universitätbonn

Heavy quark symmetry and hadronic molecules

Feng-Kun Guo

Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn

International Workshop on QCD Exotics, 07-12 June 2015, Jinan

Based on:
FKG, C. Hanhart, U.-G. Meißner, PRL102(2009)242004
FKG, C. Hidalgo-Duque, J. Nieves, M. Pavón Valderrama, PRD88(2013)054007; 054014
FKG, C. Hidalgo-Duque, J. Nieves, A. Ozpineci, M. Pavón Valderrama, EPJC74(2014)2885
FKG, Meißner, Yang, PLB740(2015)42
FKG, Hanhart, Kalashnikova, Meißner, Nefediev, PLB742(2015)394
M. Albaladejo, FKG, C. Hidalgo-Duque, J. Nieves, M. Pavón Valderrama, arXiv:1504.00861 [hep-ph]

Hadronic molecules (I)

- Hadronic molecule:
dominant component is 2 or more hadrons
- Extended, so that can be approximated by system of multi-hadrons Consider a 2-body bound state with a mass $M=m_{1}+m_{2}-E_{B}$
size: $\quad R \sim \frac{1}{p} \sim \frac{1}{\sqrt{2 \mu E_{B}}}$

Hadronic molecules (I)

- Hadronic molecule:
dominant component is 2 or more hadrons
- Extended, so that can be approximated by system of multi-hadrons Consider a 2-body bound state with a mass $M=m_{1}+m_{2}-E_{B}$
size: $\quad R \sim \frac{1}{p} \sim \frac{1}{\sqrt{2 \mu E_{B}}}$

- Only narrow hadrons can be considered as components of hadronic molecules, $\Gamma_{h} \ll 1 / r, r$: range of forces

Filin et al., PRL105(2010)019101; FKG, Meißner, PRD84(2011)014013

Hadronic molecules (II)

- Why are hadronic molecules interesting?
one realization of color-neutral objects, analogue of nuclei
important information for hadron-hadron interaction
model-independent statements can be made
see also talks by C. Hanhart and H.-Q. Zheng
understanding the $X Y Z$ states, nice objects to apply heavy quark symmetries

Heavy quark spin symmetry (I)

- Heavy quark spin symmetry (HQSS) implies spin multiplets for heavy hadrons, heavy quarkonium, e.g. $\left(D, D^{*}\right),\left(\eta_{c}, J / \psi\right)$
- \Rightarrow spin partners of hadronic molecules
- For hadronic molecules of the form $Q \bar{Q}+$ light hadron

FKG, Hanhart, Meißner, PRL102(2009)242004
exchange at least two gluons, LO interaction independent of heavy quark spin
spin multiplet with approximately the same splitting as that for $Q \bar{Q}$
ne the same for hadro-quarkonium
arXiv:1505.01771, see the talk by M. Cleven

HQSS (II)

- For hadronic molecules composed of two open-flavor heavy mesons more complicated, but can be studied by writing down the effective Lagrangian for the LO interaction between spin multiplets. e.g.

AlFiky et al., PLB640(2006)238 ...

$$
\begin{aligned}
\mathcal{L}_{4 H}= & C_{A} \operatorname{Tr}\left[\bar{H}_{a}^{(Q)} H_{a}^{(Q)} \gamma_{\mu}\right] \operatorname{Tr}\left[H_{b}^{(\bar{Q})} \bar{H}_{b}^{(\bar{Q})} \gamma^{\mu}\right] \\
& +C_{A}^{\tau} \operatorname{Tr}\left[\bar{H}_{a}^{(Q)} \tau_{a b} H_{b}^{(Q)} \gamma_{\mu}\right] \operatorname{Tr}\left[H_{c}^{(\bar{Q})} \vec{\tau}_{c d} \bar{H}_{d}^{(\bar{Q})} \gamma^{\mu}\right] \\
& +C_{B} \operatorname{Tr}\left[\bar{H}_{a}^{(Q)} H_{a}^{(Q)} \gamma_{\mu} \gamma_{5}\right] \operatorname{Tr}\left[H_{b}^{(\bar{Q})} \bar{H}_{b}^{(\bar{Q})} \gamma^{\mu} \gamma_{5}\right] \\
& +C_{B}^{\tau} \operatorname{Tr}\left[\bar{H}_{a}^{(Q)} \vec{\tau}_{a b} H_{b}^{(Q)} \gamma_{\mu} \gamma_{5}\right] \operatorname{Tr}\left[H_{c}^{(\bar{Q})} \vec{\tau}_{c d} \bar{H}_{d}^{(\bar{Q})} \gamma^{\mu} \gamma_{5}\right]
\end{aligned}
$$

