LHC phenomenology of the type II seesaw: Observability of neutral scalars in the nondegenerate case

Z. L. Han, R. Ding, Y. Liao

School of Physics, Nankai University Based on 1502.05242 and 1506.08996

10th TeV Workshop

Type II seesaw introduces a $SU(2)_L$ triplet Δ with hypercharge 2 in addition to SM Higgs doublet Φ

$$\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \quad \Delta = \begin{pmatrix} \delta^+/\sqrt{2} & \delta^{++} \\ \delta^0 & -\delta^+/\sqrt{2} \end{pmatrix}, \tag{1}$$

The Yukawa coupling between the scalar triplet and lepton doublets is responsible for neutrino masses:

$$\mathcal{L}_{\text{Yuk}} = -Y_{ij}\overline{L_{Li}^{C}}\left(i\tau^{2}\right)\Delta L_{Lj} + \text{h.c.}, \qquad (2)$$

The most general potential is given by (1105.1925)

$$V(\Phi, \Delta) = -m^{2} \Phi^{\dagger} \Phi + M^{2} \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_{1} (\Phi^{\dagger} \Phi)^{2} + \lambda_{2} \left(\operatorname{Tr}(\Delta^{\dagger} \Delta) \right)^{2} + \lambda_{3} \operatorname{Tr}(\Delta^{\dagger} \Delta)^{2} + \lambda_{4} (\Phi^{\dagger} \Phi) \operatorname{Tr}(\Delta^{\dagger} \Delta) + \lambda_{5} \Phi^{\dagger} \Delta \Delta^{\dagger} \Phi + \left(\mu \Phi^{T} i \tau^{2} \Delta^{\dagger} \Phi + \text{h.c.} \right), \quad (3)$$

< ロ > < 同 > < 回 > < 回 > .

After SSB, we can separate out the vev's,

$$\phi^{0} = \frac{1}{\sqrt{2}}(\nu + \phi + i\chi), \ \delta^{0} = \frac{1}{\sqrt{2}}(\nu_{\Delta} + \delta + i\xi),$$
 (4)

the scalars mix as follows:

$$\begin{pmatrix} \phi^{\pm} \\ \delta^{\pm} \end{pmatrix} = \mathcal{R}(\theta_{+}) \begin{pmatrix} \mathbf{G}^{\pm} \\ \mathbf{H}^{\pm} \end{pmatrix}, \ \begin{pmatrix} \chi \\ \xi \end{pmatrix} = \mathcal{R}(\alpha) \begin{pmatrix} \mathbf{G}^{0} \\ \mathbf{A}^{0} \end{pmatrix}, \ \begin{pmatrix} \phi \\ \delta \end{pmatrix} = \mathcal{R}(\theta_{0}) \begin{pmatrix} \mathbf{h} \\ \mathbf{H}^{0} \end{pmatrix}$$

Here $R(\omega)$ is the standard rotation matrix in the plane, and the mixing angles are given by

$$\tan \theta_{+} = \frac{\sqrt{2}v_{\Delta}}{v}, \tan \alpha = \frac{2v_{\Delta}}{v}, \tan 2\theta_{0} = \frac{v_{\Delta}}{v} \frac{2v^{2}(\lambda_{4} + \lambda_{5}) - 4M_{\Delta}^{2}}{2v^{2}\lambda_{1} - M_{\Delta}^{2} - v_{\Delta}^{2}(\lambda_{2} + \lambda_{3})}$$

In the limit $v_{\Delta} \ll v$, scalars have the masses approximately

$$\begin{split} M_{H^{\pm\pm}}^2 &\approx M_{\Delta}^2 - \frac{1}{2}\lambda_5 v^2 \quad , \quad M_{H^{\pm}}^2 &\approx M_{\Delta}^2 - \frac{1}{4}\lambda_5 v^2, \qquad (5) \\ M_{H^0}^2 &\approx M_{A^0}^2 &\approx M_{\Delta}^2 \quad , \quad M_h^2 &\approx 2\lambda_1 v^2 \qquad (6) \end{split}$$

The triplet scalars are equidistant in masses squared to good approximation:

$$M_{H^{\pm\pm}}^2 - M_{H^{\pm}}^2 \approx M_{H^{\pm}}^2 - M_{H^0/A^0}^2 \approx -\frac{1}{4}\lambda_5 v^2,$$
 (7)

