Zb and Zc states at Belle

Pavel Krokovny
Budker Institute of Nuclear Physics
Novosibirsk State University

Outline:

- $\mathrm{Z}_{\mathrm{b}}{ }^{+}$in $\mathrm{Y}(5 \mathrm{~S}) \rightarrow \mathrm{Y}(\mathrm{nS}) \pi^{+} \pi^{-}$
- $Z_{b}{ }^{0}$ in $Y(5 S) \rightarrow Y(n S) \pi^{0} \pi^{0}$
- Determinition of $Z_{b}{ }^{+}$quantum numbers
- $\mathrm{Z}_{\mathrm{b}}{ }^{+}$in $\left.\mathrm{Y}(5 \mathrm{~S}) \rightarrow \mathrm{B}^{(*)} \mathrm{B}^{*}\right) \pi$
- Observation of $Z^{+}(4200)$ in $B \rightarrow J / \psi K \pi$
- Evidence of $\mathrm{Z}^{+}(4050)$ in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(2 \mathrm{~S}) \pi \pi$
- Summary

The Belle experiment

Integrated Luminosity[fb-1]

KEKB B-Factory

Introduction

Belle collected $121 \mathrm{fb}^{-1}$ at $\Upsilon(5 \mathrm{~S})$

$$
\begin{aligned}
& \text { Belle: PRL100, } 112001 \text { (2008) } \sim 100 \\
& \Gamma\left[\Upsilon(5 S) \rightarrow \Upsilon(1,2,3 \mathrm{~S}) \pi^{+} \pi^{-}\right] \gg \Gamma\left[\Upsilon(4,3,2 \mathrm{~S}) \rightarrow \Upsilon(1 \mathrm{~S}) \pi^{+} \pi^{-}\right] \\
& \Leftrightarrow \text { Rescattering of on-shell } \mathrm{B}^{(*)} \mathrm{B}^{(*)} \bar{?}
\end{aligned}
$$

Belle: PRL108, 032001 (2012)

$$
\Upsilon(5 \mathrm{~S}) \rightarrow \mathrm{h}_{\mathrm{b}}(1,2 \mathrm{P}) \pi^{+} \pi^{-} \text {are not suppressed }
$$

h_{b} production mechanism $? \Rightarrow$ Study resonant structure in $h_{b}(\mathrm{mP}) \pi^{+} \pi^{-}$

Observation of $\Upsilon(5 S) \rightarrow h_{b}(n P) \pi^{+} \pi^{-}$

Process with spin flip of heavy quark is not suppressed: mechanism of $\Upsilon(5 S) \rightarrow$ $h_{b}(\mathrm{nP}) \pi^{+} \pi^{-}$decay violates Heavy Quark Spin Symmetry

Resonant structure of $\Upsilon(5 S) \rightarrow(b b) \pi^{+} \pi^{-}$

Summary of Z_{b} parameters

Final state	$\Upsilon(1 S) \pi^{+} \pi^{-}$	$\Upsilon(2 S) \pi^{+} \pi^{-}$	$\Upsilon(3 S) \pi^{+} \pi^{-}$	$h_{b}(1 P) \pi^{+} \pi^{-}$	$h_{b}(2 P) \pi^{+} \pi^{-}$
$M\left[Z_{b}(10610)\right], \mathrm{MeV} / c^{2}$	$10611 \pm 4 \pm 3$	$10609 \pm 2 \pm 3$	$10608 \pm 2 \pm 3$	$10605 \pm 2_{-1 .}^{+3}$	10599_{-3-4}^{+6+5}
$\Gamma\left[Z_{b}(10610)\right], \mathrm{MeV}$	$22.3 \pm 7.7_{-4.0}^{+3.0}$	$24.2 \pm 3.1_{-3.0}^{+2.0}$	$17.6 \pm 3.0 \pm 3.0$	$11.4_{-3.9-1.2}^{+4.5+2.1}$	13_{-8-7}^{+10+9}
$M\left[Z_{b}(10650)\right], \mathrm{MeV} / c^{2}$	$10657 \pm 6 \pm 3$	$10651 \pm 2 \pm 3$	$10652 \pm 1 \pm 2$	$10654 \pm 3_{-2}^{+1}$	10651_{-3-2}^{+2+3}
$\Gamma\left[Z_{b}(10650)\right], \mathrm{MeV}$	$16.3 \pm 9.8_{-2.0}^{+6.0}$	$13.3 \pm 3.3_{-3.0}^{+4.0}$	$8.4 \pm 2.0 \pm 2.0$	$20.9{ }_{-4.7-5.7}^{+5.4+2.1}$	$19 \pm 7_{-6}^{+11}$
Rel. normalization	$0.57 \pm 0.21_{-0.194}^{+0.19}$	$0.86 \pm 0.11_{-0.10}^{+0.04}$	$0.96 \pm 0.14_{-0.05}^{+0.08}$	$1.39 \pm 0.37_{-0.15}^{+0.05}$	$1.6_{-0.4-0.4}^{+0.6+0.4}$
Rel. phase, degrees	$58 \pm 43_{-9}^{+4}$	$-13 \pm 13_{-8}^{+17}$	$-9 \pm 19_{-26}^{+11}$	187_{-57-12}^{+44+3}	$181_{-105-109}^{+65+74}$