here
$\vec{\tau}$: Pauli matrices in isospin space

$$
H_{a}^{(Q)}: D, D^{*} ; \quad H_{a}^{(\bar{Q})}: \bar{D}, \bar{D}^{*}
$$

HQSS (III)

- Number of the contact terms can be easily understood:
define $\vec{s}_{\ell} \equiv \vec{J}-\vec{s}_{Q}$: total angular momentum of the light quark system
\vec{J} : total angular momentum, $\quad \vec{s}_{Q}$: heavy quark spin
E.g., for D and $D^{*}: s_{\ell}^{P}=\frac{1}{2}^{-}$

HQSS \Rightarrow total angular momentum of light quarks is conserved

- Consider interaction between a pair of $s_{\ell}^{P}=\frac{1}{2}^{-}$(anti-)heavy mesons, interaction matrix elements:

$$
\left\langle s_{\ell 1}, s_{\ell 2}, s_{L}\right| \hat{\mathcal{H}}\left|s_{\ell 1}^{\prime}, s_{\ell 2}^{\prime}, s_{L}\right\rangle
$$

For each isospin, 2 independent terms

$$
\left\langle\frac{1}{2}, \frac{1}{2}, 0\right| \hat{\mathcal{H}}\left|\frac{1}{2}, \frac{1}{2}, 0\right\rangle, \quad\left\langle\frac{1}{2}, \frac{1}{2}, 1\right| \hat{\mathcal{H}}\left|\frac{1}{2}, \frac{1}{2}, 1\right\rangle
$$

Isospin $I=0$ or $1 \Rightarrow 4$ independent terms in this case:
$C_{0 A}, C_{0 B} ; C_{1 A}, C_{1 B}$: linear combinations of $C_{A, B}^{(\tau)}$

HQSS (IV)

- Some channels have the same linear combination of contact terms

$$
\begin{aligned}
& V\left(D \bar{D}^{*}, 1^{++}\right)=V\left(D^{*} \bar{D}^{*}, 2^{++}\right)=C_{I A}+C_{I B} \\
& V\left(D \bar{D}^{*}, 1^{+-}\right)=V\left(D^{*} \bar{D}^{*}, 1^{+-}\right)=C_{I A}-C_{I B}
\end{aligned}
$$

$D \bar{D}$ does not have the same interaction: $\quad V\left(D \bar{D}, 0^{++}\right)=C_{I A}$

- This would suggest spin multiplets. Good candidates:
$X(3872)$ and $X_{2}(4013) ; \quad Z_{c}(3900)$ and $Z_{c}(4020)$

$$
M_{X_{2}(4013)}-M_{X(3872)} \approx M_{Z_{c}(4020)}-M_{Z_{c}(3900)} \approx M_{D^{*}}-M_{D}
$$

$Z_{b}(10610)$ and $Z_{b}(10650)$ in the bottom sector

$$
M_{Z_{b}(10650)}-M_{Z_{b}(10610)} \approx M_{B^{*}}-M_{B}
$$

More symmetries

- heavy quark flavor symmetry

$$
V\left(D \bar{D}^{*}\right)=V\left(\bar{B} B^{*}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{c}}\right), \ldots
$$

- heavy anti-quark-diquark symmetry

larger uncertainty, in particular $\sim 40 \%$ for the charm sector!

