Understanding the structure of d*(2380) in a chiral quark model

Fei HUANG

University of Chinese Academy of Sciences, Beijing, China

Collaborators: Z.Y. Zhang, P.N. Shen, Y.B. Dong (IHEP, CAS) W.L. Wang (Beihang U.)

Experiments @ COSY

Exclusive

 \diamond

WASA-at-COSY, PRL106(2011)242302

Evidence from np scattering

WASA-at-COSY & SAID DAC, PRL112(2014)202301

3

Unusual narrow width of d*

2154 **ΝΝΠΠ**

 $M_{d*} \approx 2380 \text{ MeV} \\ \approx 2M_{\Delta} - 84 \text{ MeV} \\ > M_{\Delta N\pi} \\ > M_{NN\pi\pi} \\ > M_{NN}$

```
Γ<sub>d*</sub> ≈ 70 MeV
< 1/3 × 2Γ<sub>Δ</sub>
```


1878 – NN

Theoretical $\Delta\Delta$ binding energies

Our prediction in 1999

X. Q. Yuan, Z. Y. Zhang, Y. W. Yu, and P. N. Shen, Phys. Rev. C 60, 045203 (1999).

TABLE II. Binding energy B and rms \overline{R} of the deltaron $B = -(E_{\text{deltaron}} - 2M_{\Delta}), \ \overline{R} = \sqrt{\langle r^2 \rangle}.$ $\frac{\Delta\Delta}{CC}$ (L=0) $\Delta\Delta$ (L=0) $\Delta\Delta$ $CC \setminus +2$ $\Delta\Delta(L=0)$ 29.9 42.0 B (MeV) 41.0 29.8 0.92 0.92 0.87 0.87 OGE \overline{R} (fm) 62.6 79.7 B (MeV)50.2 68.6 30-60 40-80 0.86 0.84 $OGE + \pi, \sigma$ 0.87 0.83 \overline{R} (fm) 22.5 B (MeV) 18.4 31.7 37.3 OGE + SU(3)0.92 0.92 1.01 1.00 \overline{R} (fm)

- Binding energy: 40 ~ 80 MeV
- CC: 10 ~ 20 MeV increase in binding energy

6

Our most recent work

F. Huang, P. N. Shen, Y. B. Dong, and Z. Y. Zhang, arXiv: 1505.05395

Total Hamiltonian for 6q systems:

$$H = \sum_{i=1}^{6} \left(m_i + \frac{\vec{P}_i^2}{2m_i} \right) - T_{\rm cm} + \sum_{1=i< j}^{6} \left(V_{ij}^{\rm conf} + V_{ij}^{\rm OGE} + V_{ij}^{\rm ch} \right)$$

Ch. SU(3) QM:

$$V^{
m ch}_{ij} = \sum_{a=0}^8 V^{\sigma_a}_{ij} + \sum_{a=0}^8 V^{\pi_a}_{ij}$$

Ext. Ch. SU(3) QM:

$$V_{ij}^{
m ch} = \sum_{a=0}^{8} V_{ij}^{\sigma_a} + \sum_{a=0}^{8} V_{ij}^{\pi_a} + \sum_{a=0}^{8} V_{ij}^{
ho_a}$$

Determination of parameters

> Input: $m_u = m_d = 313 \text{ MeV},$ $b_u = 0.5 \text{ fm} (SU(3)) \& 0.45 \text{ fm} (ex. SU(3))$

Coupling between quark & chiral fields:

$$\frac{g_{\rm ch}^2}{4\pi} = \left(\frac{3}{5}\right)^2 \frac{g_{NN\pi}^2}{4\pi} \frac{m_u^2}{m_N^2}, \qquad \frac{g_{NN\pi}^2}{4\pi} = 13.67$$

> Mass of mesons: experimental values except for m_{σ}

- **>** Coupling constant for OGE: $g_u \propto m_{\Delta} m_N$
- Confinement strength & zero point energy:

$$\frac{\partial m_N}{\partial b_u} = 0, \qquad m_N = 939 \text{ MeV}$$

Parameter values

All parameters fixed already in our study of NN scattering. No additional parameter is introduced in this work.

TABLE I. Model parameters. The meson masses and the cutoff masses: $m_{\sigma'} = 980$ MeV, $m_{\epsilon} = 980$ MeV, $m_{\pi} = 138$ MeV, $m_{\eta} = 549$ MeV, $m_{\eta'} = 957$ MeV, $m_{\rho} = 770$ MeV, $m_{\omega} = 782$ MeV, and $\Lambda = 1100$ MeV.