$\Upsilon(5 S) \rightarrow \Upsilon(\mathrm{nS}) \pi^{+} \pi: \mathrm{J}^{\mathrm{P}}$ Analysis

$\Upsilon(5 S) \rightarrow \Upsilon(n S) \pi^{+} \pi^{\prime}: J^{P}$ Results

6D amplitude analysis of decays $\Upsilon(5 \mathrm{~S}) \rightarrow \Upsilon(\mathrm{nS}) \pi^{+} \pi^{-}$

$Z_{b}(10650)$		1^{+}	1^{-}	2^{+}		
$Z_{b}(10610)$			2^{-}			
1^{+}	$0(0)$	$60(33)$	$42(33)$	$77(63)$		
1^{-}	$226(47)$	$264(73)$	$224(68)$	$277(106)$		
2^{+}	$205(33)$	$235(104)$	$207(87)$	$223(128)$		
2^{-}	$289(99)$	$319(111)$	$321(110)$	$304(125)$	\quad Spin parity of bother $\mathrm{JPb}^{\mathrm{P}}$ is $\mathrm{J}^{\mathrm{P}=1^{+}}$	are excluded
:---						

Z_{b} angular analysis

Angle between prompt pion and beam axis

$Y \square \mu^{+} \mu^{-}$helicity angle

Confirms $\mathrm{JP}^{\mathrm{P}}=1^{+}$hypothesis
6D amplitude analysis of decays $\Upsilon(5 S) \square \Upsilon(n S) \pi^{+} \pi^{-}$

$\Upsilon(5 S) \rightarrow \mathrm{B}^{*} \mathrm{~B}^{(*)} \pi$: Selection

Masses of $Z_{b}(10610)$ and $Z_{b}(10650)$ are close to $B B^{*}$ and $B^{*} B^{*}$ threshold.
Search for $Y(5 S) \rightarrow Z_{b} \pi$ decay with $Z_{b} \rightarrow B^{(*)} B^{*}$; reconstruct only one B and prompt pion

Charged B: $\mathrm{D}^{0}[\mathrm{~K} \pi, \mathrm{~K} \pi \pi \pi] \pi \pi^{-}, \mathrm{J} / \psi[\mu \mu] \mathrm{K}^{-}$
Neutral B: $\mathrm{D}^{+}[\mathrm{K} \pi \pi] \pi^{-}, \mathrm{J} / \psi[\mu \mu] \mathrm{K}^{* 0}, \mathrm{D}^{*+}\left[\mathrm{K} \pi, \mathrm{K} \pi \pi^{0}, \mathrm{~K} \pi \pi \pi\right] \pi^{-}$

$\Upsilon(5 S) \rightarrow \mathrm{B}^{*} \mathrm{~B}^{(*)}$ т: Fit

Recoil mass to $\mathrm{B} \pi$ combinations

Red histogram: right charge combination $В \pi$; Hatched histogram: wrong charge combination; The curve show the fit to the data.

Fit yields: $N(B B \pi)=0.3 \pm 14$

$$
N\left(B^{*} B^{*} \pi\right)=82 \pm 11(5.7 \sigma)
$$

$\left.\Upsilon(5 S) \rightarrow \mathrm{B}^{*} \mathrm{~B}^{*}\right) \pi$: Search for Z_{b}

Points represent the data.
Curves show the fit with various models.
arXiv:1209.6450
Hatched histogram is the background contribution.
$B * B * \pi$ candidates are well described by $\mathrm{Z}_{\mathrm{b}}(10650)$ only contribution.
$\mathrm{BB}^{*} \pi$ can be described by two models:
$\mathrm{Z}_{\mathrm{b}}(10610)+\mathrm{Z}_{\mathrm{b}}(10650)$;
$\mathrm{Z}_{\mathrm{b}}(10610)+$ non-resonant amplitude.

