CHARMONIUM AND CHARMONIUM-LIKE STATES AT

Vincent Poireau

CNRS-IN2P3, LAPP Annecy, Université de Savoie Mont Blanc, France On behalf of the BaBar collaboration

Jinan International workshop on QCD exotics, June 2015

PEP-II AND BABAR

BABAR EXPERIMENT

BABAR EXPERIMENT

- BaBar recorded 531 fb⁻¹ in total
 - Υ(4S): 433 fb⁻¹
 - Υ(3S): 30 fb⁻¹
 - Υ(2S): 14 fb⁻¹
 - Off-peak: 54 fb⁻¹
- Cross sections at $\sqrt{s} = 10.58 \text{ GeV}$
 - $\sigma(e^+e^- \rightarrow b\overline{b}) = 1.1 \text{ nb} \rightarrow 475.10^6 \text{ }B\overline{B} \text{ pairs}$
 - $\sigma(e^+e^- \rightarrow c\bar{c}) = 1.3 \text{ nb} \rightarrow 633.10^6 c\bar{c} \text{ pairs}$
- BaBar is a B factory... but BaBar is also a charm factory!
- The BaBar experiment switched off in 2008, but still produces many interesting results!
 - 551 papers in total
 - > **350** PhD thesis!
 - 26 papers in 2013
 - 14 papers in 2014
 - And **more** to come!

NEW STATE OVERVIEW

5

I will mainly focus on the charmonium-like states

- X(3872)
- X(3915)
- Inclusive charmonium production in B[±] decays and search for exotic states
- The Y family: Y(4260), Y(4008), Y(4350), Y(4660)
- Y(4140)
- Z(4430)⁻
- $Z_1(4050)^+$ and $Z_2(4250)^+$

X(3872): WHERE IT ALL BEGAN

Vincent Poireau

X(3872) DISCOVERY

- First observation in 2003 by Belle in B decays $B^{\pm} \rightarrow X(3872)K^{\pm}$ with $X(3872) \rightarrow J/\psi \pi^{+}\pi^{-}$
 - First indication of an exotic charmonium state!
- Properties
 - $M = (3871.69 \pm 0.17) \text{ MeV/c}^2$
 - Γ < 1.2 MeV at 90% CL
 - $J^{PC} = 1^{++}$
- This state is above DD threshold
 - Should have **large** width! (if natural parity)

- This state is very close to the $D^{*0}\overline{D}^0$ threshold (affects width if unnatural parity)
 - $m(D^0) + m(\overline{D}^{0*}) = (3871.8 \pm 0.12) \text{ MeV/c}^2$
 - Is this a **coincidence**?
- BaBar: search for a charged partner (decaying to $J/\psi\pi^0\pi^-$) Phys. Rev. D71, 031501 (2005)

No signal

Vincent Poireau

 $X(3872) \rightarrow J/\psi \pi^+ \pi^-$

• BaBar results for $X(3872) \rightarrow J/\psi \pi^+\pi^-$

• Main results

- BF(B⁺ \rightarrow XK⁺, X \rightarrow J/ $\psi\pi^{+}\pi^{-}$) = (8.4±1.5±0.7) x 10⁻⁶
- BF(B⁰ \rightarrow XK⁰,X \rightarrow J/ $\psi\pi^{+}\pi^{-}$) = (3.5±1.9±0.4) x 10⁻⁶, <6.0x10⁻⁶ @ 90% C.L.
- $R(X) = BF(B^0)/BF(B^+) = 0.41 \pm 0.24 \pm 0.05$
- Γ(X)<3.3 MeV @ 90% CL

PRD 77,111101 (2008)

Vincent Poireau

Charmonium-like states at BaBar

413 fb⁻¹

PRL 102, 132001 (2009)

