How to extract the resonant parameters of the excited vector ψ states?

——Call for help from theorists.

Weimin Song

IHEP

June 8, Jinan Shandong

Outline

1. Motivation

2. Existing method

3. Problems for the existing method

4. Topics for discussion

Motivation

The S-wave or D-wave Charmonium states can be produced from the e+e- collision directly, and their resonant parameters can be extracted by fitting the R value.

Motivation

The resonant parameters are important IDs for the resonances, and a few vector exotic states are observed, such as Y(4008), Y(4260), Y(4360), Y(4630), Y(4660).

mass, total width, electronic width, phase angle

$$\mathcal{T}_r^f(W) = \frac{M_r \sqrt{\Gamma_r^{ee} \Gamma_r^f}}{W^2 - M_r^2 + i M_r \Gamma_r} e^{i\delta_r}.$$

Motivation

A large data sample has been collected by BESIII, and a more sophisticate study of the resonant parameters can be achieved!

Data	R scan	XYZ	possible future
Energy (GeV)	3.85-4.59 at 100 points	3.81-4.60 at 20 points	4-4.6 at 60 points
Luminosity (pb ⁻¹)	800	5000	30000

Existing method

$$R_{the} = R_{res} + R_{con}$$

$$R_{res} = \frac{12\pi}{s} \sum_{f} |\sum_{r} BW_{r}^{f}(\sqrt{s})|$$

$$BW_r^f(\sqrt{s}) = \frac{M_r \sqrt{\Gamma_r^{ee} \Gamma_r^f}}{s - M_r^2 + i M_r \Gamma_r} e^{i\delta_r}$$

$$\Gamma_r(\sqrt{s}) = \Gamma_r^{QED}(\sqrt{s}) + \Gamma_r^{had}(\sqrt{s})$$

$$\Gamma_r^{had}(\sqrt{s}) = \frac{2M_r}{M_r + \sqrt{s}} \sum_f \Gamma_r^f(\sqrt{s})$$

$$\Gamma_r^f(\sqrt{s}) = \Gamma_r \sum_L \frac{Z_f^{2L+1}}{B_L}$$

$$R_{con} = C_0 + C_1(W + 2M_{D^{\pm}}) + C_2(W + 2M_{D^{\pm}})^2$$

PLB 660 315

Existing method

Parameter	$\psi(4040)$	$\psi(4160)$	$\psi(4415)$
M (MeV)	4034 ± 6	4193 ± 7	4412 ± 15
$\Gamma_t \; ({ m MeV})$	87 ± 11	79 ± 14	118 ± 32
$\Gamma_{ee}^{(1)}$ (keV)	0.66 ± 0.22	0.42 ± 0.16	0.45 ± 0.13
$\phi^{(1)}$ (radian)	0 (fixed)	2.7 ± 0.8	2.0 ± 0.9
$\Gamma_{ee}^{(2)} \; (\text{keV})$	0.72 ± 0.24	0.73 ± 0.18	0.60 ± 0.25
$\phi^{(2)}$ (radian)	0 (fixed)	3.1 ± 0.7	1.4 ± 1.2
$\Gamma_{ee}^{(3)} \; ({\rm keV})$	1.28 ± 0.45	0.62 ± 0.30	0.59 ± 0.20
$\phi^{(3)}$ (radian)	0 (fixed)	3.7 ± 0.4	3.8 ± 0.8
$\Gamma_{ee}^{(4)}~({ m keV})$	1.41 ± 0.12	1.10 ± 0.15	0.78 ± 0.17
$\phi^{(4)}$ (radian)	0 (fixed)	4.1 ± 0.1	3.2 ± 0.3

The electronic width is closely related to the nature of the resonance!

Problem

1. The Breit-Wigner assumption is made.

The sum of more than 2 BW functions violates the unitarity (see Professor Christoph Hanhart's talk); multi-solutions.

2. The energy dependent partial width is not based on experimental data.

$$\Gamma_r^f(\sqrt{s}) = \Gamma_r \sum_L \frac{Z_f^{2L+1}}{B_L}$$

$$Z_f = \rho P_f$$

p is the decay momentum, ρ is the range of interaction (a few fermi)

$$B_0 = 1$$
 $B_1 = 1 + Z^2$ $B_2 = 9 + 3Z^2 + Z^4$

Topics for discussion

- 1.Is there any other model which is better than the naive BW? Such as the K-matrix?
- 2. Is the exclusive cross section measurement very important for extracting the resonant parameters? Such as the cross section measurement of DD, DD*, D*D*, DD* π(the answer is yes from Estia Eichten's talk, how about the precision required?)
- 3. The Rc can be measured also by selecting the charmed meson, is it more useful to extract the resonant parameters?
- 4. What can the R value and the parameters of the traditional Charmonium states tell us about the nature of the XYZ states?

Your suggestions are very welcome!

back up

$$\boldsymbol{\sigma}_{D} = \boldsymbol{\sigma}_{D^{0}X} + \boldsymbol{\sigma}_{D^{+}Y} + \boldsymbol{\sigma}_{D_{s}^{+}Z}$$