Inputs and predictions (I)

- Solve Lippmann-Schwinger equation regularized with a Gaussian form factor, bound states appear as poles in the first Riemann sheet below threshold
- Inputs

$$
\begin{array}{lll}
\text { Mass of } X(3872) & \Rightarrow C_{0 a}+C_{0 b} \\
\text { Mass of } Z_{b}(10610) & \Rightarrow C_{1 a}-C_{1 b}
\end{array}
$$

- Predicted many partners of $X(3872)$ and $Z_{b}(10610)$

Partners of $X(3872)\left[1^{++}\right]$:

$I\left(J^{P C}\right)$	States	Thresholds	Masses $(\Lambda=0.5 \mathrm{GeV})$
$0\left(1^{++}\right)$	$\frac{1}{\sqrt{2}}\left(D \bar{D}^{*}-D^{*} \bar{D}\right)$	3875.87	3871.68 (input)
$0\left(2^{++}\right)$	$D^{*} \bar{D}^{*}$	4017.3	4012_{-5}^{+4}
$0\left(1^{++}\right)$	$\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}-B^{*} \bar{B}\right)$	10604.4	10580_{-8}^{+9}
$0\left(2^{++}\right)$	$B^{*} \bar{B}^{*}$	10650.2	10626_{-9}^{+8}
$0\left(2^{+}\right)$	$D^{*} B^{*}$	7333.7	7322_{-7}^{+6}

Inputs and predictions (II)

Partners of $Z_{b}(10610)$ [1+-]:

$I\left(J^{P C}\right)$	States	Thresholds	Masses $(\Lambda=0.5 \mathrm{GeV})$
$1\left(1^{+-}\right)$	$\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)$	10604.4	10602.4 ± 2.0 (input)
$1\left(1^{+-}\right)$	$B^{*} \bar{B}^{*}$	10650.2	10648.1 ± 2.1
$1\left(1^{+-}\right)$	$\frac{1}{\sqrt{2}}\left(D \bar{D}^{*}+D^{*} \bar{D}\right)$	3875.87	$3871_{-12}^{+4}(\mathrm{~V})$
$1\left(1^{+-}\right)$	$D^{*} \bar{D}^{*}$	4017.3	$4013_{-11}^{+4}(\mathrm{~V})$
$1\left(1^{+}\right)$	$D^{*} B^{*}$	7333.7	$7333.6_{-4.2}^{\dagger}(\mathrm{V})$

Two virtual states in charm sector, could correspond to $Z_{c}(3900)$ and $Z_{c}(4020)$

Inputs and predictions (II)

Partners of $Z_{b}(10610)$ [1+-]:

$I\left(J^{P C}\right)$	States	Thresholds	Masses $(\Lambda=0.5 \mathrm{GeV})$
$1\left(1^{+-}\right)$	$\frac{1}{\sqrt{2}}\left(B \bar{B}^{*}+B^{*} \bar{B}\right)$	10604.4	10602.4 ± 2.0 (input)
$1\left(1^{+-}\right)$	$B^{*} \bar{B}^{*}$	10650.2	10648.1 ± 2.1
$1\left(1^{+-}\right)$	$\frac{1}{\sqrt{2}}\left(D \bar{D}^{*}+D^{*} \bar{D}\right)$	3875.87	$3871_{-12}^{+4}(\mathrm{~V})$
$1\left(1^{+-}\right)$	$D^{*} \bar{D}^{*}$	4017.3	$4013_{-11}^{+4}(\mathrm{~V})$
$1\left(1^{+}\right)$	$D^{*} B^{*}$	7333.7	$7333.6_{-4.2}^{\dagger}(\mathrm{V})$

Two virtual states in charm sector, could correspond to $Z_{c}(3900)$ and $Z_{c}(4020)$ More investigations needed:

