International Workshop on QCD Exotics June 8-12, 2015, Shangdong University, Jinan, China

R_b measurements

Roman Mizuk (Belle Collaboration)

Institute for Theoretical and Experimental Physics and Moscow Institute of Physics and Technology

Outline

Introduction

 R_b and $R_{\Upsilon\pi\pi}$ scans at Belle

Belle / Belle-II plans related to scans

e⁺e⁻ hadronic cross-section

Belle 121 fb⁻¹

original motivation

Puzzle of Υ (5S) decays

Belle 2008: anomalous production of Υ (nS) $\pi^+\pi^-$

1. Rescattering $\Upsilon(5S) \rightarrow B^{(*)}B^{(*)} \rightarrow \Upsilon(nS)\pi\pi$?

 \leftarrow Enhanced if B^(*)B^(*) are on-shell

Simonov JETP Lett 87,147(2008) Meng Chao PRD77,074003(2008)

2. Not Υ (5S) but some other state (=Y_b) decays to Υ (nS) $\pi\pi$? This is the situation in charmonium \Rightarrow

Energy scan by Belle in 2007

PRD82,091106R(2010)

⇒ Investigate R_b and $\sigma[\Upsilon(nS) \pi\pi]$ line shapes

2007 energy scan: 6 points ~1fb⁻¹ for $\sigma[\Upsilon(nS) \pi\pi]$ 9 points 30pb⁻¹ for R_b

 \Rightarrow R_b and σ [Υ (nS) $\pi\pi$] shapes disagree, significance is 2σ only

no evidence for separate Y_b state

Energy scan by BaBar in 2008

PRL100,112001(2008)

25pb⁻¹ per point also 8 points 600pb⁻¹ per points in the Υ (6S) region

Radiative corrections are not applied. Visible cross sections.

Energy scan by BaBar: fit

PRL100,112001(2008)

No high statistics points to study $\Upsilon(nS)\pi\pi$ final state.

R_b and $R_{\Upsilon\pi\pi}$ scan by Belle

arxiv:1501.01137 \rightarrow PRL

Data sets

2010 energy scan: 16 points $1fb^{-1}$ for $\sigma[\Upsilon(nS) \pi\pi]$ 61 point $50pb^{-1} 5MeV$ step for R_b continuum point $1fb^{-1}$ @ 10.52GeV Use also:

2007 energy scan: 6 points ~1fb⁻¹ Υ (5S) on-resonance point 121fb⁻¹

Energy calibration

 $e^+e^- \rightarrow \mu^+\mu^-$ Signal shape (including ISR tail) from MC. Energy scale from high statistics point $\Upsilon(5S) \rightarrow \Upsilon(1S,2S,3S)\pi^+\pi^-$ Uncertainty 0.4MeV (0.7MeV) for high (low) statistics points. Scale uncertainty 1MeV.

Luminosity

Bhabha scattering. Uncertainty 1.3% (correlated), ~0.3% (uncorrelated).

Hadronic events selection

≥5 tracks, ≥2 ECL clusters, event vertex close to IP ECL energy: 0.1 – 0.8 \sqrt{s} , total event energy >0.5 \sqrt{s} R₂<0.2

Efficiency 70-74% (average of highest and lowest among $B_{(s)}^{(*)}B_{(s)}^{(*)}(\pi)$ modes)

N.B.: these are visible cross sections.

R_b scan

Better statistical errors, but covers smaller energy range compared to BaBar.

- R_b is slightly higher, by 0.0185.
- IN No Ali's Y_b(10900) [PLB 684(2010)28], Γ_{ee} <36eV.

High continuum contribution \Rightarrow uncontrollable systematics due to unknown shape.

