! U(1)X ~ SO(4)’ ! U(1)X 

variables that transform as representations of the local symmetryH) can thus be constructed

from the field strength of the external gauge fields as follows:
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+
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±
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µν(Π)h
†
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(10)

2.1 The SO(5)/SO(4) chiral lagrangian at O(p2) and its accidental
symmetries

The lagrangian of composite Higgs models based on the SO(5)/SO(4) coset can be easily

constructed by means of the CCWZ covariant variables defined above. In this case there are

four NG bosons associated to the breaking SO(5) → SO(4), πâ
with â = 1, 2, 3, 4, which live

on the four-sphere (SO(5)/SO(4) = S4
). They transform as a 4 of SO(4), or equivalently

as a (2,2) of SU(2)×SU(2) ∼ SO(4). The SM electroweak vector bosons gauge a subgroup

SU(2)L × U(1)Y ⊂ SU(2)L × SU(2)R ∼ SO(4)
�
contained in SO(5), such that Y = T3R.

3

It is possible to parametrize the orientation of the ‘gauged’ SO(4)
�
(i.e. that which contains

the SM group SU(2)L × U(1)Y ) with respect to the linearly-realized global SO(4) by an

angle θ. For example, by representing the vacuum as a 5-dimensional unit vector Φ0, and

letting the gauged SO(4)
�
act on the first four entries, one has Φ0 = (0, 0, 0, sin θ, cos θ). The

gauged SO(4)
�
thus identifies a preferred direction inside SO(5), and the angle θ precisely

measures the misalignment of the vacuum with respect to it, see Fig. 1. The field

Φ = U(x)Φ0 = e
i
√
2T â(θ)πâ(x)/fΦ0 =





π̂1
sin(π/f)

π̂2
sin(π/f)

π̂3
sin(π/f)

π̂4
sin(π/f) cos θ + cos(π/f) sin θ

−π̂4
sin(π/f) sin θ + cos(π/f) cos θ




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parametrizes the massless excitations around the vacuum, where we have defined π =

�
(πâ)2

and π̂â
= πâ/π. 4

Here and in the following we denote the generators of SO(5) → SO(4) as

T a,â
= T a,â

(θ), which are related to those of SO(5) → SO(4)
�
, where SO(4)

�
is the gauged

subgroup, by a rotation of an angle θ, see Appendix A.

For θ = 0 the SM electroweak group is unbroken, being contained in the preserved global

SO(4), and the four NG bosons form a complex doublet of SU(2)L. For θ �= 0, on the other

hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,

so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one

is identified with the Higgs boson. This can be easily seen as follows. Since the gauged

SO(4)
�
acts on the first four entries of the field Φ in eq.(11), these can be conveniently

3In realistic models there is a larger pattern of global symmetries, SO(5)×U(1)X → SO(4)×U(1)X , and
hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
no role in the following discussion and will be omitted for simplicity.

4The factor
√
2 in the exponent of eq.(11) has been introduced to match the standard normalization

adopted in the literature. It can be absorbed by a redefinition of f .

3

The hypercharge is defined as

In the following we will neglect the additional 
U(1)X as the NGB are neutral.
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so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one

is identified with the Higgs boson. This can be easily seen as follows. Since the gauged

SO(4)
�
acts on the first four entries of the field Φ in eq.(11), these can be conveniently

3In realistic models there is a larger pattern of global symmetries, SO(5)×U(1)X → SO(4)×U(1)X , and
hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
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(θ), which are related to those of SO(5) → SO(4)
�
, where SO(4)

�
is the gauged

subgroup, by a rotation of an angle θ, see Appendix A.

For θ = 0 the SM electroweak group is unbroken, being contained in the preserved global

SO(4), and the four NG bosons form a complex doublet of SU(2)L. For θ �= 0, on the other

hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,

so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle θ with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment θ. Even assuming no misalignment at the tree
level, a non-vanishing θ = �π�/f is generated at the loop level after the NG 4-vector acquires a vev
�π� �= 0 (black curve).

rewritten as a modulus, φ4, times a unit 4-vector. The unit vector can in turn be expressed

as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase

exp(iχi
(x)Ai/v), where Ai

are SO(4)
�/SO(3) generators. Considering that ||Φ|| = 1 implies

φ4 ≤ 1, and that in the vacuum �φ4� = sin θ, it is convenient to define φ4(x) ≡ sin(θ+h(x)/f).

