The $10^{\text {th }}$ TeV Physics Workshop @ UCAS, 2015

Simple Non-Abelian Extensions and Diboson Excesses at the LHC

Qing-Hong Cao Peking University

QHC, Bin Yan, Dong-Ming Zhang, 1507.00268

ATLAS Diboson Excesses

Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at $\sqrt{s}=8 \mathrm{TeV}$ with the ATLAS detector

Heavy resonance ~2TeV decay product pt~TeV large boost factor $\gamma>5-10$

New Physics Explanations?

$$
\sigma(W Z) \sim 4-8 \mathrm{fb}
$$

$$
\begin{aligned}
\sigma(W W) & \sim 3-7 \mathrm{fb} \\
\sigma(Z Z) & \sim 3-9 \mathrm{fb}
\end{aligned}
$$

Spin-0

$$
H^{+} \quad H^{0}
$$

New Physics Explanations?

$$
\sigma(W Z) \sim 4-8 \mathrm{fb}
$$

$$
\begin{aligned}
\sigma(W W) & \sim 3-7 \mathrm{fb} \\
\sigma(Z Z) & \sim 3-9 \mathrm{fb}
\end{aligned}
$$

Spin-1

$W^{\prime \pm}$

Z^{\prime}

$Z^{\prime}-Z-Z$ coupling highly suppressed

Other constraints for a $2 \mathrm{TeV} W^{\prime} / Z^{\prime}$ boson

$$
\sigma\left(p p \rightarrow Z^{\prime} / W^{\prime} \rightarrow j j\right) \leq 102 \mathrm{fb}
$$

ATLAS, 1407.1376 CMS, 1501.04198

$$
\sigma\left(p p \rightarrow Z^{\prime} \rightarrow t \bar{t}\right) \leq 11 \mathrm{fb}
$$

ATLAS, 1410.4103

$$
\begin{aligned}
& \sigma\left(p p \rightarrow W_{R}^{\prime} \rightarrow t \bar{b}\right) \leq 124 \mathrm{fb} \\
& \sigma\left(p p \rightarrow W_{L}^{\prime} \rightarrow t \bar{b}\right) \leq 162 \mathrm{fb}
\end{aligned}
$$

$$
\sigma\left(p p \rightarrow Z^{\prime} \rightarrow e^{+} e^{-} / \mu^{+} \mu^{-}\right) \leq 0.2 \mathrm{fb} \stackrel{\text { ATLAS, } 1405.4123}{\text { CMS, }} 1412.6302
$$

$$
\sigma\left(p p \rightarrow W^{\prime} \rightarrow e \nu / \mu \nu\right) \leq 0.7 \mathrm{fb}
$$

$$
\sigma\left(p p \rightarrow W^{\prime} \rightarrow W H\right) \leq 7.1 \mathrm{fb}
$$

$$
\sigma\left(p p \rightarrow W^{\prime} \rightarrow Z H\right) \leq 6.8 \mathrm{fb}
$$

Simple Non-Abelian Extensions

G(22I) Model

$$
S U(3)_{C} \times S U(2)_{1} \times S U(2)_{2} \times U(1)_{X}
$$

$S U(3)_{C} \times S U(2)_{L}$ $\times U(1)_{L} \times U(1)_{X}$

U(I) Extension
Z-prime
not considered
in this work
SM

New
Fermions

$$
\begin{gathered}
q_{L} \\
u_{R}
\end{gathered} d_{R} \stackrel{H}{\longleftrightarrow}\left(\begin{array}{l}
Q_{L} \\
Q_{R}
\end{array}\right.
$$

G(33 I) Model $S U(3)_{C} \times S U(3)_{W} \times U(1)_{X}$

G(221) Models

Model	$S U(2)_{1}$	$S U(2)_{2}$	$U(1)_{X}$
Left-right (LR)	$\binom{u_{L}}{d_{L}},\binom{\nu_{L}}{e_{L}}$	$\binom{u_{R}}{d_{R}},\binom{\nu_{R}}{e_{R}}$	$\frac{1}{6}$ for quarks, $-\frac{1}{2}$ for leptons.
Lepto-phobic (LP)	$\binom{u_{L}}{d_{L}},\binom{\nu_{L}}{e_{L}}$	$\binom{u_{R}}{d_{R}}$	$\frac{1}{6}$ for quarks, Y_{SM} for leptons.
Hadro-phobic (HP)	$\binom{u_{L}}{d_{L}},\binom{\nu_{L}}{e_{L}}$	$\binom{\nu_{R}}{e_{R}}$	Y_{SM} for quarks, $-\frac{1}{2}$ for leptons.
Fermio-phobic (FP)	$\binom{u_{L}}{d_{L}},\binom{\nu_{L}}{e_{L}}$		$Y_{\text {SM }}$ for all fermions.
Un-unified (UU)	$\binom{u_{L}}{d_{L}}$	$\binom{\nu_{L}}{e_{L}}$	$Y_{\text {SM }}$ for all fermions.
Non-universal (NU)	$\binom{u_{L}}{d_{L}}_{1^{\text {st }, 22^{\text {nd }}}},\binom{\nu_{L}}{e_{L}}_{1^{\text {st, }, 2 \mathrm{nd}}}$	$\binom{u_{L}}{d_{L}}_{3^{\text {rd }}},\binom{\nu_{L}}{e_{L}}_{3^{\text {rd }}}$	$Y_{\text {SM }}$ for all fermions.