Z_{b} branching fractions

$\Upsilon(5 S)$ branching fractions:

$$
\begin{aligned}
& \mathrm{BB} \pi<0.60 \% \text { (at } 90 \% \mathrm{CL}) \\
& \mathrm{BB}^{*} \pi=4.25 \pm 0.44 \pm 0.69 \% \\
& \mathrm{~B}^{*} \mathrm{~B}^{*} \pi=2.12 \pm 0.29 \pm 0.36 \%
\end{aligned}
$$

arXiv:1209.6450
To be compared with PRD 81 (2010)

$$
\begin{aligned}
& f\left(B^{*} \pi\right)=(7.3 \pm 2.2 \pm 0.8) \% \\
& f\left(B^{*} B^{*} \pi\right)=(1.0 \pm 1.4 \pm 0.4) \%
\end{aligned}
$$

Assuming Z_{b} decaying to $\Upsilon(n S) \pi, h_{b}(m P) \pi$ and $B(*) B^{*} o n l y$:

Channel	Fraction, \%	
	$Z_{b}(10610)$	$Z_{b}(10650)$
$\Upsilon(1 S) \pi^{+}$	0.32 ± 0.09	0.24 ± 0.07
$\Upsilon(2 S) \pi^{+}$	4.38 ± 1.21	2.40 ± 0.63
$\Upsilon(3 S) \pi^{+}$	2.15 ± 0.56	1.64 ± 0.40
$h_{b}(1 P) \pi^{+}$	2.81 ± 1.10	7.43 ± 2.70
$h_{b}(2 P) \pi^{+}$	4.34 ± 2.07	14.8 ± 6.22
$B^{+} \bar{B}^{* 0}+\bar{B}^{0} B^{*+}$	86.0 ± 3.6	-
$B^{*+} \bar{B}^{* 0}$	-	73.4 ± 7.0

$B\left({ }^{*}\right) B^{*}$ - is the dominant mode of Z_{b} decays

$\Upsilon(5 S) \rightarrow Y(n S) \pi^{0} \pi^{0}$

$\Upsilon(1,2,3 S) \rightarrow \mu^{+} \mu^{-}$, e $^{+} e, \Upsilon(2 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-}$

$\Upsilon(2,3 S) \pi^{0} \pi^{0}$ Dalitz analysis

Phys. Rev. D 88, 052016 (2013)

III $Z_{b}{ }^{0}$ resonant structure has been observed in $\Upsilon(2 S) \pi^{0} \pi^{0}$ and $\Upsilon(3 S) \pi^{0} \pi^{0}$
II Statistical significance of $Z_{b}{ }^{\circ}(10610)$ signal is 6.5σ including systematics
[1] $\mathrm{Z}_{\mathrm{b}}{ }^{0}(10650)$ signal is not significant $(\sim 2 \sigma)$, not contradicting with its existence
[1] $Z_{b}{ }^{0}{ }^{0}(10610)$ mass from the fit $M=10609 \pm 4 \pm 4 \mathrm{MeV} / \mathrm{c}^{2} \quad \mathrm{M}\left(\mathrm{Z}_{\mathrm{b}}{ }^{+}\right)=10607 \pm 2 \mathrm{MeV} / \mathrm{c}^{2}$

Phys. Rev. D 90, 112009 (2014)

Observation of $Z^{+}(4200)$

Exclusion levels of other spin-parity hypothesis

Model	0^{-}	1^{-}	2^{-}	2^{+}
Without $K^{*}(1680)$	8.5σ	8.5σ	8.0σ	9.0σ
Without $K_{0}^{*}(1950)$	8.4σ	8.8σ	7.3σ	8.9σ
LASS	6.1σ	7.4σ	4.4σ	7.0σ
Free masses and widths	7.6σ	7.9σ	5.9σ	7.8σ
Free r	7.4σ	8.7σ	7.5σ	9.2σ
Nonresonant ampl. (S)	7.6σ	8.1σ	7.2σ	8.5σ
Nonresonant ampl. (S,P)	7.4σ	8.1σ	7.2σ	8.4σ
Nonresonant ampl. (S,P,D)	7.2σ	8.1σ	7.1σ	8.4σ

Phys. Rev. D 90, 112009 (2014)
JP=1+, other JP are excluded

TABLE III. The fit fractions and significances of all resonances in the default model $\left(J^{P}=1^{+}\right)$.

Resonance	Fit fraction	Significance (local)
$K_{0}^{*}(800)$	$\left(7.1_{-0.5}^{+0.7}\right) \%$	22.5σ
$K^{*}(892)$	$\left(69.0_{-0.5}^{+0.6}\right) \%$	166.4σ
$K^{*}(1410)$	$\left(0.3_{-0.1}^{+0.2}\right) \%$	4.1σ
$K_{0}^{*}(1430)$	$\left(5.9_{-0.4}^{+0.6}\right) \%$	22.0σ
$K_{2}^{*}(1430)$	$\left(6.3_{-0.4}^{+0.3}\right) \%$	23.5σ
$K^{*}(1680)$	$\left(0.3_{-0.1}^{+0.2}\right) \%$	2.7σ
$K_{3}^{*}(1780)$	$\left(0.2_{-0.1}^{+0.1}\right) \%$	3.8σ
$K_{0}^{*}(1950)$	$\left(0.1_{-0.1}^{+0.1}\right) \%$	1.2σ
$K_{2}^{*}(1980)$	$\left(0.4_{-0.1}^{+0.1}\right) \%$	5.3σ
$K_{4}^{*}(2045)$	$\left(0.2_{-0.1}^{+0.1}\right) \%$	3.8σ
$Z_{c}(4430)^{+}$	$\left(0.5_{-0.1}^{+0.4}\right) \%$	5.1σ
$Z_{c}(4200)^{+}$	$\left(1.9_{-0.5}^{+0.7}\right) \%$	8.2σ