Hence,

Φ =




sin(θ + h(x)/f) eiχ

i(x)Ai/v





0

0

0

1





cos(θ + h(x)/f)




. (12)

By construction, the three χi
are the fields eaten after the SU(2)L×U(1)Y external gauging

is turned on, while h, which parametrizes SO(4)
�
-invariant fluctuations around the vacuum θ,

remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.

By equating (11) and (12) one obtains the (non-linear) field redefinition that relates the four

NG bosons of SO(5)/SO(4), πâ
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â
+ (f

+
µν)

a
T

a ≡ f
−
µν + f

+
µν

f
±
µν(Π) → h(Π, g) f±

µν(Π)h
†
(Π, g) .

(10)

2.1 The SO(5)/SO(4) chiral lagrangian at O(p2) and its accidental
symmetries

The lagrangian of composite Higgs models based on the SO(5)/SO(4) coset can be easily

constructed by means of the CCWZ covariant variables defined above. In this case there are

four NG bosons associated to the breaking SO(5) → SO(4), πâ
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so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one
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hypercharge is defined as Y = T3R +X. A non-zero X charge is required for the SM fermions to correctly
reproduce their hypercharge. Since the NG bosons are neutral under the additional U(1)X , this latter plays
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4The factor
√
2 in the exponent of eq.(11) has been introduced to match the standard normalization
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle θ with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment θ. Even assuming no misalignment at the tree
level, a non-vanishing θ = �π�/f is generated at the loop level after the NG 4-vector acquires a vev
�π� �= 0 (black curve).

rewritten as a modulus, φ4, times a unit 4-vector. The unit vector can in turn be expressed

as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase

exp(iχi
(x)Ai/v), where Ai
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By construction, the three χi
are the fields eaten after the SU(2)L×U(1)Y external gauging
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�
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remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.
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= πâ/π. 4

Here and in the following we denote the generators of SO(5) → SO(4) as

T a,â
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gauged SO(4)
�
thus identifies a preferred direction inside SO(5), and the angle θ precisely

measures the misalignment of the vacuum with respect to it, see Fig. 1. The field

Φ = U(x)Φ0 = e
i
√
2T â(θ)πâ(x)/fΦ0 =




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parametrizes the massless excitations around the vacuum, where we have defined π =
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and π̂â
= πâ/π. 4

Here and in the following we denote the generators of SO(5) → SO(4) as
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= T a,â

(θ), which are related to those of SO(5) → SO(4)
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, where SO(4)

�
is the gauged

subgroup, by a rotation of an angle θ, see Appendix A.

For θ = 0 the SM electroweak group is unbroken, being contained in the preserved global

SO(4), and the four NG bosons form a complex doublet of SU(2)L. For θ �= 0, on the other

hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,
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is identified with the Higgs boson. This can be easily seen as follows. Since the gauged
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from the field strength of the external gauge fields as follows:

fµν = U
†
FµνU = (f

−
µν)

â
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symmetries

The lagrangian of composite Higgs models based on the SO(5)/SO(4) coset can be easily
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Figure 1: The NG bosons of SO(5)/SO(4) live on the four-sphere S4. A generic vacuum points in
a direction forming an angle θ with that fixed by the ‘gauged’ SO(4)�. The electroweak symmetry
breaking can be seen as due to the misalignment θ. Even assuming no misalignment at the tree
level, a non-vanishing θ = �π�/f is generated at the loop level after the NG 4-vector acquires a vev
�π� �= 0 (black curve).

rewritten as a modulus, φ4, times a unit 4-vector. The unit vector can in turn be expressed

as a constant vector invariant under electromagnetic (U(1)em) transformations times a phase

exp(iχi
(x)Ai/v), where Ai
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�
-invariant fluctuations around the vacuum θ,

remains in the spectrum as a pseudo-NG boson. It is thus identified with the Higgs boson.

By equating (11) and (12) one obtains the (non-linear) field redefinition that relates the four

NG bosons of SO(5)/SO(4), πâ
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(θ), which are related to those of SO(5) → SO(4)
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, where SO(4)
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subgroup, by a rotation of an angle θ, see Appendix A.