Production Rate of Sequential W^{\prime} / Z^{\prime}

$$
\sigma\left(p p \rightarrow V^{\prime} \rightarrow X Y\right) \simeq \sigma\left(p p \rightarrow V^{\prime}\right) \otimes \operatorname{BR}\left(V^{\prime} \rightarrow X Y\right) \equiv \sigma\left(V^{\prime}\right) \times \operatorname{BR}\left(V^{\prime} \rightarrow X Y\right)
$$

$$
\log \left[\frac{\sigma\left(M_{V^{\prime}}\right)}{\mathrm{pb}}\right]=A\left(\frac{M_{V^{\prime}}}{\mathrm{TeV}}\right)^{-1}+B+C\left(\frac{M_{V^{\prime}}}{\mathrm{TeV}}\right),
$$

$$
\sigma\left(p p \rightarrow V^{\prime}\right)
$$

W^{\prime}	$:$
Z_{u}^{\prime}	$:$
	$2.59925+1.34518 x^{-1}-3.37137 x$
Z_{d}^{\prime}	$:$
	$2.88763+1.42266 x^{-1}-3.54818 x$,

PDF and Scale Uncertainties

CT14 NNLO PDFs (56 sets)

The PDF uncertainty is $\sim 15-20 \%$
for a $2 T e V W^{\prime} / Z^{\prime}$
The scale uncertainty is $\sim 5 \%$

G(221) Models: Symmetry Breaking

Two patterns of spontaneously symmetry breaking $1^{\text {st }}$ stage: $\quad \Phi \rightarrow\langle\Phi\rangle \sim u \geq 1 \mathrm{TeV}$ $2^{\text {nd }}$ stage: $\quad H \rightarrow\langle H\rangle \sim v \geq 250 \mathrm{GeV}$
$S U(2)_{1} \otimes S U(2)_{2} \otimes U(1)_{X}$

$S U(2)_{L} \otimes U(1)_{Y}$

$S U(2)_{1} \otimes S U(2)_{2} \otimes U(1)_{X}$

$$
S U(2)_{L} \otimes U(1)_{Y}
$$

G(221) Models: Breaking Pattern 1

$$
\begin{aligned}
& \Phi=\binom{\phi^{+}}{\phi^{0}} \left\lvert\, \begin{array}{cc}
S U(2)_{1} \otimes S U(2)_{2} \otimes U(1)_{X} \\
&
\end{array} \quad \Sigma=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\phi^{+} & \sqrt{2} \phi^{++} \\
\sqrt{2} \phi^{0} & -\phi^{+}
\end{array}\right)\right. \\
& \langle\Phi\rangle=\frac{1}{\sqrt{2}}\binom{0}{u} \quad\langle\Sigma\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
0 & 0 \\
u & 0
\end{array}\right)
\end{aligned}
$$

$$
H=\left(\begin{array}{cc}
h_{1}^{0} & h_{1}^{+} \\
h_{2}^{-} & h_{2}^{0}
\end{array}\right) \quad\langle H\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
v_{1} & 0 \\
0 & v_{2}
\end{array}\right)
$$

$$
x \equiv u^{2} / v^{2} \quad \tan \beta=v_{1} / v_{2}
$$

$$
g_{1}=\frac{e}{s_{W}}, \quad g_{2}=\frac{e}{c_{W} s_{\phi}}, \quad g_{X}=\frac{e}{c_{W} c_{\phi}}
$$

$M_{W^{\prime}} / M_{Z^{\prime}}$ in $\mathrm{G}(221): \mathrm{BP}-1$

$$
\begin{aligned}
& g_{1}=\frac{e}{s_{W}} \\
& g_{2}=\frac{e}{c_{W} s_{\phi}} \quad g_{X}=\frac{e}{c_{W} c_{\phi}} \\
& x=u^{2} / v^{2} \\
& \tan \beta=v_{1} / v_{2}
\end{aligned}
$$