Define the mass splitting as $\Delta M = M_{H^{\pm}} - M_{H^0}$, and EWPT require $|\Delta M| < 40 \text{ GeV}$ (1209.1303). Two scenarios for nondegenerate case:

positive scenario
$$(\lambda_5 > 0) : M_{H^{\pm\pm}} < M_{H^{\pm}} < M_{H^0/A^0},$$

negative scenario $(\lambda_5 < 0) : M_{H^{\pm\pm}} > M_{H^{\pm}} > M_{H^0/A^0}.$ (8)

< 日 > < 同 > < 回 > < 回 > < □ > <

3 × 4 3

at benchmark point:

 $v_{\Delta} = 0.001 \text{ GeV}, \ \Delta M = 5 \text{ GeV}, \ \lambda_2 = \lambda_3 = 0.1, \ \lambda_4 = 0.25.$ (9)

Production cross sections for a pair of scalars at LHC14 versus M_{Δ} for a degenerate spectrum. The black dashed line is for the SM *hh* production.

Reference cross section, independent on the cascade decay parameters:

$$X_0 = \sigma(pp \to Z^* \to H^0 A^0)$$
(10)

 $H^{\pm}\psi^{0}$ is the first mechanism with cascade decays, which involves four process:

$$\begin{array}{ll} H^{\pm}H^{0} \rightarrow H^{0}H^{0}W^{*} &, & H^{\pm}H^{0} \rightarrow A^{0}H^{0}W^{*} \\ H^{\pm}A^{0} \rightarrow H^{0}A^{0}W^{*} &, & H^{\pm}A^{0} \rightarrow A^{0}A^{0}W^{*} \end{array}$$
(11)

Three kinds of final state with neutral Higgs-pair: H^0H^0 , A^0H^0 , and A^0A^0 , where H^0H^0 and A^0A^0 pair production can only raise from cascade decays of H^{\pm} in the negative scenario.

Using the fact that

$$\sigma(pp \to W^* \to H^{\pm}H^0) \simeq \sigma(pp \to W^* \to H^{\pm}A^0) \quad (12)$$

$$\mathsf{BR}(H^{\pm} \to H^0W^*) \simeq \mathsf{BR}(H^{\pm} \to A^0W^*) \quad (13)$$

we can calculate the production cross section of these three final states:

$$\begin{array}{lll} H^{0}A^{0}:X_{1} &=& 2[\sigma(pp \rightarrow H^{\pm}H^{0})] \times \mathsf{BR}(H^{\pm} \rightarrow A^{0}W^{*}) \ (14) \\ H^{0}H^{0}:Y_{1} &=& [\sigma(pp \rightarrow H^{\pm}H^{0})] \times \mathsf{BR}(H^{\pm} \rightarrow H^{0}W^{*}) \ (15) \\ A^{0}A^{0}:Z_{1} &=& [\sigma(pp \rightarrow H^{\pm}A^{0})] \times \mathsf{BR}(H^{\pm} \rightarrow A^{0}W^{*}) \ (16) \end{array}$$

A more general relation:

$$X_i = 2Y_i = 2Z_i, (i = 1, 2, 3, 4)$$
 (17)

3 > 4 3

The second mechanism is H^+H^- .

$$X_2 = 2\sigma(pp \to H^+H^-) \times BR(H^{\pm} \to H^0W^*)BR(H^{\pm} \to A^0W^*)$$
(18)
The third mechanism is $H^{\pm}H^{\mp\mp}$.

$$X_{3} = 2[\sigma(pp \to H^{\pm}H^{\mp\mp})] \times BR(H^{\pm\pm} \to H^{\pm}W^{*})$$
(19)
$$BR(H^{\pm} \to H^{0}W^{*})BR(H^{\pm} \to A^{0}W^{*})$$

The forth mechanism is $H^{++}H^{--}$.

$$X_4 = 2\sigma(pp \to H^{++}H^{--}) \times \mathsf{BR}(H^{\pm\pm} \to H^{\pm}W^*)^2 \times \mathsf{BR}(H^{\pm} \to H^0W^*)\mathsf{BR}(H^{\pm} \to A^0W^*)$$
(20)

< 日 > < 同 > < 回 > < 回 > < □ > <

3

< 日 > < 同 > < 回 > < 回 > < □ > <

3

 $\sigma(H^0A^0) = X = \sum X_i, i = 0...4; \sigma(H^0H^0) = Y = \sum Y_i, i = 1...4; \sigma(A^0A^0) = Z = \sum Z_i, i = 1...4.$