For θ = 0 the SM electroweak group is unbroken, being contained in the preserved global

SO(4), and the four NG bosons form a complex doublet of SU(2)L. For θ �= 0, on the other

hand, the SM vector bosons gauge (a combination of) the SO(5)/SO(4) broken generators,

so that three NG bosons are eaten to give mass to the W and the Z, while a fourth one

is identified with the Higgs boson. This can be easily seen as follows. Since the gauged
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acts on the first four entries of the field Φ in eq.(11), these can be conveniently
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The hypercharge is defined as

In the following we will neglect the additional 
U(1)X as the NGB are neutral.
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GCHMsMinimal Composite Higgs Model (MCHM)

E

-   Λ

-   f SO(5)/SO(4)

Loop corrections of elementary SM fields, will generate a 
potential for the modulus of the NGB 4-vector, which 
will get a vev:             . 

vacuum is arbitrary and one can suitably set θ = 0 (so that SO(4)� = SO(4)). With this
choice, the four NG bosons of SO(5)/SO(4) transform as a a complex doublet of the gauged
SU(2)L, and none of them is eaten. Loop corrections will however generate a potential for
the NG bosons and can lead to a non-vanishing vev for the modulus of the NG 4-vector:
�π� �= 0 (see Fig. 1). As a result, SO(4) is spontaneously broken to (a custodial) SO(3), and
three of the original NG bosons are eaten. The field Φ can be recast in the form of eq.(12)
by identifying θ = �π�/f and the field h(x) as the fluctuation of the modulus of the NG
4-vector around its vev. One can thus think of the electroweak symmetry breaking as a two-
step process: a first spontaneous breaking, SO(5) → SO(4), occurs at the scale f , giving
rise to an SU(2)L doublet of NG bosons; at a lower scale v = f sin(�π�/f) ≡ f sin θ the
electroweak symmetry is spontaneously broken, SO(4) → SO(3), leaving an approximate
custodial symmetry.

A simple way to derive the SO(5)/SO(4) chiral lagrangian at O(p2) is by adopting the
basis of fields {χi, h} and making use eq.(12). One has (see Appendix C):

L(2) =
f 2

2
(DµΦ)

T (DµΦ)

=
1

2
(∂µh)

2 +
f 2

4
Tr

�
(DµΣ)

†(DµΣ)
�
sin2

�
θ +

h(x)

f

�
,

(14)

where Σ ≡ exp(iσiχi/v), and σi are the Pauli matrices. No covariant derivative acts on h,
as one could have anticipated by noticing that the fluctuations parametrized by this field
are SO(4)�-invariant. Choosing the unitary gauge, Σ = 1, and expanding around θ, one
immediately finds the relation m2

W = (g2f 2 sin2 θ)/4, which determines the value of the
electroweak scale v = f sin θ, and the value of the Higgs couplings to the vector bosons.

The same expression for L(2) can be obtained by using the CCWZ formalism. At the
level of two derivatives, there is only one operator which can be formed:

L(2) =
f 2

4
Tr[dµd

µ] . (15)

The equivalence with eq.(14) is proved in Appendix C, but it can be quickly checked, for
example, by monitoring the mass terms for the vector bosons. In the case of eq.(15) these
arise from the component of the gauge fields along the broken generators contained in dµ.
From eq.(1) and (9), after setting Π(x) =

√
2T â(θ)πâ(x)/f , one finds:

d
â
µ = A

â
µ +

√
2

f
(Dµπ)

â +O(π3) (16)

E
a
µ = A

a
µ −

i

f 2

�
π
←→
Dµπ

�a
+O(π4) . (17)

5

+ + + · · ·

Figure 7: 1-loop contribution of the SM gauge fields to the Higgs potential. A grey blob

represents the strong dynamics encoded by the form factor Π1.

section 3.3, as we are now ready to derive the Coleman-Weinberg potential for the

composite Higgs.

We will concentrate on the contribution from the SU(2)L gauge fields, neglecting the

smaller correction from hypercharge. The contribution from fermions will be derived

in section 3.4. The 1-loop Coleman-Weinberg potential resums the class of diagrams

in Fig. 7. From the effective action (48), after the addition of the gauge-fixing term

LGF = − 1

2g2ζ

�
∂µ

A
aL
µ

�2
, (58)

it is easy to derive the Feynman rules for the gauge propagator and vertex:

Gµν =
i

Π0(q
2)
(PT )µν − ζ

ig2

q2
(PL)µν

iΓµν =
iΠ1(q

2
)

4
sin

2
(h/f)(PT )µν

where (PL)µν = qµqν/q
2
is the longitudinal projector. Resumming the series of 1-loop

diagrams of Fig. 7 then leads to the potential:

V (h) =
9

2

�
d4Q

(2π)4
log

�
1 +

1

4

Π1(Q
2
)

Π0(Q
2)

sin
2
(h/f)

�
(59)

where Q2
= −q2 is the Euclidean momentum. The factor 9 originates from the sum

over three Lorentz polarizations and three SU(2)L flavors.