- only considered LO constant contact terms \Rightarrow cannot get resonances
- no one-pion exchange, no coupled-channels see Nieves, Valderrama $(2011,2012)$
- so far, the assignments of the predicted states to the observed ones only based on masses, \Rightarrow decays and productions

What can we say about productions and decays (I)

- For hadronic molecules with a small binding energy \Rightarrow extended object

$$
\sqrt{2 \mu E_{B}} \ll \Lambda_{\text {hadron }} \sim 1 \mathrm{GeV}
$$

- Most important point of effective field theory: scale separation
loosely bound hadronic molecules can be studied with nonrelativistic EFT
to study near-threshold structures, one must take into account the channel with that threshold, unless the coupling is negligible, no matter what structure was used as the starting point
\Rightarrow for $X(3872)$: has to consider $D^{0} \bar{D}^{* 0} \quad$ XEFT: Fleming et al., PRD76(2007)
\Rightarrow depending on the specifics (cut-off) of the EFT, $D^{+} D^{*-}+c . c$. as well comparison and consistency between XEFT and our NREFT
T. Mehen, arXiv:1503.02719 [hep-ph]
- different processes have different energy scales, not all are sensitive to the hadronic molecule structure

What can we say about the productions and decays (II)

- For processes dominated by long-distance physics: calculable with controlled uncertainties using EFT

Examples:
$X(3872) \rightarrow D^{0} \bar{D}^{0} \pi^{0}, X(3872) \rightarrow D^{0} \bar{D}^{0} \gamma$

What can we say about the productions and decays (II)

- For processes dominated by long-distance physics:
calculable with controlled uncertainties using EFT
Examples:
$X(3872) \rightarrow D^{0} \bar{D}^{0} \pi^{0}, X(3872) \rightarrow D^{0} \bar{D}^{0} \gamma$
Voloshin (2004); ...
- For processes dominated by short-distance physics:
order-of-magnitude estimate at best
Examples:

```
(1) \(X(3872) \rightarrow e^{+} e^{-\quad \text { Denig, FKG, Hanhart, Nefediev, PLB736(2014)221 } 120}\)
    estimate: \(\Gamma\left(X \rightarrow e^{+} e^{-}\right) \gtrsim 0.03 \mathrm{eV}\)
    BESIII: \(\Gamma\left(X \rightarrow e^{+} e^{-}\right)_{\exp }<4.3 \mathrm{eV}\)
    BESIII: arXiv:1505.02559 [hep-ex]
    \(X(3872) \rightarrow \psi \gamma\)
```


$X(3872) \rightarrow \psi \gamma$

FKG, Hanhart, Kalashnikova, Meißner, Nefediev, PLB742(2015)394
(a)

(b)

(c)

(d)

(e)

(f)

The ratio $\quad \frac{\mathcal{B}\left(X(3872) \rightarrow \psi^{\prime} \gamma\right)}{\mathcal{B}(X(3872) \rightarrow J / \psi \gamma)}=2.46 \pm 0.64 \pm 0.29$
LHCb, NPB886(2014)665
is insensitive to the molecular component of the $X(3872)$:
loops are sensitive to unknown couplings $g_{\psi D D} / g_{\psi^{\prime} D D}$
loops are divergent, needs a counterterm (short-distance physics)
see also Mehen, Springer, PRD83(2011)094009

Production: $e^{+} e^{-} \rightarrow \gamma X_{2}(4013)$

- BESIII observed $e^{+} e^{-} \rightarrow \gamma X(3872)$ at $\sqrt{s}=4.26 \mathrm{GeV}$ BESIII, PRL112(2014)092001
- Analogous process: $e^{+} e^{-} \rightarrow \gamma X_{2}(4013)$

- Optimized energy region for searching:

$$
\sqrt{s} \sim 4.26 \mathrm{GeV}+\left(M_{D_{1} / D_{2}}+M_{D^{*}}\right)-\left(M_{D_{1}}+M_{D}\right) \sim[4.4,4.5] \mathrm{GeV}
$$