- Find 3.6 σ evidence for $B^+ \rightarrow X(3872)K^+, X(3872) \rightarrow J/\psi \gamma$
 - BF(B⁺ \rightarrow X(3872)K⁺)×(X(3872) \rightarrow J/ $\psi\gamma$) = $(2.8 \pm 0.8 \pm 0.2) \times 10^{-6}$
- First evidence for $B^+ \rightarrow X(3872)K^+$, $X(3872) \rightarrow \psi(2S) \gamma$
 - **3.5** significance
 - $BF(B^+ \rightarrow X(3872) K^+) \times (X(3872) \rightarrow \psi(2S)\gamma) =$ $(9.5 \pm 2.7 \pm 0.9) \times 10^{-6}$
- $BF(X(3872) \rightarrow \psi(2S) \gamma) / BF(X(3872) \rightarrow J/\psi \gamma)$ $= 3.4 \pm 1.4$
 - Inconsistent with a **pure** $D^{*0}\overline{D}^0$ **molecule**, but consistent with $c\bar{c}$ - $D^{*0}\overline{D}^{0}$ admixture
- No Signal seen by Belle in X(3872) $\rightarrow \psi(2S) \gamma$
 - Upper limit compatible with BaBar BF
- But signal confirmed by LHCb

K+

Vincent Poireau

Charmonium-like states at BaBar

3.95

3.95

424 fb⁻¹

events

ω

• Study the decay $B^{0,+} \rightarrow J/\psi \pi^+\pi^-\pi^0 K^{0,+} (\omega \rightarrow \pi^+\pi^-\pi^0)$

• BF(X \rightarrow J/ $\psi \omega$) / BF(X \rightarrow J/ $\psi \pi^+\pi^-$) = 0.8 ± 0.3

THE X(3872) $\rightarrow D^0 \overline{D}^{*0} SAGA$

- Belle in 2006: excess in the $\overline{D}^0 D^0 \pi^0$ invariant mass in $B \to \overline{D}^0 D^0 \pi^0 K$, with a shifted mass with respect to $X(3872) \to J/\psi \pi^+\pi^-$
 - $M = (3875.2 \pm 0.7^{+1.2}_{-2.0}) \text{ MeV/c}^2$
 - 2σ away from the X(3872) \rightarrow J/ $\psi \pi^+ \pi^-$
- BaBar in 2008: study of $X(3872) \rightarrow D^0 \overline{D}^{*0}$
 - Confirms X(3872) signal (**4.9**σ)
 - $M = (3875.1^{+0.7}_{-0.5} \pm 0.5) \text{ MeV/c}^2$
 - **4.5** σ away from the X(3872) \rightarrow J/ $\psi \pi^+ \pi^-$
 - Measurement of the width
 - $\Gamma = 3.0^{+1.9}_{-1.4} \pm 0.9 \text{ MeV}$
 - Angular study inconclusive

- In 2010, Belle redid the mass measurement for $D^0\overline{D}^{*0}$ with more statistics
 - $M = (3872.9 + 0.6 0.4 + 0.4 0.5) MeV/c^2$
 - In better **agreement** with $X(3872) \rightarrow J/\psi \pi^+ \pi^-$
 - However width still in disagreement $\Gamma = (3.9^{+2.8}_{-1.4} + 0.2_{-1.1}) \text{ MeV}$
 - In disagreement with BaBar result

Belle: PRL 97, 162002 (2006) BaBar: PRD77, 011102 (2008) Belle: PRD 81, 031103 (2010)

Saga summary

Year	Collaboration	Channel	Mass measurement
2003-2015	World average	J/ψ π+ π ⁻	M = (3871.69 ± 0.17) MeV/c ²
2006	Belle	$\overline{D}{}^{0}D{}^{0}\pi^{0}$	$M = (3875.2 \pm 0.7^{+1.2}_{-2.0}) \text{ MeV/c}^2$
2008	BaBar	D ⁰ D ^{*0}	$M = (3875.1^{+0.7}_{-0.5} \pm 0.5) \text{ MeV/c}^2$
2008	Belle	D ⁰ D ^{*0}	$M = (3872.9 + 0.6_{-0.4} + 0.4_{-0.5}) \text{ MeV/c}^2$

• One possible explanation for the mass shift in $X(3872) \rightarrow D^0 \overline{D}^{*0}$