Let us argue on the behavior of the form factors at large Euclidean momentum and

on the convergence of the integral. We have seen that Π0 is related to the product of

two SO(4) currents

�Ja
µ(q)J

a
ν (−q)� = Π0(q

2
)(PT )µν (60)

where, we recall, the notation �O1O2� denotes the vacuum expectation of the time-

ordered product of the operators O1 and O2. The form factor Π1, on the other hand,

24

At tree level one can set ! = 0  "  SO(4)’= SO(4)

-  v = f sin(!π"/f)
SO(4)/SO(3)

This generates a vacuum misalignment as  ! = !π"/f .

EWSB arises from vacuum misalignment. 

All the explicit breaking of SO(5) comes from the
SM gauging and fermions
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strong but perturbative

The theory make sense up to  Λ = 4 π f

We assume that a given number of resonances in 
the composite sector are lighter than    so that it 

appears in the effective action.
Λ

``Vector Resonances” ``Axial Resonances”

1 � gρ, ga � 4 π

Consider Spin-1 resonances in the                            .             
representation

SU(2)L × SU(2)R

ρL: (3,1) ρR: (1,3) a: (2,2)
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Spin-one Resonances

m2
ρi

L
= f2

ρi
L
g2

ρi
L

m2
ρi

R
= f2

ρi
R
g2

ρi
R

m2
ai

=
f2

ai
g2

ai

∆2
i

Lg = LvL + LvR + La,

ρ-SM gauge boson mixing terms

LvL = −1

4
ρi,2L,µν +

f2
ρ

2

�
gρρ

i
L − ÊL

�2
,

LvR = LvL , with L → R,

La = −1

4
ai,2µν +

f2
a

2∆2
i

�
gaa

i −∆id̂
�2

.
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SM gauge boson form factors

Effective Langragian for SM gauge fields in SO(5)/SO(4)

Integrating out the spin one field
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SM gauge boson form factors

          is critical since it is the one related to EWSB  
(The Goldstones), which affect the Higgs potential 
Π1(p2)

Regulating the UV behavior

suggested by Witten’s theorem for vector confinement

1st Weinberg sum rule

Relaxing the 2nd Weinberg sum rule

Allow small S
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If vector confining?

Witten’s theorem suggest that:

If the underlying theory is vector confining:

S is positive

S is negative but 
mρ > ma

S is always positive 
if                .mρ < ma
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Cancellation of S
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Adjusting the rho-f-f couplings

Complete cancellationMixture is ~
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Cancellation of EW observables

i(f†γµ
f)(H†

DµH)

a small composite fermion component for SM fermions 
would result a deviation on the SM fermion and gauge boson 

Complete cancellation
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Couplings

Drell-Yan of a is v/f suppressed, a order lower
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Production and Decay

Including the composite fermions

Two benchmarks
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h to Z gamma

If diboson is confirmed, or our underlying 
theory does have the “a” field, then ?

Besides the VBF search channels 

The nonzero aWZ terms make a largely 
contribute to the h Z gamma loops, can be 

order one large
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Elementary light fermions

lepton bound can be 
regarded as the excess

Benchmark point A

EWPT constrain

di charged lepton

charged lepton neutrino

1st Weinberg sum rule

h Z gamma
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Partial  composite leptons

No lepton constrain

Benchmark point B

EWPT constrain

1st Weinberg sum rule

h Z gamma
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Many future works to be done

Unitarity cut off with a (make it lower)

Viable Coleman-Weinberg Higgs potential

Full EWPT with axial-vector field “a”

LHC direct searches on “a”.

Full h-gammma-gamma, h-Z-gamma loops.

More need to think about it
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Resonance Interference

Relative sign does matter!
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Resonance Interference
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Resonance Interference
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Resonance Interference

destructive
background

constructive
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