- can be facilitated if there is an analogue/analogues of $Y(4260)$ in that region, plausible

For an estimate of the production at hadron colliders,

Decays: $X(3872) \rightarrow D^{0} \bar{D}^{0} \pi^{0}$

- A long-distance process, thus can be studied in nonrelativistic EFT
- Already studied by many authors

Voloshin (2004); Fleming et al (2007); Braaten, Lu (2007); Hanhart et al (2007); ...
Our new insight:
FKG et al., EPJC74(2014)2885
If there is a near-threshold $D \bar{D}$ hadronic molecule \Rightarrow a large impact
Problem: one unknown contact term $C_{0 A}$

grey band: tree-level result (consistent with Fleming et al., PRD76(2007))
vertical line: a $D \bar{D}$ bound state at threshold

Decays: $X_{2}(4013) \rightarrow D \bar{D} / D \bar{D}^{*}$ (I)

- $X_{2}(4013)$: 2^{++}, above $D \bar{D}, D \bar{D}^{*}$ thresholds we expect it to decay dominantly into $D \bar{D}$ and $D \bar{D}^{*}+$ c.c. in D-wave

- assuming that the one-pion exchange can be treated perturbatively, decay width calculated in

Albaladejo et al., arXiv:1504.00861 [hep-ph]

Parameters:
($D^{*} D \pi$ coupling: very-well measured, $g=0.570 \pm 0.006$
$X_{2} D^{*} \bar{D}^{*}$ coupling: calculable, residue of the T-matrix

Decays: $X_{2}(4013) \rightarrow D \bar{D} / D \bar{D}^{*}$ (II)

- Two P-wave vertices: divergent loop integral?

$$
\epsilon_{i j} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{l^{i} l^{j}}{\left[(l+q)^{2}-M^{2}+i \varepsilon\right]\left[(k-l)^{2}-M^{2}+i \varepsilon\right]\left(l^{2}-m^{2}+i \varepsilon\right)}
$$

here $\epsilon_{i j}$: polarization tensor, symmetric, traceless only convergent part contributes! reason: D-wave decay, $l^{i} l^{j} \rightarrow q_{D}^{i} q_{D}^{j}$

- so it seems straightforward to calculate the widths, use the same Gaussian cutoff but, a problem:
a large dependence on the cutoff Λ

$[\mathrm{MeV}]$	$\Lambda=0.5 \mathrm{GeV}$	$\Lambda=1 \mathrm{GeV}$
$\Gamma\left(D^{+} D^{-}\right)$	$3.3_{-1.4}^{+3.4}$	$7.3_{-2.1}^{+7.9}$
$\Gamma\left(D^{0} \bar{D}^{0}\right)$	$2.7_{-1.2}^{+3.1}$	$5.7_{-1.8}^{+7.8}$

Errors in the table: HQSS breaking (20\% in potential) $+X(3872)$ input

Decays: $X_{2}(4013) \rightarrow D \bar{D} / D \bar{D}^{*}$ (III)

- Reason for the large cutoff dependence: large external momenta

$$
q_{D} \simeq 730 \mathrm{MeV} \quad\left[q_{D} \simeq 510 \mathrm{MeV} \text { for } D \bar{D}^{*}\right]
$$

\Rightarrow momentum of the exchanged pion can be large

- a large contribution from $l \gtrsim 1 \mathrm{GeV}$, (l : pion momentum)

reaches the valid/invalid edge of EFT, NO reliable/precise prediction can be made
- Next, order-of-magnitude estimate by modelling

Decays: $X_{2}(4013) \rightarrow D \bar{D} / D \bar{D}^{*}$ (IV)

- Order-of-magnitude estimate:
introduce a pion-exchange vertex form factor to suppress the contribution from high-momentum modes

$$
\frac{\Lambda_{\pi}^{2}}{l^{2}+\Lambda_{\pi}^{2}}, \quad \Lambda_{\pi} \simeq 1 \mathrm{GeV}
$$