- No proximity of the threshold for $J/\psi \pi^+\pi^-$
 - Mass and width measurement **correspond** to the real particle
- **Proximity of the threshold** for $D^0\overline{D}^{*0}$
 - If particle just below threshold, we see a peak above threshold NOT corresponding to the real particle

Braaten, Stapleton, PRD 81, 014019 (2010)

X(3915)

Vincent Poireau

• First observation by Belle in $B \rightarrow X K$, $X \rightarrow J/\psi \omega$ decays (called Y(3940) then) and confirmed later by BaBar

 $\gamma \gamma \rightarrow X(3915) \rightarrow J/\psi \omega$

Vincent Poireau

3.95

3.85

3.9

4.3

4.2

4.25

4.15

4.1

W (GeV)

4.05

X(3915) IN BABAR

- BaBar also studied $X(3915) \rightarrow J/\psi\omega$ in two-photon production
- Good agreement between BaBar

and Belle measurements

	BABAR	Belle
Mass (MeV/c^2)	$3919.4 \pm 2.2 \pm 1.6$	$3915\pm3\pm2$
Width (MeV)	$13\pm 6\pm 3$	$17\pm10\pm3$
$\Gamma_{\gamma\gamma} \times \mathcal{B} (J=0) (eV)$	$52\pm10\pm3$	$61\pm17\pm8$
$\Gamma_{\gamma\gamma} \times \mathcal{B} (J=2) (eV)$	$10.5\pm1.9\pm0.6$	$18\pm5\pm2$

• Discriminate between $J^P = 0^{\pm}$

and $J^P=2^+$ with angular analysis

- 0⁺ strongly preferred in distribution of all variables
- Consistent with the X(3915) being the $\chi_{c0}(2P)$ state

INCLUSIVE CHARMONIUM PRODUCTION IN B[±] DECAYS

Preliminary result

Vincent Poireau

PRINCIPLES

- Study of the two-body decays $B^{\pm} \rightarrow K^{\pm} X_{c\bar{c}}$
 - Update of Phys. Rev. Lett. 96, 052002 (2006) with full data sample
- With the full reconstruction of one B meson, one can look at the momentum of a Kaon in its B center of mass

• Will exhibit a peak each time there is a two body decay $B \rightarrow K X$

$$m_X = \sqrt{m_B^2 + m_K^2 - 2E_K m_B}$$

Vincent Poireau

PRINCIPLES

- Allows to measure absolute BR for the normal charmonium spectrum and to search for the exotic charm mesons
 - **Independent** from the $X_{c\bar{c}}$ decay channel

SPECTRA

Charmonium-like states at BaBar

424 fb⁻¹

• Improvements in BR($B^{\pm} \rightarrow K^{\pm} X_{c\bar{c}}$) for all channels

Particle	Yield	Peak Position	Width	$BF(10^{-4})$
J/ψ	516 ± 67			$9.6 \pm 1.2 (sta) \pm 0.8 (sys)$
η_c	655 ± 77	2982 ± 5	<43	$13.3 \pm 1.8(\text{stat}) \pm 0.4(\text{sys}) \pm 0.3(\text{ref})$
χ_{c0}	218 ± 76			$4.4{\pm}0.9$
χ_{c1}	192 ± 35			$7.0 \pm 1.3 (stat) \pm 1.0 (sys)$
χ_{c2}	0 ± 32			<1.2
η_c (2S)	283 ± 94	$3632 {\pm} 0.007$	<33	$6.0 \pm 2.1 (\text{stat}) \pm 0.4 (\text{sys})$
ψ'	293 ± 90			$6.2 \pm 2(\text{stat}) \pm 0.6(\text{sys})$
$\psi(3770)$	0 ± 49			$<\!2.0$
X(3872)	75 ± 81			$1.4 \pm 1.5 \text{ or} < 4.4$