	Ch. $SU(3)$	$\mathbf{Ext.}$	Ch. $SU(3)$
		f/g=0	f/g=2/3
$\overline{b_u}$ (fm)	0.5	0.45	0.45
$m_u ({ m MeV})$	313	313	313
g_u^2	0.766	0.056	0.132
$g_{ m ch}$	2.621	2.621	2.621
$g_{ m chv}$		2.351	1.973
$m_\sigma~({ m MeV})$	595	535	547
$a^c_{uu}~({ m MeV/fm}^2)$	46.6	44.5	39.1
$a^{c0}_{uu}~({ m MeV})$	-42.4	-72.3	-62.9

Masses of baryons and deuteron

The masses of baryons

	N	Σ	Ξ	٨	Δ	Σ*	Ξ*	Ω
Theor.	939	1194	1335	1116	1232	1370	1511	1656
Expt.	939	1194	1319	1116	1232	1385	1530	1672

The binding energy of deuteron

	Chiral SU(3) quark model	Extended chiral SU(3) quark model		
		$f_{chv}/g_{chv} = 0$	$f_{chv}/g_{chv} = 2/3$	
$B_{deu} \ ({ m MeV})$	2.13	2.19	2.14	

NN phase shifts

11

RGM study of $\Delta\Delta$ -CC

RGM wave functions for $\Delta\Delta$ -CC system:

$$\begin{split} \Psi_{6q} &= \mathcal{A} \Big[\hat{\phi}_{\Delta}^{\text{int}} \left(\bar{\xi}_{1}, \bar{\xi}_{2} \right) \hat{\phi}_{\Delta}^{\text{int}} \left(\bar{\xi}_{4}, \bar{\xi}_{5} \right) \eta_{\Delta\Delta} \left(\vec{r} \right) \Big]_{S=3, I=0, C=(00)} \\ &+ \mathcal{A} \Big[\hat{\phi}_{C}^{\text{int}} \left(\bar{\xi}_{1}, \bar{\xi}_{2} \right) \hat{\phi}_{C}^{\text{int}} \left(\bar{\xi}_{4}, \bar{\xi}_{5} \right) \eta_{CC} \left(\vec{r} \right) \Big]_{S=3, I=0, C=(00)} \\ &\Delta \colon (0S)^{3} [3]_{\text{orb}}, \ S = \frac{3}{2}, \ I = \frac{3}{2}, \ C = (00) \\ &C \colon (0S)^{3} [3]_{\text{orb}}, \ S = \frac{3}{2}, \ I = \frac{1}{2}, \ C = (11) \end{split}$$

RGM equation for a bound state problem:

$$\langle \delta \psi_{6q} | H - E | \psi_{6q} \rangle = 0$$

Calculated d* mass

Without CC: BE $\approx 29 - 62$ MeV

		$\Delta\Delta$ $(L=0,2)$				
	SU(3)	Ext. $SU(3)$	Ext. $SU(3)$			
		(f/g=0)	(f/g=2/3)			
B (MeV)	28.96	62.28	47.90			
RMS (fm)	0.96	0.80	0.84			

With CC: BE $\approx 47 - 84$ MeV

		$\Delta\Delta - \mathrm{CC}$ ($L =$	(0, 2)
	SU(3)	Ext. $SU(3)$	Ext. SU(3)
		(f/g=0)	(f/g=2/3)
B (MeV)	47.27	83.95	70.25
RMS (fm)	0.88	0.76	0.78
$(\Delta\Delta)_{L=0}~(\%)$	33.11	31.22	32.51
$(\Delta\Delta)_{L=2}~(\%)$	0.62	0.45	0.51
$(CC)_{L=0}$ (%)	66.25	68.33	66.98
$(CC)_{L=2}$ (%)	0.02	0.00	0.00

- d*: a deeply bound & compact ΔΔ-CC state
- Coupling to CC plays a significant role
- Predicted binding energy agrees with experiment

 $M_{d^{\star}}\approx 2M_{\Delta}-84~MeV$

Distinctive features of \Delta\Delta: why

Quark-exchange effect:

$$\boldsymbol{\psi}_{6q} = \mathcal{A}\left[\hat{\phi}^{\text{int}}\left(\boldsymbol{\bar{\xi}}_{1},\boldsymbol{\bar{\xi}}_{2}\right)\,\hat{\phi}^{\text{int}}\left(\boldsymbol{\bar{\xi}}_{4},\boldsymbol{\bar{\xi}}_{5}\right)\,\eta(\boldsymbol{r})\right]$$

- For 6 identical quarks: $\mathcal{A} = 1 9P_{36}$
- Quark-exchange effect: $\langle \mathcal{A}^{sfc} \rangle \in [0, 2]$

•
$$(\Delta\Delta)_{S=3,I=0}$$
: $\langle \Delta\Delta | \mathcal{A}^{sfc} | \Delta\Delta \rangle_{S=3,I=0} = 2$

Strongly "attractive"!

lsive

Short-range interaction:

OGE: attractive + VMEs: attractive

Oka & Yazaki, PLB90(1980)41: For non-strange BB systems, $(\Delta\Delta)_{S=3,I=0}$ is the only one in which OGE provides attraction at short-range.