Doublet: $M_{W^{\prime} \pm}^{2}=\frac{e^{2} v^{2}}{4 c_{W}^{2} s_{\phi}^{2}}(x+1), M_{Z^{\prime}}^{2}=\frac{e^{2} v^{2}}{4 c_{W}^{2} s_{\phi}^{2} c_{\phi}^{2}}\left(x+c_{\phi}^{4}\right)$
Triplet: $M_{W^{\prime} \pm}^{2}=\frac{e^{2} v^{2}}{4 c_{W}^{2} s_{\phi}^{2}}(2 x+1), M_{Z^{\prime}}^{2}=\frac{e^{2} v^{2}}{4 c_{W}^{2} s_{\phi}^{2} c_{\phi}^{2}}\left(4 x+c_{\phi}^{4}\right)$

G(221) BP-1: Left-Right Doublet Model

Low energy precision test and Direct search bounds

37 observables

- Z pole data (21): Total width Γ_{Z}, cross section $\sigma_{\text {had. }}$, ratios $R(f), \mathrm{LR}, \mathrm{FB}$, and charge asymmetries $A_{L R}(f)$, $A_{F B}(f)$, and $Q_{F B}$;
- $W^{ \pm}$and top data (3): Mass M_{W} and total width Γ_{W}, m_{t} pole mass;
- $\quad \nu N$-scattering (5): NC couplings $\left(g_{L}^{\nu N}\right)^{2}$ and $\left(g_{R}^{\nu N}\right)^{2}$, NC-CC ratios R_{ν} and $R_{\bar{\nu}}$;
- νe^{-}-scattering (2): NC couplings $g_{V}^{\nu e}$ and $g_{A}^{\nu e}$;
- PV interactions (5):
$Q_{W}\left({ }^{133} \mathrm{Cs}\right) Q_{W}\left({ }^{205} \mathrm{TI}\right)$,
$Q_{W}(e)$, NC couplings
$\mathcal{C}_{1}, \mathcal{C}_{2}$;
τ lifetime (1).

$$
\chi^{2} \equiv \sum_{i} \mathcal{P}_{i}^{2} \equiv \sum_{i} \frac{1}{\sigma^{2}}\left(\overline{\mathcal{O}}_{i}^{\exp .}-\mathcal{O}_{i}^{\text {theo. }}\right)^{2} ; \chi_{\text {min. }}^{2}=43.22
$$

Green: EWPT
Red: Tevatron Direct Searches Blue: LHC Direct Searches

Left-Right Doublet: a 2TeV W-prime

Narrow width approximation works well

Left-Right Doublet: a 2TeV W-prime

cross section contour

Left-Right Doublet: a 2TeV W-prime

Left-Right Doublet: a 2TeV W-prime

Left-Right Doublet: a 2TeV W-prime

W-prime can explain the WZ excess in the region of $c_{\phi} \sim 0.7-0.82$
but it requires

$$
M_{Z^{\prime}} \sim 2.5-2.8 \mathrm{TeV}
$$

Left-Right Doublet: a 2TeV Z-prime

$$
g_{1}=\frac{e}{s_{W}}
$$

$$
g_{2}=\frac{e}{c_{W} s_{\phi}}
$$

$$
g_{X}=\frac{e}{c_{W} c_{\phi}}
$$

Left-Right Doublet: a 2TeV Z-prime

For a 2TeV Z-prime to explain the WW excess, it requires $c_{\phi} \sim 0.9-0.94$, but it violates $e^{+} e^{-} / \mu^{+} \mu^{-}$bounds

G(221) Models: Breaking Pattern 2

$$
\begin{gathered}
\Phi=\left(\begin{array}{rr}
\phi^{0} & \sqrt{2} \phi^{+} \\
\sqrt{2} \phi^{-} & \phi^{0}
\end{array}\right) \\
\langle\Phi\rangle=\frac{1}{2}\left(\begin{array}{ll}
u & 0 \\
0 & u
\end{array}\right)
\end{gathered}
$$

$$
H=\binom{h^{+}}{h^{0}}
$$

$$
\langle H\rangle=\frac{1}{\sqrt{2}}\binom{0}{v}
$$

$$
\begin{aligned}
& g_{1}=\frac{e}{s_{W} c_{\phi}} g_{2}=\frac{e}{s_{W} s_{\phi}} \quad g_{X}=\frac{e}{c_{W}} \\
& M_{W^{\prime}}^{2}=M_{Z^{\prime}}^{2}=\frac{e^{2} v^{2}}{4 s_{W}^{2} s_{\phi}^{2} c_{\phi}^{2}}\left(x+s_{\phi}^{4}\right)
\end{aligned}
$$

