The 10th TeV Physics Workshop @ UCAS, 2015

Simple Non-Abelian Extensions and Diboson Excesses at the LHC

Qing-Hong Cao Peking University

QHC, Bin Yan, Dong-Ming Zhang, 1507.00268

ATLAS Diboson Excesses

1506.00962

P

Search for high-mass diboson resonances with boson-tagged jets in proton–proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

Heavy resonance ~2TeV decay product p_T~TeV large boost factor $\gamma > 5 - 10$ PMinimal distance between final state products $R_{\min} = \frac{2m}{n\pi} \sim 0.2 - 0.4$

see Qiang Li's talk for CMS results

10⁴ Events / 100 GeV ATLAS 🗕 Data $=\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ Background model 10^{3} ----- 1.5 TeV Bulk G_{RS} , k/ \overline{M}_{Pl} = 1 2.0 TeV Bulk G_{BS} , k/ \overline{M}_{PI} = 1 10^{2} Significance (stat) Significance (stat + syst) 10 **ZZ** Selection 10-10⁻² 10⁻³ Significance З -2 2.5 3.5 1.5 2 3 m_{ii} [TeV]

If the excesses were induced by NP, then $\sigma(WZ) \sim 4-8 \text{ fb}$ $\sigma(WW) \sim 3-7 \text{ fb}$ $\sigma(ZZ) \sim 3-9 \text{ fb}$ for ~2TeV resonances

New Physics Explanations?

$$\sigma(WZ) \sim 4-8 \text{ fb} \quad \begin{aligned} \sigma(WW) \sim 3-7 \text{ fb} \\ \sigma(ZZ) \sim 3-9 \text{ fb} \end{aligned}$$

Spin-0 H^+ H^0

4

New Physics Explanations?

$$\sigma(WZ) \sim 4 - 8 \text{ fb} \quad \begin{aligned} \sigma(WW) \sim 3 - 7 \text{ fb} \\ \sigma(ZZ) \sim 3 - 9 \text{ fb} \end{aligned}$$

Spin-1 W'^{\pm} Z'

Z' - Z - Z coupling highly suppressed

Other constraints for a 2TeVW'/Z' boson ATLAS, 1407.1376 $\sigma(pp \to Z'/W' \to jj) \le 102 \text{ fb}$ CMS, 1501.04198 $\sigma(pp \to Z' \to t\bar{t}) \le 11 \text{ fb}$ ATLAS, 1410.4103 $\sigma(pp \to W'_R \to t\bar{b}) \le 124 \text{ fb}$ CMS, 1506.03062 $\sigma(pp \to W'_L \to t\bar{b}) \le 162 \text{ fb}$ ATLAS, 1405.4123 $\sigma(pp \to Z' \to e^+ e^- / \mu^+ \mu^-) \le 0.2 \text{ fb}$ <u>CMS</u>, 1412.6302 ATLAS, 1407.7494 $\sigma(pp \to W' \to e\nu/\mu\nu) \le 0.7 \text{ fb}$ CMS, 1408.2745 $\sigma(pp \to W' \to WH) \le 7.1 \text{ fb}$ CMS, 1506.01143 $\sigma(pp \to W' \to ZH) \le 6.8 \text{ fb}$

Simple Non-Abelian Extensions

G(221) Model

$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_X$

not considered in this work $\frac{G(331) \text{ Model}}{SU(3)_C \times SU(3)_W \times U(1)_X}$

G(221) Models

Model	$SU(2)_1$	$SU(2)_2$	$U(1)_X$
Left-right (LB)	$\begin{pmatrix} u_L \end{pmatrix} \begin{pmatrix} \nu_L \end{pmatrix}$	$\left(u_{R} \right) \left(\nu_{R} \right)$	$\frac{1}{6}$ for quarks,
	$\left(d_L \right)$ ' $\left(e_L \right)$	$\left(d_{R} \right)' \left(e_{R} \right)$	$-\frac{1}{2}$ for leptons.
Lepto-phobic (LP)	$\begin{pmatrix} u_L \end{pmatrix} \begin{pmatrix} \nu_L \end{pmatrix}$	$\left(u_{R}\right)$	$\frac{1}{6}$ for quarks,
	$\left(d_{L} \right)$ ' $\left(e_{L} \right)$	$\left(d_{R} \right)$	$Y_{\rm SM}$ for leptons.
Hadro phobic (HP)	$\begin{pmatrix} u_L \end{pmatrix} \begin{pmatrix} \nu_L \end{pmatrix}$	$\left(\nu_{R}\right)$	$Y_{\rm SM}$ for quarks,
	$\left(d_{L} \right)$, $\left(e_{L} \right)$	$\langle e_R \rangle$	$-\frac{1}{2}$ for leptons.
Fermio-phobic (FP)	$egin{pmatrix} u_L\ d_L\end{pmatrix}, egin{pmatrix} u_L\ e_L\end{pmatrix} \end{split}$		$Y_{\rm SM}$ for all fermions.
Un-unified (UU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$Y_{\rm SM}$ for all fermions.
Non-universal (NU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}_{1^{\text{st}}, 2^{\text{nd}}}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}_{1^{\text{st}}, 2^{\text{nd}}}$	$ \begin{pmatrix} u_L \\ d_L \end{pmatrix}_{3^{\mathrm{rd}}}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}_{3^{\mathrm{rd}}} $	$Y_{\rm SM}$ for all fermions.