 $(B^+ \rightarrow XK^+, X \rightarrow J/\psi \pi^+ \pi^-) \sim 0.1$

• Analysis extended to D mass region

Particle	Yield	Peak Position	$BF(10^{-4})$	PDG 2014
D^0	$126{\pm}20$		$3.5{\pm}0.5(\mathrm{sta}){\pm}0.3(\mathrm{sys})$	3.7 ± 0.17
D^{*0}	$126{\pm}21$		$3.5\pm0.5(\text{stat})\pm0.3(\text{sys})$	4.2 ± 0.34
$D_1(2420)^0$	97 ± 25		$2.1{\pm}0.5(\mathrm{stat})){\pm}0.3(\mathrm{sys})$	-
$D^{**0}(2680)$	95 ± 29	$2.68 {\pm} 0.003$	$2.1{\pm}0.6(\mathrm{stat}){\pm}0.3(\mathrm{sys})$	-
D^{\pm}	44 ± 10		$3.3 \pm 0.8 (sta) \pm 0.3 (sys)$	$2.0 {\pm} 0.21$
$D^{*\pm}$	40 ± 10		$3.0{\pm}0.8(\mathrm{stat}){\pm}0.3(\mathrm{sys})$	$2.1 {\pm} 0.16$
$D^{*}(2420)^{\pm}$	52 ± 13		$3.9{\pm}1.0(\mathrm{stat})){\pm}0.3(\mathrm{sys})$	-

• Charged kaon recoiling against a neutral B: no signal for charged $X_{c\bar{c}}$ states

THE Y FAMILY

Vincent Poireau

4.8

454 fb⁻

Sideband

Y(4260

5

5.2

 $m(J/\psi\pi^+\pi^-)(GeV/c^2)$

Confirmation by CLEO-c, CLEO-III, and Belle with some spread in the resonance parameters

Events / (0.020 GeV/c²

(a)

70

30

Resonance discovered in $e^+e^- \rightarrow \gamma_{ISR}(J/\psi\pi^+\pi^-)$ by BaBar in 2005

- Belle result suggested the existence of another broad structure: the Y(4008)
- BaBar updated the measurement in 2012
 - $M = (4244 \pm 5 \pm 4) \text{ MeV/c}^2$
 - $\Gamma = (114 + 16)_{-17} \pm 7) \text{ MeV}$
- Excess at low mass: might result from the $\psi(2S)$ tail and a possible e⁺e⁻ $\rightarrow J/\psi\pi^{+}\pi^{-}$ continuum contribution
- No evidence for the Y(4008) state

4.4

Y(4260)... AND Y(4350)

Events / 50MeV/c²

- Natural to study of $Y(4260) \rightarrow \psi(2S)\pi^+\pi^-$ in ISR production
- Peak found... but not at the expected position!
 - New resonance: the Y(4350)
 - $M = (4324 \pm 24) \text{ MeV/c}^2$
 - $\Gamma = (172 \pm 33) \text{ MeV}$

- Confirmed by Belle
 - $M = (4361 \pm 9 \pm 9) \text{ MeV/c}^2$
 - $\Gamma = (74 \pm 15 \pm 15) \text{ MeV}$
- Belle also reports another state: Y(4660)
 - $M = (4664 \pm 11 \pm 5) \text{ MeV/}c^2$, $\Gamma = (48 \pm 15 \pm 3) \text{ MeV}$

BaBar: PRL 98, 212001 (2007) Belle: PRL 99, 142002 (2007)

 $m(2(\pi^+\pi^-)J/\psi)$ (GeV/c²)

298 fb⁻

Data

•••• Y(4260) + BKG

New resonance + BKG

BKG (non- $\psi(2S)$)

UPDATED RESULT

• Update of BaBar analysis with the full dataset

- BaBar confirms the Y(4660)
- Parameters for both Y(4350) and Y(4660) are consistent with the Belle measurements

Vincent Poireau

Charmonium-like states at BaBar

520 fb⁻¹

Phys. Rev. D 91, 012003 (2015)

MOTIVATION

• 2009 + 2011 **CDF** studied the decay mode $B^+ \rightarrow J/\psi \phi K^+, \phi \rightarrow K^+ K^-, J/\psi \rightarrow \mu^+\mu^-$

- Looked at $J/\psi \phi$ invariant mass
- Observed two narrow peaks, named X(4140) and X(4270)