G(221) BPII: Un-unified Models

$$
\begin{array}{lll}
S U(2)_{1} & S U(2)_{2} & U(1)_{X} \\
\binom{u_{L}}{d_{L}} & \binom{\nu_{L}}{e_{L}} & Y_{\text {SM }} \begin{array}{l}
\text { for all the SM } \\
\text { fermions }
\end{array}
\end{array}
$$

$M_{W^{\prime}}=2 \mathrm{TeV}$

It satisfies W Z/W $H / t b / j j$ at 2σ CL but violates $e^{+} \nu$

G(221) BPII: Un-unified Models

 $M_{W^{\prime}}=2 \mathrm{TeV}$

It satisfies $W Z / W H / t b / j j$ at $2 \sigma \mathrm{CL}$ but violates $e^{+} \nu$

G(221) BPII: Un-unified Models

$$
\begin{array}{lll}
S U(2)_{1} & S U(2)_{2} & U(1)_{X} \\
\binom{u_{L}}{d_{L}} & \binom{\nu_{L}}{e_{L}} & Y_{\text {SM }} \begin{array}{l}
\text { for all the SM } \\
\text { fermions }
\end{array}
\end{array}
$$

$M_{Z^{\prime}}=2 \mathrm{TeV}$

It satisfies $W W / Z H / t t / j j$ at $2 \sigma \mathrm{CL}$ but violates $e^{+} e^{-}$

G(331) Models

$S U(3)_{L} \times U(1)_{X} \rightarrow S U(2)_{L} \times U(1)_{Y} \rightarrow U(1)_{\mathrm{em}}$

$$
\langle\rho\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
v_{\rho} \\
0
\end{array}\right) \quad\langle\eta\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
v_{\eta} \\
0 \\
0
\end{array}\right)\langle\chi\rangle=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
0 \\
0 \\
v_{\chi}
\end{array}\right)
$$

$W^{\prime} W Z$
 coupling forbidden

$Z^{\prime} W W$
coupling induced by $Z^{\prime}-Z$
mixing

G(331) Models: WW production

Summary

1) We consider simple non-Abelian extensions to explain the WZ / WW / ZZZ excesses observed by ATLAS collaboration.
2) We found that tensions exist among the diboson excesses and leptonic decay modes.
3) Luckily for us, it will be clear when LHC Run-2 data comes.

> Thank you!

Backup Slides

W'/Z' Coupling to SM Fermions

Couplings	g_{L}	g_{R}
$\begin{gathered} W^{\prime+\mu} \bar{f} f^{\prime}(\mathrm{BP}-\mathrm{I}) \\ Z^{\prime} \bar{f} f(\mathrm{BP}-\mathrm{I}) \end{gathered}$	$\begin{gathered} -\frac{e_{m}}{\sqrt{2} s_{W}^{2}} \gamma_{\rho} T_{L}^{+} \frac{c_{W} s_{2 \beta} s_{\phi}}{x} \\ \frac{e_{m}}{c_{W} c_{\phi} s_{\phi}} \gamma_{\rho}\left[\left(T_{3 L}-Q\right) s_{\phi}^{2}-\frac{c_{\phi}^{4} s_{\phi}^{2}\left(T_{3 L}-Q s_{W}^{2}\right)}{x s_{W}^{2}}\right] \end{gathered}$	$\begin{gathered} \frac{e_{m}}{\sqrt{2} c_{W} s_{\phi}} \gamma_{\rho} T_{R}^{+} \\ \frac{e_{m}}{c_{W} c_{\phi} s_{\phi}} \gamma_{\rho}\left[\left(T_{3 R}-Q s_{\phi}^{2}\right)+Q \frac{c_{\phi}^{4} s_{\phi}^{2}}{x}\right] \end{gathered}$
$W^{\prime \pm \mu} \bar{f} f^{\prime}(\mathrm{BP}-\mathrm{II})$	$-\frac{e_{m} s_{\phi}}{\sqrt{2} s_{W} c_{\phi}} \gamma^{\mu} T_{l}^{ \pm}\left(1+\frac{s_{\phi}^{2} c_{\phi}^{2}}{x}\right)$	0
$W^{\prime \pm \mu} \bar{F} F^{\prime}(\mathrm{BP}-\mathrm{II})$	$\frac{e_{m} c_{\phi}}{\sqrt{2} s_{W} s_{\phi}} \gamma^{\mu} T_{h}^{ \pm}\left(1-\frac{s_{\phi}^{4}}{x}\right)$	0
$Z^{\prime} \bar{f} f(\mathrm{BP}-\mathrm{II})$	$-\frac{e_{m}}{s_{W}} \gamma^{\mu}\left[\frac{s_{\phi}}{c_{\phi}} T_{3 l}\left(1+\frac{s_{\phi}^{2} c_{\phi}^{2}}{x c_{W}^{2}}\right)-\frac{s_{\phi}}{c_{\phi}} \frac{s_{\phi}^{2} c_{\phi}^{2}}{x c_{W}^{2}} s_{W}^{2} Q\right]$	$\frac{e_{m}}{s_{W}} \gamma^{\mu}\left(\frac{s_{\phi}}{c_{\phi}} \frac{s_{\phi}^{2} c_{\phi}^{2}}{x c_{W}^{2}} s_{W}^{2} Q\right)$
$Z^{\prime} \bar{F} F(\mathrm{BP}-\mathrm{II})$	$\frac{e_{m}}{s_{W}} \gamma^{\mu}\left[\frac{c_{\phi}}{s_{\phi}} T_{3 h}\left(1-\frac{s_{\phi}^{4}}{x c_{W}^{2}}\right)+\frac{c_{\phi}}{s_{\phi}} \frac{s_{\phi}^{4}}{x c_{W}^{2}} s_{W}^{2} Q\right]$	$\frac{e_{m}}{s_{W}} \gamma^{\mu}\left(\frac{c_{\phi}}{s_{\phi}} \frac{s_{\phi}^{4}}{x c_{W}^{2}} s_{W}^{2} Q\right)$