Deuteron:
$$\langle NN | \mathcal{A}^{sfc} | NN \rangle_{S=1, I=0} = 10/9 \sim 1$$

OGE: repulsive + VMEs: repu

RGM wave functions

RGM wave functions:

$$\begin{split} \Psi_{6q} &= (1 - 9P_{36}) \Big[\hat{\phi}_{\Delta}^{\text{int}} \left(\vec{\xi}_{1}, \vec{\xi}_{2} \right) \hat{\phi}_{\Delta}^{\text{int}} \left(\vec{\xi}_{4}, \vec{\xi}_{5} \right) \eta_{\Delta\Delta} \left(\vec{r} \right) \Big]_{S=3, I=0, C=(00)} \\ &+ (1 - 9P_{36}) \Big[\hat{\phi}_{C}^{\text{int}} \left(\vec{\xi}_{1}, \vec{\xi}_{2} \right) \hat{\phi}_{C}^{\text{int}} \left(\vec{\xi}_{4}, \vec{\xi}_{5} \right) \eta_{CC} \left(\vec{r} \right) \Big]_{S=3, I=0, C=(00)} \end{split}$$

Terms not orthogonal to each other:

$$\left\langle \Delta\Delta \left| P_{36}^{sfc} \right| \Delta\Delta \right\rangle_{S=3, I=0} = -\frac{1}{9}$$
$$\left\langle CC \left| P_{36}^{sfc} \right| \Delta\Delta \right\rangle_{S=3, I=0} = -\frac{4}{9}$$
$$\left\langle CC \left| P_{36}^{sfc} \right| CC \right\rangle_{S=3, I=0} = -\frac{7}{9}$$

Not suitable for clarification of $\Delta\Delta$, CC components in d^{*}

Channel wave functions

Channel wave functions (Relative wave functions in physical basis):

$$\begin{split} \boldsymbol{\chi}_{\Delta\Delta}(\vec{r}) &= \left\langle \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| \boldsymbol{\psi}_{6q} \right\rangle \\ &= \left\langle \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| (1-9P_{36}) \left[\hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \, \eta_{\Delta\Delta}(\vec{r}) \right] \right\rangle \\ &- 9 \left\langle \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| P_{36} \left[\hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \, \eta_{CC}\left(\vec{r}\right) \right] \right\rangle \\ \boldsymbol{\chi}_{CC}(\vec{r}) &= \left\langle \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| \boldsymbol{\psi}_{6q} \right\rangle \\ &= \left\langle \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| (1-9P_{36}) \left[\hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \, \eta_{CC}\left(\vec{r}\right) \right] \right\rangle \\ &- 9 \left\langle \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{C}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \middle| P_{36} \left[\hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{1},\vec{\xi}_{2}\right) \, \hat{\phi}_{\Delta}^{\text{int}}\left(\vec{\xi}_{4},\vec{\xi}_{5}\right) \, \eta_{\Delta\Delta}\left(\vec{r}\right) \right] \right\rangle \end{split}$$

Wave function of d*

Reorganize the wave function of d^{*}:

$$\Psi_{d^*} = |\Delta\Delta\rangle \chi_{\Delta\Delta}(\vec{r}) + |CC\rangle \chi_{CC}(\vec{r})$$
$$= \sum_{L=0,2} \left[|\Delta\Delta\rangle \frac{\chi_{\Delta\Delta}^L(r)}{r} + |CC\rangle \frac{\chi_{CC}^L(r)}{r} \right] Y_{L0}(\hat{r})$$

 $\Delta\Delta$ & CC parts are now orthogonal to each other:

 $\langle CC | \Delta \Delta \rangle = 0$

 $\chi_{\Delta\Delta}$, χ_{CC} are used to discuss the spatial distribution of d^{*} and its individual components of $\Delta\Delta$ & CC

Relative wave function

Unlike deuteron, d* is rather narrowly distributed!