Scan of $R_{\Upsilon(nS)\pi\pi}$

Full reconstruction of $\Upsilon(nS)\pi^+\pi^- \Rightarrow$ purity ~95%

$$|A_{NR}|^{2} + |A_{R} + A_{5S} e^{i\phi_{5S}} BW(M_{5S}, \Gamma_{5S}) + A_{6S} e^{i\phi_{6S}} BW(M_{6S}, \Gamma_{6S}))|^{2}$$

Fit $\Rightarrow A_{nr'} A_r$ consistent with zero; fixed at zero. No uncontrollable systematics.

$$\frac{M_{5S} (\text{MeV}/c^2)}{R_b'} \qquad \Gamma_{5S} (\text{MeV})}{10881.8^{+1.0}_{-1.1} \pm 1.2} \qquad 48.5^{+1.9}_{-1.8} \overset{+2.0}{-2.8}}{10891.1 \pm 3.2^{+0.6}_{-1.7}} \qquad 53.7^{+7.1}_{-5.6} \overset{+1.3}{-5.4}}{53.7^{+7.1}_{-5.6} \overset{-5.4}{-5.4}} \\
\frac{M_{6S} (\text{MeV}/c^2)}{11003.0 \pm 1.1^{+0.9}_{-1.0}} \qquad \Gamma_{6S} (\text{MeV})}{10987.5^{+6.4}_{-2.5} \overset{-2.5}{-2.1}} \qquad 61^{+9}_{-19} \overset{+2}{-20}}$$

Consider possible decoherence of Υ (5S,6S) signals due to different resonant structure.

No major difference in Υ (5S) parameters btw R_b and R_{$\Upsilon \pi \pi$}.

Inconsistency of simple fit model

Based on $|A_{5S} BW(M_{5S}, \Gamma_{5S})|$ we can estimate BFs of $\Upsilon(5S)$ into various exclusive final states:

Υ (1S,2S,3S) π ⁺ π ⁻	17 ± 2 %
+isospin symmetry	26 ± 3 %
assume Zb states are $\Leftarrow Z_b \rightarrow \Upsilon(nS)\pi$,	produced resonantly $Z_b \rightarrow h_b(nP)\pi \Rightarrow$
+h _b (1Ρ,2Ρ)ππ	42 ± 4 %
+BB*π, B*B*π	$109\pm15~\%$

No room for resonant component in $B^{(*)}B^{(*)}$, $Bs^{(*)}Bs^{(*)} \Rightarrow$ Non resonant? How can interfere resonant and non-resonant components if they are in different channels \Rightarrow inconsistency.

It is useful to decompose R_b into various exclusive channels, like it is done for $R_c \Rightarrow$

2

R

R

R

R

Belle plans related to scan data

Transitions from Υ (5S)

Partial widths of hadronic transitions from $\Upsilon(5S)$ are anomalously large:

$$\begin{split} \Gamma[\Upsilon(5S) \to \Upsilon(1S/2S/3S)\pi^{+}\pi^{-}] &= 260/430/290 \text{ keV} \\ \Gamma[\Upsilon(5S) \to h_{b}(1P/2P)\pi^{+}\pi^{-}] &= 190/330 \text{ keV} \end{split}$$

 $\Gamma [\Upsilon(5S) \rightarrow Z_{b}(10610/10650)^{+}\pi^{-}] = 7/3 \text{ MeV}$

$$\begin{split} &\Gamma[\Upsilon(5S) \to \Upsilon(1S/2S)\eta] = 40/200 \text{ keV} \\ &\Gamma[\Upsilon(5S) \to \Upsilon(1D)(\pi^{+}\pi^{-})/\eta] = 60/140 \text{ keV} \\ &\Gamma[\Upsilon(5S) \to \chi_{b1/2}(1P) \ \omega] = 80/30 \text{ keV} \\ &\Gamma[\Upsilon(5S) \to \chi_{b1/2}(1P) \ (\pi^{+}\pi^{-}\pi^{0})_{\text{non-res}}] = 30/30 \text{ keV} \\ &\Upsilon(5S) \to \Upsilon(1S) \text{ K}^{+}\text{K}^{-} = 30 \text{ keV} \end{split}$$

Plans for Belle scan data:

Measure σ [h_b $\pi\pi$] Decompose R_b into BB, BB*, B*B*, B^(*)B* π and B_s^(*)B_s^(*)

Statistics are limited \Rightarrow useful input for Belle-II.