Signal rate

For instance, the cross section of $b\bar{b}\gamma\gamma$ is

$$S_{0}(b\bar{b}\gamma\gamma) = X_{0} \times [BR(H^{0} \rightarrow b\bar{b})BR(A^{0} \rightarrow \gamma\gamma) \quad (21) \\ + BR(H^{0} \rightarrow \gamma\gamma)BR(A^{0} \rightarrow b\bar{b})] \\ S(b\bar{b}\gamma\gamma) = X \times [BR(H^{0} \rightarrow b\bar{b})BR(A^{0} \rightarrow \gamma\gamma) \\ + BR(H^{0} \rightarrow \gamma\gamma)BR(A^{0} \rightarrow b\bar{b})] \\ + 2Y \times BR(H^{0} \rightarrow b\bar{b})BR(H^{0} \rightarrow \gamma\gamma) \quad (22) \\ + 2Z \times BR(A^{0} \rightarrow b\bar{b})BR(A^{0} \rightarrow \gamma\gamma) \end{cases}$$

 S_0 corresponds to degenerate scenario, and S corresponds to negative scenario. The cascade enhance factor E_h is therefor S/S_0 .

æ

LHC phenomenology of the type II seesaw: Observability of neutral scalars in the nondegenerate case Z. L. Han, R. Ding, Y. Liao

<ロ> (日) (日) (日) (日) (日)

The signature is:

$$pp \rightarrow \varphi^0 \varphi^0 + X \rightarrow b\bar{b}\gamma\gamma + X$$
 (23)

where $\varphi^0 = H^0, A^0$. The main SM backgrounds we taking into account are:

$$b\bar{b}\gamma\gamma:pp \rightarrow b\bar{b}\gamma\gamma$$
 (24)

$$t\bar{t}h: pp \rightarrow t\bar{t}h \rightarrow b\ell^+ \nu \ \bar{b}\ell^- \nu \ \gamma\gamma(\ell^\pm \text{ missed})$$
 (25)

$$Zh: pp \rightarrow Zh \rightarrow b\bar{b}\gamma\gamma$$
 (26)

Fake $b\bar{b}\gamma\gamma$ signals:

$$pp \rightarrow b\bar{b}jj \rightarrow b\bar{b}\gamma\gamma, pp \rightarrow b\bar{b}j\gamma \rightarrow b\bar{b}\gamma\gamma, \dots$$
 (27)

< 回 > < 回 > < 回 >

$$arepsilon_{b}=0.7, arepsilon_{{f c}
ightarrow {f b}}=0.1, arepsilon_{j
ightarrow {f b}}=0.01, \, arepsilon_{j
ightarrow {f \gamma}}=1.2 imes 10^{-4}.$$

LHC phenomenology of the type II seesaw: Observability of neutral scalars in the nondegenerate case Z. L. Han, R. Ding, Y. Liao

< □ > < 同 >

LHC phenomenology of the type II seesaw: Observability of neutral scalars in the nondegenerate case Z. L. Han, R. Ding, Y. Liao

э

Basic cuts:

$$p_T^b > 30 \text{ GeV}, \ p_T^\gamma > 30 \text{ GeV}, \ |\eta_{b/\gamma}| < 2.4$$

$$\Delta R_{bb} > 0.4, \ \Delta R_{\gamma\gamma} > 0.4, \ \Delta R_{b\gamma} > 0.4$$
(28)

Reproduce the neutral Higgs boson from *b* and γ :

$$\Delta R_{bb} < 2.5, \qquad |M_{bb} - M_{\Delta}| < 15 \text{ GeV}$$
(29)
$$\Delta R_{\gamma\gamma} < 2.5, \qquad |M_{\gamma\gamma} - M_{\Delta}| < 10 \text{ GeV}$$

Additional cuts:

$$M_{H^0A^0} > 2M_{\Delta} + 90 \text{ GeV}, \ E_T > 2M_{\Delta} - 60 \text{ GeV}$$
 (30)