PRL102, 242002 (2009) arXiv:1101.6058 (2011)

• 2012 LHCb did not confirm these peaks

• 2.4 disagreement with CDF

PRD85, 091103 (2012)

MOTIVATION

• 2013 CMS confirmed the presence of the two resonances

Physics Letter B 734, 261 (2014)

• 2014

D0 saw evidence for the two resonances

PRD89, 012004 (2014)

MOTIVATION

• Nota: 2009

Belle did the study (unpublished)

- Lepton-Photon conference 2009
- Unable to conclude due to **low efficiency** at threshold

• Summary of the previous results

	X(4140)		X(4270)	
Reference	Mass Width		Mass	Width
	$({\rm MeV/c^2})$	(MeV)	(MeV/c^2)	(MeV)
CDF	4143 \pm 2.9 \pm 1.2 11.7 $^{+8.3}_{-5.0}$ \pm 3.7		Possible signal	
PRL102,242002(2009)				
CDF	$4143.4 \ ^{+2.9}_{-3.0} \pm 0.6$	$15.3 \ ^{+10.4}_{-6.1} \ \pm \ 2.5$	4274.4 $^{+8.4}_{-6.7} \pm 1.9$	$32.3 \ ^{+21.9}_{-15.3} \pm 7.6$
arXiv:1101.6058				
LHCb	No signal		No signal;	
PRD85,091103(R) (2012)			excess at $\sim 4.3~{ m GeV/c^2}$	
D0	$4159 \pm 4.3 \pm 6.6$	$19.9 \pm 12.6 \ ^{+3.0}_{-8.0}$	~4360	30.0 (fixed)
PRD89,012004(2014)				
CMS	$4148.0 \pm 2.4 \pm 6.3$	$28 \; {}^{+15}_{-11} \pm 19$	$4313.8 \pm 5.3 \ \pm \ 7.3$	$38 \ ^{+30}_{-15} \pm \ 16$
arXiv:1309.6920				

BABAR ANALYSIS

424 fb⁻¹

- Study of the processes $B^+ \rightarrow J/\psi K^+ K^- K^+$, $B^0 \rightarrow J/\psi K^+ K^- K^0_S$
 - $J/\psi \rightarrow e^+e^-, \ \mu^+\mu^- \quad \phi \rightarrow K^+K^-$
 - Perform the **branching fraction** measurements
 - Search for the **resonances** X(4140) and X(4270)

• Observation of a clear $\phi \to K^+ K^-$ signal

• Yields and branching fractions

B channel	Event yield	ϵ (%)	Corrected yield	${\cal B}~(imes 10^{-5})$
$B^+ \rightarrow J/\psi K^+ K^- K^+$	290 ± 22	15.08 ± 0.04	1923 ± 146	$3.37 \pm 0.25 \pm 0.14$
$B^+ \rightarrow J/\psi \phi K^+$	189 ± 14	13.54 ± 0.04	1396 ± 103	$5.00 \pm 0.37 \pm 0.15$
$B^0 \rightarrow J/\psi K^+ K^- K^0$	68 ± 13	10.35 ± 0.04	657 ± 126	$3.49 \pm 0.67 \pm 0.15$
$B^0 \to J/\psi \phi K^0$	41 ± 7	10.10 ± 0.04	406 ± 69	$4.43 \pm 0.76 \pm 0.19$

- Values in agreement with previous BaBar measurement and with other experiments (CLEO, LHCb)
- Ratio of the resonant and nonresonant BF in agreement with predictions from spectator quark model

Vincent Poireau

SEARCH FOR RESONANCES

• Study of the J/ $\psi \phi$ mass spectrum in B \rightarrow J/ $\psi \phi$ K

• Ingredients

- **Signal**: two incoherent Breit-Wigner distributions with parameters fixed to CDF values arXiv:1101.6058 (2011)
 - 2D efficiency map taken into account in the fit
- **Background**: uniform distribution (phase space)

• Efficiency in the $J/\psi \phi$ invariant mass:

