X states (X(3872), ...)

Chengping Shen

Beihang University, Beijing

International Workshop on QCD Exotics 2015

8 - 12 June, 2015, Shandong University, Jinan, China

Hadrons: normal & exotic

 Quark model: hadrons are composed from 2 (meson) quarks or 3 (baryon) quarks

Quarkonium(like) systems

_(Olsen, arxiv:1411.7738)

Charmonium(like) states

Bottomonium(like) states

Variety of recorded reactions

Thanks B-factories!

- Discovery of X(3872) and other many XYZ states etc.
- Unexpected bonus of the B-factories

What is the X(3872)?

- Mass: Very close to $D^0\overline{D}^{*0}$ threshold
- Width: Very narrow, < 1.2 MeV
- J^{PC}=1⁺⁺
- Production

- In B decays KX similar to cc, K*X smaller than cc
- Support Y(4260)→γ+X(3872)
- Decay BR: open charm ~ 50%, charmonium~O(%)
- Nature (very likely exotic)
 - Loosely D⁰D^{*0} bound state (like deuteron?)?
 - Mixture of excited χ_{c1} and $D^0\overline{D}^{*0}$ bound state?
 - Many other possibilities (if it is not χ'_{c1} , where is χ'_{c1} ?)

Radiative decays of X(3872)

LHCb visited this question

$$R_{\psi\gamma} = \frac{\mathcal{B}(X(3872) \to \psi(2S)\gamma)}{\mathcal{B}(X(3872) \to J/\psi\gamma)} = 2.46 \pm 0.64 \pm 0.29$$

Study of B \rightarrow X(3872) K π

- Attempt to understand the *production* of X(3872) in B→X(3872) Kπ, in comparison to normal charmonium state.
- First study was done by Belle using 605 fb⁻¹

arXiv:0809.1224, BELLE-CONF-0849

- ✓ Saw signal of $B^0 \rightarrow X(3872) K^+\pi^-$.
- ✓ 𝔅(B⁰→X(3872)K⁺π⁻)𝔅(X(3872)→J/Ψππ) = $(8.1 \pm 2.0^{+1.1}_{-1.4}) \times 10^{-6}$
- ✓ $\mathscr{C}(B \rightarrow X(3872)K^{*0})\mathscr{C}(X(3872) \rightarrow J/Ψππ) < 3.4 × 10^{-6} (90% CL)$
- ✓ Non-resonant contribution dominates, unlike other cc̄ states.
- With full data sample (711fb⁻¹) and reprocessed data, one expects more sensitivity to the study.
 - Improved analysis technique.
- ★ Further, B⁺→ X(3872)K_S⁰π⁺ is also studied in an attempt to increase the statistics.
- ★ Exploit B→ψ' Kπ as calibration model to train and calibrate B→X(3872) Kπ decay mode.

Observation of X(3872) in $B \rightarrow X(3872)K\pi$ decays

 $B^0 \rightarrow X(3872) K^+\pi^-$

2-D fit to $\Delta E \& M_{J/\psi\pi\pi}$

PRD91,051101(R) (2015)

$$\mathcal{B}(B \to X(3872)K\pi) \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)$$

 $(7.91 \pm 1.29 \pm 0.43) \times 10^{-6}$

K⁺π⁻ mass spectrum study

 B^0 →X(3872) K*(892)⁰ signal is fitted with Histogram from signal MC B^0 → X(3872) (Kπ)_{NR} is also fitted with Histogram from signal MC.

We do not consider the interference between the them.

$$\frac{\mathcal{B}(B^0 \to X(3872)K^*(892)^0) \times \mathcal{B}(K^*(892)^0 \to K^+\pi^-)}{\mathcal{B}(B^0 \to X(3872)K^+\pi^-)}$$

= 0.34 ± 0.09(stat) ± 0.02(syst).

Upper bound on M(K π) due to the kinematics is 1.41GeV/c². In light of this, we excluded K₂*(1430) in this fit.

In contrast to ψ ' results, here non resonant component in M(K π) system seems to be more as compared to resonant one.

