Notes on $\mathbf{e}^{+} \mathbf{e}^{-}$Cross Sections: a brief review of where we are

Ryan Mitchell
Indiana University
Jinan XYZ Workshop
June 8, 2015

The Simplicity of the $\mathrm{e}^{+} \mathrm{e}^{-}$Process?

Naively, one would think this would be a simple process.

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilation to charmonium (via ISR)

Total Cross Sections: R in charmonium

Total Cross Sections: R in bottomonium

- And in bottomonium, everything is straightforward below the open bottom threshold.

Total Cross Sections: R in bottomonium

- The variety of thresholds apparently complicates matters above open bottom threshold, but an " $\Upsilon(5 S)$ " and " $\Upsilon(6 S)$ " seem clear.

Exclusive Cross Sections: $\pi^{+} \pi \Upsilon(1 S, 2 S, 3 S)$

Exclusive Cross Sections: $\pi^{+} \pi^{-} h_{b}(1 P, 2 P)$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi\left(\Upsilon(\mathrm{nS}), \mathrm{h}_{\mathrm{b}}(\mathrm{nP})\right) \text { at } \mathrm{E}_{\mathrm{CM}} \sim " \Upsilon(5 \mathrm{~S}) " \text { Mass at Belle }
$$

PRL 108, 032001 (2012)

- In addition, $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} h_{b}(\mathrm{nP})\right)$ is comparable to $\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \Upsilon(\mathrm{nS})\right)$ around the " $\Upsilon(5 S)$ ".

Exclusive Cross Sections: $\pi^{+} \pi^{-} J / \psi$

- In charmonium, the $\mathrm{Y}(4260)$ has no corresponding peak in R , and also has no place in the quark model.

Exclusive Cross Sections: $\pi^{+} \pi^{-} J / \psi$

Exclusive Cross Sections: $\pi^{+} \pi^{-} J / \psi$

Exclusive Cross Sections: $\pi^{+} \pi^{-} \psi(2 S)$

$$
\mathrm{e}^{+} \mathrm{e}^{-}\left(\gamma_{\text {ISR }}\right) \rightarrow \pi^{+} \pi^{-} \psi(2 \mathrm{~S}) \text { at BaBar }
$$

PRL 98, 212001 (2007)

- In $\pi^{+} \pi^{-} \psi(2 S)$, there is a $\mathrm{Y}(4360)$ instead of a Y(4260).

Exclusive Cross Sections: $\pi^{+} \pi^{-} \psi(2 S)$

Exclusive Cross Sections: $\pi^{+} \pi^{-} \psi(2 S)$

Exclusive Cross Sections: $\pi^{+} \pi h_{c}(1 P)$

- Does $\pi^{+} \pi \mathrm{h}_{\mathrm{c}}(1 \mathrm{P})$ show hints of the $\mathrm{Y}(4260)$?

Exclusive Cross Sections: $\pi^{+} \pi h_{c}(1 P)$

Exclusive Cross Sections: $\pi^{+} \pi h_{c}(1 P)$

Exclusive Cross Sections: $K^{+} K^{-} J / \psi$

- There is surprising nontrivial structure in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \mathrm{J} / \psi$.

Exclusive Cross Sections: $\eta J / \psi$

$\mathrm{e}^{+} \mathrm{e}^{-}\left(\gamma_{\text {ISR }}\right) \rightarrow \eta \mathrm{J} / \psi$ at Belle
 PRD 87, $051101(\mathrm{R})$ (2013)

- The initial observation of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \eta \mathrm{J} / \psi$ was fit with conventional $\psi(4040)$ and $\psi(4160)$ states.

Exclusive Cross Sections: $\eta J / \psi$

Exclusive Cross Sections: $\eta J / \psi$

Exclusive Cross Sections: $\omega \chi_{c 0}$

- The $\omega \chi_{c 0}$ cross section is also inconsistent with the $\mathrm{Y}(4260)$.

Exclusive Cross Sections: $\gamma X(3872)$

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma\left(\pi^{+} \pi-\mathrm{J} / \psi\right) \text { at } \mathrm{E}_{\mathrm{CM}} \sim 4.26 \mathrm{GeV} \text { at BESIII }
$$

- BESIII has an observation of $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mathrm{X}(3872)$ with $\mathrm{E}_{\mathrm{CM}} \sim 4.26 \mathrm{GeV}$.

Exclusive Cross Sections: $\gamma X(3872)$

Exclusive Cross Sections: Open Charm

- The exclusive open charm cross sections are also difficult to interpret.

Exclusive Cross Sections: Open Charm

- Although the total open charm cross section again seems well-behaved.
- The exclusive open charm cross sections are also difficult to interpret.

The Simplicity of the $\mathrm{e}^{+} \mathrm{e}^{-}$Process?

What seemed simple, now seems hard.
We need:
(1) more data;
(2) a global outlook.

$\mathrm{e}^{+} \mathrm{e}^{-}$annihilation to charmonium (via ISR)