SEARCH FOR RESONANCE

- Result of the fit
 - Fit with the **two CDF resonances**
 - $\chi^2/NDF = 12.7/12$
 - Fit with **no resonances**
 - $\chi^2/NDF = 26.4/14$

 Efficiency-corrected and backgroundsubtracted J/ψ φ mass spectrum for the combined B⁰ and B⁺ samples

4.1

4.2

4.3

4.4

 $m_{J/\psi\varphi}~(GeV/c^2)$

4.5

4.6

4.7

4.8

SEARCH FOR RESONANCES

- Fit fractions with the assumption of two resonances
 - $f(4140) = (9.2 \pm 3.3 \pm 4.7)\%$; UL(90% CL) = 13.3%
 - $f(4270) = (10.6 \pm 4.8 \pm 7.1)\%$; UL(90% CL) = 18.1%
- Comparison to other experiments

Experiments	f (4140) [%]	f (4270) [%]
CDF	$14.9\pm2.9\pm2.4$	-
LHCb	<7	< 8
D0	$19\pm7\pm4$	-
CMS	10 ± 3	18.0 ± 7.3 (*)

(*) Estimated from number of signal events quoted

- No clear conclusion from BaBar on these resonances
 - Significance **below** 2σ for both X(4140) and X(4270)
 - Hypothesis that events are distributed uniformly on the Dalitz plot gives a **poorer description of the data**

Z(4430)⁻: FIRST CHARGED STATE?

Phys. Rev. D 79, 112001 (2009)

Vincent Poireau

- Belle has reported a new charged charmoniumlike state in the decay $B \rightarrow Z^-K$, $Z^- \rightarrow \psi(2S)\pi^-$
- The reported mass and width are:
 - $M = (4433 \pm 4 \pm 2) \text{ MeV/c}^2$
 - $\Gamma = (45^{+18} + 30^{+30} 13) \text{ MeV}$
- Significance: 6.5σ
 - 121 ± 30 events
- If this result is confirmed
 - First observation of a ccud tetraquark state, • since it is charged and carries hidden charm
- Belle confirmed this result with a Dalitz plot ۰ analysis
 - $M = (4485^{+22}_{-22} + 28_{-11}) MeV/c^2$
 - $\Gamma = (200^{+41} 46^{+26} 35) \text{ MeV}$

Vincent Poireau

EARC

- Search for the $Z(4430)^{-}$ with 413 fb⁻¹ in the decay modes
 - $B^- \rightarrow J/\psi \pi^- K^0$
 - $B^0 \rightarrow J/\psi \pi^- K^+$

In the following, using " ψ " to denote J/ ψ or $\psi(2S)$

- $B^- \rightarrow \psi(2S) \pi^- K^0$
- $B^0 \rightarrow \psi(2S)\pi^-K^+$
- Describe the $K\pi^-$ system in detail, since structure in the $K\pi^-$ mass and angular distributions dominates each Dalitz plot
- Correct the data for efficiency event-by-event across the Dalitz plot, and describe using only $K\pi^{-}$ S-, P-, and D-wave intensity contributions
- Project each $K\pi^-$ description onto the relevant $\psi\pi^-$ mass distribution to investigate the need for Z(4430)⁻ signal above this " $K\pi^-$ background"

 10^{4}

Good descriptions of the m($K\pi^-$) distributions are obtained

10

(b)

- The $K\pi$ reflections reproduce the data
 - no evidence for additional structure

FITS TO THE CORRECTED $M_{\psi\pi}$ -DISTRIBUTIONS

• No significant Z(4430)⁻ signal in BaBar

Charmonium-like states at BaBar

• LHCb did confirm the existence of Z(4430)⁻ with large significance

PRL 112, 222002 (2014)

BaBar data

• No need for the Z(4430)⁻ in the

• BaBar and Belle distributions

40

• BaBar – Belle comparison

statistically consistent

BAR SEARC

$Z_1(4050)^+$ AND $Z_2(4250)^+$

Phys. Rev. D 85, 052003 (2012)