CC component

d* has a CC fraction of about 2/3

		$\Delta\Delta - \mathrm{CC} \ (L =$	0,2)
	SU(3)	Ext. $SU(3)$	Ext. SU(3)
		(f/g=0)	(f/g=2/3)
B (MeV)	47.27	83.95	70.25
RMS (fm)	0.88	0.76	0.78
$(\Delta\Delta)_{L=0}~(\%)$	33.11	31.22	32.51
$(\Delta\Delta)_{L=2}~(\%)$	0.62	0.45	0.51
$(CC)_{L=0}$ (%)	66.25	68.33	66.98
$(CC)_{L=2}$ (%)	0.02	0.00	0.00

> A pure hexaquark state of $\Delta\Delta$ system has 4/5 CC fraction

$$[6]_{\rm orb}[33]_{IS=03} = \sqrt{\frac{1}{5}} |\Delta\Delta\rangle_{IS=03} + \sqrt{\frac{4}{5}} |CC\rangle_{IS=03}$$

d* is a hexaquark-dominated exotic state!

Stability against confinement

1 channel & 2 color-singlet clusters: free from any types of confinement Check for $\Delta\Delta$ -CC system:

	Δ	$\Delta\Delta-{ m CC}(L=0,2)$			
	r^2	r	$\operatorname{Erf}(r)$		
Binding energy (MeV)	83.95	86.17	87.63		
RMS of $6q$ (fm)	0.76	0.76	0.76		
Fraction of $(\Delta \Delta)_{L=0}$ (%)	31.22	30.66	30.41		
Fraction of $(\Delta \Delta)_{L=2}$ (%)	0.45	0.42	0.40		
Fraction of $(CC)_{L=0}$ (%)	68.33	68.92	69.19		
Fraction of $(CC)_{L=2}$ (%)	0.00	0.00	0.00		

Results of d^{*} are rather stable against the types of confinement Why: d^{*} is rather compact, thus not sensitive to long-range confinement

Decay of $d^* \longrightarrow d\pi\pi$

Y. B. Dong, P. N. Shen, F. Huang, and Z. Y. Zhang, arXiv:1503.02456, accepted by PRC

 $\Gamma_{d^* \to d\pi^0 \pi^0} = \frac{1}{2!} \int d^3 k_1 d^3 k_2 d^3 p_d(2\pi) \delta^3(\vec{k}_1 + \vec{k}_2 + \vec{p}_d) \delta(\omega_{k_1} + \omega_{k_2} + E_{p_d} - M_{d^*}) \mid \overline{\mathcal{M}}_{if}^{\pi^0 \pi^0} \mid^2$

No free parameter!

Test: dynamical effect on width

Bashkanov, Brodsky, and Clement, PLB 727 (2013) 438:
 ΔΔ (one channel) binding energy: 90 MeV
 Width: ~ 160 MeV (only phase space, no dynamical effect)

> Our tests:

Set the $\Delta\Delta$ (one channe) binding energy to be 90 MeV Width: ~ 118 MeV (phase space & dynamical effect)

Conclusion:

- Dynamical effect is important on decay width
- $\Delta\Delta$ channel alone cannot explain d^{*}'s narrow width

$\Delta\Delta$ +CC scenario: width of d*

TABLE I: Decay width

	Ours			Expt.	
	$\Delta\Delta$	two channels $\Delta \Delta + CC$		[4, 20, 21, 23]	
$M_{d^*}({ m MeV})$	2374	2380		2375	
mode	$\Gamma({ m MeV})$	\mathcal{B}_r $\Gamma({ m MeV})$		$ \mathcal{B}_r $	$\Gamma({ m MeV})$
$d^* \rightarrow d\pi^0 \pi^0$	16.6	13.3%	9.2	14(1)%	10.2
$d^* \rightarrow d\pi^+\pi^-$	30.1	24.3%	16.8	23(2)%	16.7
$d^* ightarrow pn \pi^0 \pi^0$	14.1	11.3%	7.8	12(2)%	8.7
$d^* ightarrow pn \pi^+ \pi^-$	34.6	27.8%	19.2	30(4)%	21.8
$d^* ightarrow pp \pi^0 \pi^-$	7.06	5.65%	3.9	6(1)%	4.4
$d^* ightarrow nn \pi^+ \pi^0$	7.06	5.65%	3.9	6(1)%	4.4
$d^* \rightarrow pn$	8.24	12.0%	8.3	12(3)%	8.7
Total	117.7	99.9%	69.1	103(14)%	74.9

Calculated width consistent with the data!

Summary

- d*(2380) has been reported by WASA-at-COSY with an unusual narrow width ($\Gamma \approx 70$ MeV)
- ΔΔ-CC with I(J^P)=0(3⁺) is dynamically investigated in our chiral SU(3) quark model and its extended version
- d^{*} has a CC fraction of about 2/3 → it is a hexaquarkdominated exotic state
- The calculated binding energy (47–84 MeV) & decay width (66–73 MeV) are consistent with the data (M $\sim 2M_{\Delta} 84$ MeV, $\Gamma \sim 70$ MeV)
- More experimental & theoretical works needed to further test the properties of d*(2380)

Thank you for your attention!