X-like states decaying to $\eta_{\rm c}$ modes

• Motivation:

- X(3872): observed by Belle in B → K(J/ψπ⁺π⁻); J^{PC} = 1⁺⁺ determined by LHCb from angular analysis.
- If X(3872) is a $D^0 \overline{D}^{*0}$ molecule, there may be other "X-like" particles.

• Assumption:

Candidate	Combination	Quantum number J ^{PC}	Decay modes
<i>X</i> ₁ (3872)	$D^0ar{D}^{*0} - ar{D}^0 D^{*0}$	1+-	$\eta_{c}\omega,\eta_{c} ho$
X(3730)	$D^0ar{D}^0+ar{D}^0D^0$	0++	$\eta_c \eta, \eta_c \pi^0$
X(4014)	$D^{*0}\bar{D}^{*0} + \bar{D}^{*0}D^{*0}$	0++	$\eta_c \eta, \eta_c \pi^0$

• Analysis features:

- $B^{\pm} \to K^{\pm}X$ with $\eta_c \to K_s K \pi, K_s \to \pi^+\pi^-$
- Combined fit of $\eta \to \gamma \gamma$ and $\eta \to \pi^+ \pi^- \pi^0$
- Test mode: $B^{\pm} \rightarrow K^{\pm} \psi(2S) (\rightarrow J/\psi \pi^{+}\pi^{-})$, consistent with PDG.
- The same final states without intermediate *X* are studied.

X-like states decaying to $\eta_{\rm c}$ modes

arXiv:1501.06351

X: M(X) GeV/c² - Y: N events

X-like states decaying to $\eta_{\rm c}$ modes

No signal was observed in any of the studied decay channels. The upper limits of their productions are determined at 90% C.L..

	Decay mode	Yield	UL
X ₁ (3872)	$\eta_c \pi^+ \pi^-$	17.9 ± 16.5	3.0
	$\eta_c \omega$	6.0 ± 12.5	6.9
X(3730)	$\eta_{c}\eta(\gamma\gamma)$	13.8 ± 9.9	4.6
	$\eta_c \eta (\pi^+ \pi^- \pi^0)$	1.4 ± 1.0	
X(3730)	$\eta_c \pi^0$	-25.6 ± 10.4	5.7
X(4014)	$\eta_{c}\eta(\gamma\gamma)$	8.9 ± 11.0	3.9
	$\eta_c \eta(\pi^+\pi^-\pi^0)$	1.3 ± 1.6	
X(4014)	$\eta_c \pi^0$	-8.1 ± 13.2	1.2

Upper limits of $\mathcal{W}(\mathbb{R}^+ \to \mathbb{K}^+ \to \mathbb{R})$ (v. (10^{-5}) et 00% C L				
D($\frac{B^- \rightarrow K^-}{Mode}$	$- \eta_c n$ (× 10) at Yield	90% C	′•∟. [
	$\eta_c \pi^+ \pi^-$	155 ± 72	3.9	
	$\eta_c \omega$	-41 ± 27	5.3	
	$\eta_c \eta(\gamma \gamma)$	-14.1 ± 26.1	2.2	
	$\eta_c \eta(3\pi)$	-1.8 ± 3.4		
	$\eta_c \pi^0$	-1.9 ± 12.1	6.2	

arXiv:1501.06351

Z(3900)⁰ / Z(4020)⁰ / X(3915) decaying to η_c modes

- $Z_c^{\pm}(3900)$ was observed in $\pi^{\pm}J/\psi$ final states and $Z_c^{\pm}(4020)$ was observed in $\pi^{\pm}h_c$ final states. Could they have neutral partners?
- X(3915) was observed in $\gamma\gamma$ collisions.

arXiv:1501.06351

Upper limits of branching fractions at 90% C.L.