Vincent Poireau

MOTIVATIONS

- Belle observed charged charmoniumlike states $Z_1(4050)^+$ and $Z_2(4250)^+$ in $\overline{B}^0 \rightarrow \chi_{c1} K^- \pi$
 - $M_{Z1} = (4051 \pm 14 + 20_{-41}) \text{ MeV/c}^2$
 - $\Gamma_{Z1} = (82^{+21} + 47^{+47} 22) \text{ MeV}$
 - $M_{Z2} = (4248 + 44_{-29} + 180_{-35}) \text{ MeV/c}^2$
 - $\Gamma_{Z2} = (177^{+54}_{-39}^{+316}_{-61}) \text{ MeV}$

• BaBar studied the processes $\overline{B}^0 \rightarrow \chi_{c1} K^- \pi^+$ and $B^+ \rightarrow \chi_{c1} K^0{}_S \pi^+$ to search for these states (where $\chi_{c1} \rightarrow J/\psi\gamma$)

PRD78, 072004 (2008)

ANALYSIS PROCEDURI

- 429 fb⁻¹
- Binned χ^2 fits to the background-subtracted and efficiency-corrected K π mass spectra in terms of S, P, and D waves amplitudes

Channel	S wave	<i>P</i> wave	D wave	χ^2/NDF
$ar{B}^0 o \chi_{c1} K^- \pi^+$	40.4 ± 2.2	37.9 ± 1.3	11.4 ± 2.0	58/54
		10.3 ± 1.5		
$B^+ \rightarrow \chi_{c1} K^0_S \pi^+$	42.4 ± 3.5	37.1 ± 3.2	10.1 ± 3.1	55/54
		10.4 ± 2.5		

• To represent the angular structure, we compute the efficiency-corrected Legendre polynomial moments $\langle Y_L^0 \rangle$ in each $K\pi$ mass interval by correcting for efficiency and then weighting each event by the $Y_L^0(\cos\theta)$ functions

Vincent Poireau

ANALYSIS PROCEDURE

- We generate high-statistics MC m($\chi_{c1}\pi^+$) distribution based on angular structure in K π system using $\langle Y_L^0 \rangle$ in K π mass interval
- Best result for L_{max}=5
- The excellent description of the data indicates that the angular information from the $K\pi$ channel with $L_{max}=5$ is able to account for the structures observed in the $\chi_{c1}\pi^+$ projection
- No need for additional structures in the mass distribution

MC simulation with L_{max}=5
 Simulation with no angular weights

FITS OF THE DISTRIBUTIONS

- Fit the $\chi_{c1}\pi^+$ mass spectrum using two scalar Breit-Wigner with parameters fixed to the Belle measurement
- Less than 2σ in any distribution
- No significant excess for a single resonance either
- Limits on BF not inconsistent with Belle results due to Belle uncertainties

 $\begin{aligned} \mathcal{B}(\bar{B}^0 \to Z_1(4050)^+ K^-) &\times \mathcal{B}(Z_1(4050)^+ \\ \to \chi_{c1} \pi^+) < 1.8 \times 10^{-5}, \end{aligned}$ $\mathcal{B}(\bar{B}^0 \to Z_2(4250)^+ K^-) &\times \mathcal{B}(Z_2(4250)^+ K^-) \end{aligned}$

 $\rightarrow \chi_{c1} \pi^+) < 4.0 \times 10^{-5},$

• Z₁ and Z₂ still need confirmation! Vincent Poireau

SUMMARY AND OUTLOOK

- Many results given by BaBar on charmonium and charmonium-like states
- Some states are in agreement among the different experiments
 - X(3872), X(3915), Y(4260), Y(4350)
- But some states are not confirmed by BaBar
 - Y(4008), Y(4140), Z(4430)⁺, Z(4050)⁺, Z(4250)⁺
- This situation should be clarified with more statistics thanks to LHCb and Belle II

ADDITIONAL SLIDES

Vincent Poireau

Common analysis techniques

Background discrimination

Suppression by multi-variable classifiers based on event-shape variables: Fisher discriminant, Boosted Decision Trees (BTD)...