→ ∃ → < ∃ →</p>

▲ロ → ▲圖 → ▲ 画 → ▲ 画 → …

∃ 990

H ⁰ A ⁰ (130GeV)	$bar{b}\gamma\gamma$	tīth	Zh	$\mathcal{S}(S,B)$
$8.01 imes 10^{-1}$	$5.92 imes 10^{3}$	1.18	$2.99 imes 10^{-1}$	$5.75 imes 10^{-1}$
$6.99 imes10^{-2}$	7.07	$1.50 imes 10^{-2}$	$9.61 imes10^{-4}$	1.44
$5.28 imes10^{-2}$	$1.03 imes10^{-1}$	$1.08 imes10^{-2}$	7.32×10^{-4}	8.01
$4.21 imes 10^{-2}$	$2.04 imes10^{-2}$	$4.69 imes10^{-3}$	3.23×10^{-4}	$1.20 imes 10^1$
$3.31 imes10^{-2}$	$6.58 imes10^{-3}$	$4.68 imes 10^{-3}$	$2.27 imes10^{-4}$	$1.28 imes 10^1$
$1.51 imes 10^{-1}$				4.10×10^{1}
$H^{0}A^{0}(160 \text{GeV})$	$bar{b}\gamma\gamma$	tīth	Zh	$\mathcal{S}(\mathcal{S}, \mathcal{B})$
$H^0 A^0 (160 \text{GeV})$ 5.10 × 10 ⁻²	$bar{b}\gamma\gamma$ 5.92 × 10 ³	<i>tīh</i> 1.18	Zh 2.99 × 10 ⁻¹	$\frac{\mathcal{S}(S, \textit{B})}{3.63 \times 10^{-2}}$
$\begin{array}{c} H^0 A^0 (160 {\rm GeV}) \\ 5.10 \times 10^{-2} \\ 4.11 \times 10^{-3} \end{array}$	$bar{b}\gamma\gamma$ $5.92 imes10^{3}$ 5.06	$t\bar{t}h$ 1.18 1.34 × 10 ⁻²	$\frac{Zh}{2.99 \times 10^{-1}} \\ 2.36 \times 10^{-4}$	$rac{\mathcal{S}(\mathcal{S}, B)}{3.63 imes 10^{-2}} \\ 9.99 imes 10^{-2}$
$\begin{array}{c} H^0 A^0 (160 {\rm GeV}) \\ 5.10 \times 10^{-2} \\ 4.11 \times 10^{-3} \\ 3.27 \times 10^{-3} \end{array}$	$bar{b}\gamma\gamma$ 5.92 × 10 ³ 5.06 3.42 × 10 ⁻²	$\begin{array}{c} t\bar{t}h \\ 1.18 \\ 1.34 \times 10^{-2} \\ 1.57 \times 10^{-5} \end{array}$	$\begin{array}{c} Zh \\ 2.99 \times 10^{-1} \\ 2.36 \times 10^{-4} \\ 0.00 \end{array}$	$\begin{array}{c} \mathcal{S}(S,B) \\ 3.63 \times 10^{-2} \\ 9.99 \times 10^{-2} \\ 9.53 \times 10^{-1} \end{array}$
$\begin{array}{c} H^0 A^0 (160 {\rm GeV}) \\ 5.10 \times 10^{-2} \\ 4.11 \times 10^{-3} \\ 3.27 \times 10^{-3} \\ 2.57 \times 10^{-3} \end{array}$	$\begin{array}{c} bb\gamma\gamma\\ 5.92\times10^{3}\\ 5.06\\ 3.42\times10^{-2}\\ 1.12\times10^{-2} \end{array}$		$\begin{array}{c} Zh \\ 2.99 \times 10^{-1} \\ 2.36 \times 10^{-4} \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} \mathcal{S}(\mathcal{S}, \mathcal{B}) \\ 3.63 \times 10^{-2} \\ 9.99 \times 10^{-2} \\ 9.53 \times 10^{-1} \\ 1.28 \end{array}$
$\begin{array}{c} H^0 A^0 (160 {\rm GeV}) \\ \overline{5.10 \times 10^{-2}} \\ 4.11 \times 10^{-3} \\ 3.27 \times 10^{-3} \\ 2.57 \times 10^{-3} \\ 1.73 \times 10^{-3} \end{array}$	$\begin{array}{c} bb\gamma\gamma\\ 5.92\times10^3\\ 5.06\\ 3.42\times10^{-2}\\ 1.12\times10^{-2}\\ 3.95\times10^{-3} \end{array}$			$\begin{array}{c} \mathcal{S}(S,B) \\ 3.63 \times 10^{-2} \\ 9.99 \times 10^{-2} \\ 9.53 \times 10^{-1} \\ 1.28 \\ 1.41 \end{array}$

Table: Cross sections (in fb) at LHC 14 TeV for the $b\bar{b}\gamma\gamma$ with $L_{int} = 3000$ fb⁻¹.

Figure: The solid line corresponds to the signal from S_0 alone, and the dashed line corresponds to the total signal *S*.

Conclusion

- Scalar interaction λ_i has great impact on the decays of H^0/A^0 . $H^0 \to W^+W^-$ can be dominant when $M_{H^0} < 2M_h$.
- Cascade decays of H^{±±} and H[±] contribute to the production of φ⁰. The enhance factor can reach about 3.
- Production of $\varphi^0 \varphi^0$ for $M_{\varphi^0} < 200 \text{ GeV}$ is much larger than *hh*.
- Signatures as bb
 *b γ*γ, bb
 τ⁺τ⁻, bb
 W⁺W⁻ are in the reach of LHC.