Belle-II plans

First Physics at Belle-II

During 1st year of Belle-II data taking one can expect ~200 fb⁻¹.

almost no data above $\Upsilon(5S)$

Options under discussion:

~200 fb⁻¹ @ Υ (3S) Energy scan to search for Υ (2D), total ~10 fb⁻¹ ~100 fb⁻¹ @ Υ (6S) Energy scan in 10.95-11.25GeV region, 10MeV step, 1 fb⁻¹ per point.

Motivation to take data at Υ (6S)

Available data: Belle ~5fb⁻¹.

1. Clarify structure of $\Upsilon(nS)$ states above $B\overline{B}$ threshold

Unexpected BaBar/Belle results: violation of OZI rule and Heavy Quark Spin Symmetry:

Ƴ(4S) →	Γ , keV	Ƴ(5S) →	Γ , keV	Ƴ(6S) →	Γ , keV
Υ (1S) π ⁺ π ⁻	2	Υ(1S/2S/3S)π ⁺ π ⁻	260/430/290	_ " _	120/140/200
Ƴ(1S) η	5	Ƴ(1S/2S) η	40/200	_ " _	?/?
h _b (1P)ղ	30	Ƴ(1D) (π ⁺ π ⁻)/η	60/140	_ " _	?/?
		χ _{b1/2} (1P) ω	80/30	_ " _	?/?
		h _b (1P/2P)η	0/0	_ " _	?/?

Influence of nearby thresholds? \Rightarrow decay pattern of Υ (6S) should help to clarify.

Closely related: $\Gamma [\Upsilon(5S) \rightarrow Z_{b}(10610/10650)^{+}\pi^{-}] = 7/3 \text{ MeV} \implies \Gamma [\Upsilon(6S)] = ?/?$

 Search for missing bottomonium states below BB threshold At Υ(5S): h_b(1P,2P), η_b(2S) observation, competitive measurement of Υ(1D) mass. At Υ(6S) the 2D,1F multiplets are available w/ larger phase space.

3. Search for molecular states – partners of Z_b BESIII: Y(4260) \rightarrow X(3872) γ , Belle: $\Upsilon(5S) \xrightarrow{} X_b \gamma$. Y(4360) $\xrightarrow{} \Upsilon(6S) \xrightarrow{} \gamma$

Need similar to $\Upsilon(5S)$ data sample ~100fb⁻¹.

Motivation to scan near Υ (6S) and above

1. Clarify structure of Υ (6S) state

Measure BF[$\Upsilon(6S) \rightarrow BB/BB^*/B^*B^*/B^{(*)}B^*\pi/B_s^{(*)}B_s^{(*)}] \Rightarrow$ direct info on wave func. High non-resonant contribution \Rightarrow measurement at $\Upsilon(6S)$ peak only is insufficient.

2. Search for new vector bottomonium-like states

BaBar/Belle/BESIII: many structures in $\sigma[e^+e^- \rightarrow (\psi/h_c)(\pi\pi/\eta/\omega)]$ scans \Rightarrow measure $\sigma[e^+e^- \rightarrow (\Upsilon/h_b)(\pi\pi/\eta/\omega)]$ vs. c.m. energy.

Region above $\Upsilon(5S)$ is unexplored. Even relatively small amount of data is of interest.

Conclusions

<u>Charmonium</u>: different sets of states in e^+e^- total hadronic cross section (ψ states) and in $\psi\pi^+\pi^-$ total hadronic cross section (Y states). Belle \Rightarrow <u>Bottomonium</u>: unique set of states (Υ states).

 R_b distribution: high non-resonant component \Rightarrow uncontrollable systematics for measurement of $\Upsilon(5S)$ and $\Upsilon(6S)$ parameters. Simple fit model give inconsistent results.

 $R_{\Upsilon\pi\pi}$ distribution: ~no non-resonant component \Rightarrow reliable measurement of Υ (5S) and Υ (6S) parameters.

Further studies of Belle scan data are coming:

 $e^+e^- \rightarrow h_b(nP)\pi^+\pi^-$ Decomposition of R_b into BB, BB*, B*B*, B(*)B* π and Bs(*)Bs(*) components.

More detailed scan is planned at Belle-II.