Production Rate of Sequential W'/Z'

 $\sigma(pp \to V' \to XY) \simeq \sigma(pp \to V') \otimes BR(V' \to XY) \equiv \sigma(V') \times BR(V' \to XY)$

$$\log\left[\frac{\sigma(M_{V'})}{\text{pb}}\right] = A\left(\frac{M_{V'}}{\text{TeV}}\right)^{-1} + B + C\left(\frac{M_{V'}}{\text{TeV}}\right),$$

$$\sigma(pp \to V')$$

W'	:	$4.59925 + 1.34518x^{-1} - 3.37137x$
Z'_u	•	$2.82225 + 1.51681x^{-1} - 3.24437x$
Z'_d	•	$2.88763 + 1.42266x^{-1} - 3.54818x,$

PDF and Scale Uncertainties

CT14 NNLO PDFs (56 sets)

The PDF uncertainty is ~15-20% for a 2TeV W'/Z' The scale uncertainty is ~5%

G(221) Models: Symmetry Breaking Two patterns of spontaneously symmetry breaking 1^{st} stage: $\Phi \rightarrow \langle \Phi \rangle \sim u \ge 1$ TeV 2^{nd} stage: $H \rightarrow \langle H \rangle \sim v \ge 250$ GeV

11

G(221) Models: Breaking Pattern 1

$M_{W'}/M_{Z'}$ in G(221): BP-1

P

G(221) BP-1: Left-Right Doublet Model Low energy precision test and Direct search bounds

37 observables

- Z pole data (21): Total width Γ_Z , cross section $\sigma_{had.}$, ratios R(f), LR, FB, and charge asymmetries $A_{LR}(f)$, $A_{FB}(f)$, and Q_{FB} ;
- W^{\pm} and top data (3): Mass M_W and total width Γ_W , m_t pole mass;
- $\begin{array}{l} \nu N \text{-scattering (5): NC} \\ \text{couplings } \left(g_L^{\nu N} \right)^2 \text{ and} \\ \left(g_R^{\nu N} \right)^2 \text{, NC-CC ratios } R_{\nu} \\ \text{and } R_{\bar{\nu}} \text{;} \end{array}$
- νe^- -scattering (2): NC couplings $g_V^{\nu e}$ and $g_A^{\nu e}$;
- PV interactions (5): $Q_W \left({}^{133} \text{Cs} \right) Q_W \left({}^{205} \text{TI} \right),$ $Q_W (e), \text{ NC couplings}$ $C_1, C_2;$
- au lifetime (1).

Narrow width approximation works well

15

cross section contour

 $M_{W'} \simeq M_{Z'}$ $c_{\phi} \sim 1$

the dijet bound requires $c_{\phi} < 0.75$

18

W-prime can explain the WZ excess in the region of $c_{\phi} \sim 0.7 - 0.82$

but it requires $M_{Z'} \sim 2.5 - 2.8 \text{ TeV}$

(20)

For a 2TeV Z-prime to explain the WW excess, it requires $c_{\phi} \sim 0.9 - 0.94$, but it violates $e^+e^-/\mu^+\mu^-$ bounds