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(2 \mathrm{~S}) \pi^{+} \pi^{-}$via ISR

- $\quad \psi(2 S) \rightarrow \mathrm{J} / \psi \pi^{+} \pi^{-}$and $\mu^{+} \mu^{-}$
- $\quad \mathrm{M}^{2}{ }_{\text {rec }}\left[\psi(2 \mathrm{~S}) \pi^{+} \pi^{-}\right]<2\left(\mathrm{GeV} / \mathrm{c}^{2}\right)^{2}$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(2 \mathrm{~S}) \pi^{+} \pi^{-}$via ISR intermediate states

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \underset{\mathrm{M}\left[\pi^{+} \pi^{-}\right]}{\psi(2 \mathrm{~S}) \pi^{+} \pi^{-} \text {via ISR }}$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(2 \mathrm{~S}) \pi^{+} \pi^{-}$via ISR

fit to $\mathrm{M}\left[\psi(2 S) \pi^{+} \pi^{-}\right]$

Two solutions when fitting by
$Y(4360)$ and $Y(4660)$
$\chi^{2} /$ n.d.f. $=18.7 / 21$

Parameters	Solution I	Solution II
$M_{Y(4360)}$	$4347 \pm 6 \pm 3$	
$\Gamma_{Y(4360)}$	$103 \pm 9 \pm 5$	
$\mathcal{B}\left[Y(4360) \rightarrow \pi^{+} \pi^{-} \psi(2 S)\right] \cdot \Gamma_{Y(4360)}^{e^{+} e^{-}}$	$9.2 \pm 0.6 \pm 0.6$	$10.9 \pm 0.6 \pm 0.7$
$M_{Y(4660)}$	$4652 \pm 10 \pm 11$	
$\Gamma_{Y(4660)}$	$68 \pm 11 \pm 5$	
$\mathcal{B}\left[Y(4660) \rightarrow \pi^{+} \pi^{-} \psi(2 S)\right] \cdot \Gamma_{Y(4660)}^{e^{+} e^{-}}$	$2.0 \pm 0.3 \pm 0.2$	$8.1 \pm 1.1 \pm 1.0$
ϕ	$32 \pm 18 \pm 20$	$272 \pm 8 \pm 7$

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(2 \mathrm{~S}) \pi^{+} \pi^{-}$via ISR

arXiv:1410.7641

Four solutions when $Y(4260)$ is included $\chi^{2} /$ n.d.f. $=18.7 / 21 \quad \mathrm{Y}(4260)$ significance is 2.4σ

$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \psi(2 \mathrm{~S}) \pi^{+} \pi^{-}$via ISR

 search for Zc

Evidence for a new charged Zc state
3.5σ significance
$\mathrm{M}=4054 \pm 3 \pm 1 \mathrm{MeV} / \mathrm{c}^{2}$
$\Gamma=45 \pm 11 \pm 6 \mathrm{MeV}$

Summary

- Neutral $Z_{b}{ }^{\circ}(10610)$ has been observed in amplitude analysis of $\mathrm{Y}(5 \mathrm{~S}) \rightarrow \mathrm{Y}(5 \mathrm{~S}) \pi^{0} \pi^{0}$
- Advanced amplitude analysis confirms JP=1+ hypothesis for $\mathrm{Z}_{\mathrm{b}}{ }^{+}(10610)$ and $Z_{b}{ }^{+}(10650)$ states
- Both $Z_{b}+(10610)$ and $Z_{b}+(10650)$ have been observed in decays to B^{*} and $B^{*} B^{*}$. These modes are found to be dominant for $Z_{b}{ }^{+}$decays.
- A new charged charmonium-like state, Z+(4200) has been observed in amplitude analysis of $\mathrm{B} \rightarrow \mathrm{J} / \psi \mathrm{K} \cdot \pi^{+}$decay.

Hems An evidence for a new charged charmonium-like state, $Z^{+}(4050)$ has been obtained in amplitude analysis of e+e- $\rightarrow \psi(2 S) \pi^{+} \pi^{-}$decay.

- More exciting results are going to come from Belle II.

