Notes on e⁺e⁻ Cross Sections:

a brief review of where we are

Ryan Mitchell Indiana University Jinan XYZ Workshop June 8, 2015

1

Total Cross Sections: *R in charmonium*

Total Cross Sections: *R in bottomonium*

• And in bottomonium, everything is straightforward below the open bottom threshold.

Total Cross Sections: *R in bottomonium*

• The variety of thresholds apparently complicates matters above open bottom threshold, but an " $\Upsilon(5S)$ " and " $\Upsilon(6S)$ " seem clear.

Exclusive Cross Sections: $\pi^+\pi^-\Upsilon(1S,2S,3S)$

- Peak positions in $\pi^+\pi^-\Upsilon(1S,2S,3S)$ are (more or less) consistent with the " $\Upsilon(5S)$ " and " $\Upsilon(6S)$ " from R_b.
- But from this preprint, $B(``Y(5S)" \rightarrow \pi^{+}\pi^{-}Y(1S,2S,3S)) = 0.17 \pm 0.01,$ which is much larger than $B(Y(4S) \rightarrow \pi^{+}\pi^{-}Y(1S,2S,3S)) \sim O(10^{-4}).$
- This suggests there is something strange happening with (or near) the " $\Upsilon(5S)$ ".

Exclusive Cross Sections: $\pi^+\pi^-h_b(1P,2P)$

• In addition, $\sigma(e^+e^- \rightarrow \pi^+\pi^-h_b(nP))$ is comparable to $\sigma(e^+e^- \rightarrow \pi^+\pi^-\Upsilon(nS))$ around the " $\Upsilon(5S)$ ".

Exclusive Cross Sections: $\pi^+\pi^- J/\psi$

• In charmonium, the Y(4260) has no corresponding peak in R, and also has no place in the quark model.

Exclusive Cross Sections: $\pi^+\pi^- J/\psi$

Exclusive Cross Sections: $\pi^+\pi^- J/\psi$

Exclusive Cross Sections: $\pi^+\pi^-\psi(2S)$

Exclusive Cross Sections: $\pi^+\pi^-\psi(2S)$

Exclusive Cross Sections: $\pi^+\pi^-\psi(2S)$

Exclusive Cross Sections: $\pi^+\pi^-h_c(1P)$

Exclusive Cross Sections: $\pi^+\pi^-h_c(1P)$

Exclusive Cross Sections: $\pi^+\pi^-h_c(1P)$

Exclusive Cross Sections: K^+K^-J/ψ

Exclusive Cross Sections: $\eta J/\psi$

• The initial observation of $e^+e^- \rightarrow \eta J/\psi$ was fit with conventional $\psi(4040)$ and $\psi(4160)$ states.

Exclusive Cross Sections: $\eta J/\psi$

Exclusive Cross Sections: $\eta J/\psi$

Exclusive Cross Sections: $\omega\chi_{c0}$

Exclusive Cross Sections: $\gamma X(3872)$

Exclusive Cross Sections: $\gamma X(3872)$

Exclusive Cross Sections: Open Charm

Exclusive Cross Sections: Open Charm