- Strongly discriminate continuum events (e⁺e⁻→qq̄ (q = u,d,s,c)
- Background from B decays

Variables are often combined to a likelihood function, used in a maximum likelihood fit for signal/background separation and to measure parameters of interest

CHARMONIUM

- Charmonium: cc̄ or cc̄-like
- Below the $D^{(*)}\overline{D}^{(*)}$ threshold
 - Narrow width
 - All states are **observed** and **explained**
- Above the $D^{(*)}\overline{D}^{(*)}$ threshold
 - Large width expected
 - Many **unexpected states** reported since 2003!
 - Some of them narrow
- Several exotic hypothesis
 - Tetraquarks
 - Hadronic molecules

Vincent Poireau

- Hybrids
- Glueball

• ...

BEYOND CHARMONIUM

• Hybrids

- States with excited gluonic degrees of freedom
- Lattice and model predictions for the lowest-mass hybrid
 - $M \sim 4.2 \text{ GeV/c}^2$

• Tetraquarks

- Bound states of **4 quarks**
- Large number of states expected
- Small widths above threshold

Molecular states

- Loosely bound states of a **pair of mesons**
- Small number of states
- Small widths above threshold

• Other possibilities

- Threshold, cusp, or coupled-channel effect
- Give a **cross section enhancement** which may not correspond to resonance production at all

CHARMONIUM PRODUCTION

- B-meson decay
 - Color-suppressed $b \rightarrow c$ decay
 - Penguin diagram also possible
- e⁺e⁻ Initial State Radiation (ISR)
 - e⁺e⁻ collision below nominal c.m. energy
 - $J^{PC} = 1^{--}$
- Double charmonium production
 - Typically one J/ψ or ψ , plus second $c\overline{c}$ state
- Two-photon production
 - Access to C=+1 states

X(3872): INTERPRETATION

- X(3872) likely not a charmonium state
 - Radial excitation of χ_{c1} (J^{PC} = 1⁺⁺) expected at 3950 MeV/c²
 - $\eta_{c2} (J^{PC} = 2^{-+})$ should have $X \rightarrow J/\psi\gamma$ suppressed
 - No satisfactory cc assignment
- $\overline{\mathsf{D}}^0\mathsf{D}^{*0}$ molecule?

Phys. Rev. D71, 074005 (2005)

- Would explain proximity of the **D**⁰**D***⁰ threshold
- favors $D\overline{D}^*$ decay over $J/\psi\pi\pi$ over $J/\psi\gamma$ (as observed)
- Expect $X \rightarrow \psi(2S)\gamma$ to be suppressed (in **contradiction** with observation)
- tetraquark state?

Phys. Rev. D71, 014028 (2005)

- Predict 2 neutral states and 2 charged states
 - Neutral states produced in B⁰ and B⁺ decays: $\Delta m \approx (7 \pm 2) \text{ MeV/c}^2$
- Measurements:
 - $\Delta m = (2.7 \pm 1.6 \pm 0.4) \text{ MeV/c}^2 \text{ in } B \rightarrow J/\psi \pi^+ \pi^-$
- No evidence for charged partners
- Mixing of $\overline{D}^0 D^{*0}$ and χ_{c1} ? Something else?...

• No cc assignment for 1⁻⁻ state

- Probably not a glueball
 - No evidence for $Y(4260) \rightarrow \phi \pi \pi$
- tetraquark state [cs][cs]?

• Should decay dominantly to $\overline{\mathsf{D}}_{s}\mathsf{D}_{s}$

- Hybrid meson?
 - $\overline{D}D, \overline{D}^*D^*, \overline{D}D^*$ decays suppressed
 - $\overline{D}D_1(2420)$ decays should dominate
- hybrid + quenched lattice QCD predicts, for 1⁻⁻

260): INTERPRETA

- $M = 4380 \pm 150 \text{ MeV/c}^2$
- $\omega \chi_{c1}$ molecule?

Phys. Lett. B625, 212 (2005)

Phys. Rev. D72, 031502 (2005)

Phys. Rev. D74, 034502 (2006)

Phys. Lett. B634, 399 (2006)

54