W'/Z' Non-Abelian Coupling

Couplings	BP-I	BP-II
$H W_{\nu} W_{\rho}^{\prime}$	$-\frac{i}{2} \frac{e_{m}^{2} s_{2 \beta}}{c_{W} s_{W} s_{\phi}} v g_{\nu \rho}\left[1+\frac{\left(c_{W}^{2} s_{\phi}^{2}-s_{W}^{2}\right)}{x s_{W}^{2}}\right]$	$-\frac{i}{2} \frac{e_{m}^{2} s_{\phi}^{2}}{s_{W} c_{\phi}} v g_{\nu \rho}\left[1+\frac{s_{\phi}^{2}\left(c_{\phi}^{2}-s_{\phi}^{2}\right)}{x}\right]$
$H Z_{\nu} Z_{\rho}^{\prime}$	$-\frac{i}{2} \frac{e_{m}^{2} c_{\phi}}{c_{W}^{2} s_{W} s_{\phi}} v g_{\nu \rho}\left[1-\frac{c_{\phi}^{2}\left(c_{\phi}^{2} s_{W}^{2}-s_{\phi}^{2}\right)}{x s_{W}^{2}}\right]$	$-\frac{i}{2} \frac{e_{m}^{2} s_{\phi}}{c_{W} s_{W}^{2} c_{\phi}} v g_{\nu \rho}\left[1-\frac{s_{\phi}^{2}\left(s_{\phi}^{2} c_{W}^{2}-c_{\phi}^{2}\right)}{x c_{W}^{2}}\right]$
$W_{\mu}^{+} W_{\nu}^{\prime-} Z_{\rho}$	$i \frac{e_{m} s_{2 \beta} s_{\phi}}{x s_{W}^{2}}$	$i \frac{e_{m} c_{\phi} s_{\phi}^{3}}{x s_{W} c_{W}}$
$W_{\mu}^{+} W_{\nu}^{-} Z_{\rho}^{\prime}$	$i \frac{e_{m} s_{\phi} c_{W} c_{\phi}^{3}}{x s_{W}^{2}}$	$i \frac{e_{m} c_{\phi} s_{\phi}^{3}}{x s_{W}}$

ATLAS results (150600062)

Diboson Bounds

ATLAS versus CMS

Comparable sensitivity on $\sigma_{95 \%}(\mathrm{pp} \rightarrow \mathrm{G}) \times \mathrm{BR}(\mathrm{G} \rightarrow \mathrm{ZZ})$
Deviations from expected limit at $I .8-2.0 \mathrm{TeV}$ (if larger than $I \sigma$): local p-values

CMS
ATLAS

$\mathbf{V}_{\text {jet }} \mathbf{V}_{\text {jet }}$	1.3σ	3.4σ (2.5 6 global)
$\boldsymbol{\ell \ell} \mathbf{V}_{\text {jet }}$	2σ	-
$\boldsymbol{\ell v} \mathbf{V}_{\text {jet }}$	1.2σ	-