[MeV]	without pion-exchange FF		with pion-exchange FF	
	$\Lambda=0.5 \mathrm{GeV}$	$\Lambda=1 \mathrm{GeV}$	$\Lambda=0.5 \mathrm{GeV}$	$\Lambda=1 \mathrm{GeV}$
$\Gamma\left(D^{+} D^{-}\right)$	$3.3_{-1.4}^{+3.4}$	$7.3_{-2.1}^{+7.9}$	$0.5_{-0.2}^{+0.5}$	$0.8_{-0.2}^{+0.7}$
$\Gamma\left(D^{0} \bar{D}^{0}\right)$	$2.7_{-1.2}^{+3.1}$	$5.7_{-1.8}^{+7.8}$	$0.4_{-0.2}^{+0.5}$	$0.6_{-0.2}^{+0.7}$

- $\Gamma\left(X_{2} \rightarrow D \bar{D}^{*} / D^{*} \bar{D}\right)$: similar problem happens, partial widths similar
- Estimated width for $X_{2}(4013)$: narrow

$$
\Gamma\left(X_{2}\right) \approx \Gamma(D \bar{D})+\Gamma\left(D \bar{D}^{*}\right)+\Gamma\left(D^{*} \bar{D}\right) \sim \text { a few } \mathrm{MeV}
$$

- also decays into $J / \psi \omega(J / \psi \rho$ should be suppressed)

Summary

- heavy quark symmetry can provide interesting predictions/insights to hadronic molecules
to other structures as well
- should go beyond the mass spectrum because important structure information is contained in the coupling
\Rightarrow decays and productions
- structure of hadronic molecules can only be discussed for processes sensitive to long-distance physics
- decay width of X_{2} (4013) estimated to be a few MeV

Backup slides

Bound state and virtual state (I)

Suppose the scattering length is very large, the S wave scattering amplitude

$$
f_{0}(k)=\frac{1}{k \cot \delta_{0}(k)-i k} \simeq \frac{1}{-1 / a-i k}
$$

bound state pole: $1 / a=\kappa$
virtual state pole: $1 / a=-\kappa$

- If the same binding energy, cannot be distinguished above threshold (k is real):

$$
\left|f_{0}(k)\right|^{2} \sim \frac{1}{\kappa^{2}+k^{2}}
$$

Bound state and virtual state (II)

- Bound state and virtual state with a small binding energy should be distinguished in inelastic channel

A bound state and virtual state with a 5 MeV binding energy, a small residual width to the inelastic channel is allowed.

X_{b} and $X_{b 2}$

- X_{b} : analogue of $X(3872), 1^{++}, M \simeq 10.58 \mathrm{GeV}$ FKG et al., PRD88(2013)054007 X_{b} has a binding energy much larger than that of the $X(3872)$ ne isospin $I=0$, and isospin breaking effects should be small:

$$
\begin{gathered}
M_{B^{0}}-M_{B^{ \pm}}=(0.32 \pm 0.06) \mathrm{MeV}, \quad M_{X_{b}}-M_{\Upsilon(1 S)}-M_{\omega / \rho} \gtrsim 300 \mathrm{MeV} \\
\Rightarrow \mathcal{B}\left(X_{b} \rightarrow \Upsilon(1 S) \pi \pi\right) \lesssim 10^{-2}, \text { better to search for it in } \\
\Upsilon \pi^{+} \pi^{-} \pi^{0}, \Upsilon(n S) \gamma \text { and } \chi_{b J} \pi^{+} \pi^{-} \\
\text {FKG et al., PRD88(2013)054007; FKG et al., EPJC74(2014)3063 }
\end{gathered}
$$

- its spin partner $X_{b 2}: M_{X_{b 2}} \simeq M_{X_{b}}+45 \mathrm{MeV}, X_{b 2} \rightarrow B \bar{B}$ (D-wave) $\Gamma\left(X_{2}\right) \sim$ a few MeV

Albaladejo et al., arXiv:1504.00861 [hep-ph]