G(221) Models: Breaking Pattern 2

G(221) BPII: Un-unified Models

 $M_{W'} = 2 \text{ TeV}$

It satisfies WZ/WH/tb/jj at 2σ CL but violates $e^+\nu$

G(221) BPII: Un-unified Models

$M_{W'} = 2 \text{ TeV}$

It satisfies WZ/WH/tb/jj at $2\sigma CL$ but violates $e^+\nu$

G(221) BPII: Un-unified Models

 $M_{Z'} = 2 \text{ TeV}$

It satisfies WW/ZH/tt/jj at $2\sigma CL$ but violates e^+e^-

G(331) Models $SU(3)_L \times U(1)_X \to SU(2)_L \times U(1)_Y \to U(1)_{em}$ 0 $\mathbf{0}$ $v_\eta \ 0$ $\langle \eta \rangle$ 0 $v_{
ho}$ $\langle \chi$ $\overline{2}$ **O** VX 0 $\beta = -\sqrt{3}$ $\beta = \sqrt{3}$ 10 $\overline{W'WZ}$ --- SSM coupling forbidden $\sigma_{Z'}$ [pb] 0.1 Z'WW $\beta = -1/\sqrt{3}$ 0.01

coupling induced by Z' - Zmixing

G(331) Models: WW production

Summary

1) We consider simple non-Abelian extensions to explain the WZ / WW / ZZ excesses observed by ATLAS collaboration.

2) We found that tensions exist among the diboson excesses and leptonic decay modes.

3) Luckily for us, it will be clear when LHC Run-2 data comes.

Thank you!

Backup Slides

W'/Z' Coupling to SM Fermions

Couplings	g_L	g_R
$W'^{+\mu}\bar{f}f'$ (BP-I)	$-\frac{e_m}{\sqrt{2}s_W^2}\gamma_\rho T_L^+\frac{c_W s_{2\beta}s_\phi}{x}$	$\frac{e_m}{\sqrt{2}c_W s_\phi} \gamma_\rho T_R^+$
$Z'\bar{f}f$ (BP-I)	$\frac{e_m}{c_W c_\phi s_\phi} \gamma_\rho \left[(T_{3L} - Q) s_\phi^2 - \frac{c_\phi^4 s_\phi^2 \left(T_{3L} - Q s_W^2 \right)}{x s_W^2} \right]$	$\frac{e_m}{c_W c_\phi s_\phi} \gamma_\rho \left[\left(T_{3R} - Q s_\phi^2 \right) + Q \frac{c_\phi^4 s_\phi^2}{x} \right]$
$W^{\prime \pm \mu} \bar{f} f^{\prime} $ (BP-II)	$-\frac{e_m s_\phi}{\sqrt{2} s_W c_\phi} \gamma^\mu T_l^\pm \left(1 + \frac{s_\phi^2 c_\phi^2}{x}\right)$	0
$W'^{\pm\mu}\bar{F}F'$ (BP-II)	$\frac{e_m c_\phi}{\sqrt{2} s_W s_\phi} \gamma^\mu T_h^\pm \left(1 - \frac{s_\phi^4}{x}\right)$	0
$Z'\bar{f}f$ (BP-II)	$-\frac{e_m}{s_W}\gamma^{\mu} \left[\frac{s_\phi}{c_\phi}T_{3l}\left(1+\frac{s_\phi^2 c_\phi^2}{x c_W^2}\right) - \frac{s_\phi}{c_\phi}\frac{s_\phi^2 c_\phi^2}{x c_W^2}s_W^2Q\right]$	$\frac{e_m}{s_W}\gamma^\mu \left(\frac{s_\phi}{c_\phi}\frac{s_\phi^2 c_\phi^2}{x c_W^2}s_W^2Q\right)$
$Z'\bar{F}F$ (BP-II)	$\frac{e_m}{s_W}\gamma^{\mu} \left[\frac{c_\phi}{s_\phi} T_{3h} \left(1 - \frac{s_\phi^4}{xc_W^2} \right) + \frac{c_\phi}{s_\phi} \frac{s_\phi^4}{xc_W^2} s_W^2 Q \right]$	$\frac{e_m}{s_W}\gamma^\mu \left(\frac{c_\phi}{s_\phi}\frac{s_\phi^4}{xc_W^2}s_W^2Q\right)$

W'/Z' Non-Abelian Coupling

CMS: Diboson Bounds

See Qiang Li's talk

ATLAS versus CMS

Comparable sensitivity on $\sigma_{95\%}(pp \rightarrow G) \times BR(G \rightarrow ZZ)$

Deviations from expected limit at 1.8 - 2.0 TeV (if larger than $I\sigma$):

	local p-values		
	CMS	ATLAS	
V _{jet} V _{jet}	1.3σ	3.4σ (2.5σ global)	
ℓℓ V _{jet}	2σ	_	
ℓv V _{jet}	1.2σ	-	