	U	
Resonance	Decay mode	$\mathcal{B}(B o K + R)$
$Z^{0}(3900)$	$n_c \pi^+ \pi^-$	$4.7 imes 10^{-5}$
<i>Z</i> ⁰ (4020)	<i>101</i>	$1.6 imes 10^{-5}$
X(3915)	$\eta_{ extsf{c}}\eta$	$3.3 imes 10^{-5}$
	$\eta_c \pi^0$	$1.8 imes 10^{-5}$

$\Upsilon(5S) \rightarrow \pi^+\pi^-\pi^0\gamma l^+l^-$

•Hadronic transitions between heavy quarkonia have been successfully described using the QCD multipole expansion (QCDME) model.

•Search for the process $\Upsilon(5S) \rightarrow \pi^+\pi^-\pi^0 \chi_{bJ}(nP)$ would be very helpful for understanding QCD dynamics.

• A detailed analysis of the three-body e+e- $\rightarrow \pi + \pi$ - Y(mS) and e+e- $\rightarrow \pi + \pi$ - hb(nP) processes revealed Zb(10610)+- and Zb(10650)+-. The follow-up similar investigation of $\pi + \pi - \pi 0$ hadronic decay modes between the Y(5S) and X_{bJ} may offer additional insight into strong interactions in heavy quarkonium systems.

CMS collaboration searched for X(3872) counterpart in the bottomnium sector, called here X_b, in the decay channel π⁺π⁻ Y(1S). No signal was observed.

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0 \chi_{bJ}$

PRL 113, 142001 (2014)

 $e^+e^- \rightarrow \omega \chi_{hJ}$

 $\sigma(e^+e^- \rightarrow \omega \chi_{b1}) = 0.76 \pm 0.11 \pm 0.11$ (pb)

 $\sigma(e^+e^- \rightarrow \omega \chi_{b2}) = 0.29 \pm 0.11 \pm 0.08 \text{ (pb)}$

 $e^+e^- \rightarrow (\pi^+\pi^-\pi^0)_{non-\omega}\chi_{bJ}$

PRL 113, 142001 (2014)

- The χ_{bJ} candidates out of ω signal region.
- Possible cascade decay from

 $Υ(5S) → πZ_b → πρχ_{bJ} [arXiv:1406.0082]$

• The interpretation is currently limited.

 $e^+e^- \rightarrow \gamma X_b \rightarrow \gamma \omega \gamma (1S)$

- The X(3872) counterpart in the bottomonium sector X_b, NOT observed decay channel π⁺π⁻Υ(1S).
- As X_b is above ωχ_b threshold, this Isospin-conserving process should be a more promising decay mode. [PRD88, 054007].

Assuming X_b is narrow, the upper limit on the product branching fraction : $Br(\Upsilon(5S) \rightarrow \gamma X_b) Br(X_b \rightarrow \omega \Upsilon(1S))$ varies from 2.6 \times 10⁻⁵ to 3.8 \times 10⁻⁵ between 10.55 and 10.65 GeV/c².

X(3915)→ωJ/ψ

PDG: $Bf(B \to X(3915))Bf(X(3915) \to \omega J/\psi) = (3.0^{+0.9}_{-0.7}) \times 10^{-5}$

PDG: X(3915) = χ_{c0}' ?

$\chi_{c0}(2P)$ was X(3915)	$I^{G}(J^{PC}) = 0^{+}(0^{++})$		
$\chi_{c0}(2P)$ MASS			
VALUE (MeV) EVTS 3918.4± 1.9 OUR AVERAGE	DOCUMENT ID TECN COMMENT		
$3919.4 \pm \ 2.2 \pm \ 1.6 \ 59 \pm 10$	LEES 12AD BABR $e^+e^- \rightarrow e^+e^- \omega J/\psi$		
$3919.1^+ \begin{array}{c} 3.8\\ 3.4 \pm \end{array}$ 2.0	DEL-AMO-SA10B BABR $B \rightarrow \omega J/\psi K$		
$3915 \pm 3 \pm 2 49 \pm 15$	UEHARA 10 BELL 10.6 $e^+e^- \rightarrow e^+e^- \omega J/\psi$		
$3943 \ \pm 11 \ \pm 13 \ 58 \pm 11$	¹ CHOI 05 BELL $B \rightarrow \omega J/\psi K$		
\bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet			
$3914.6^+ \ {}^{3.8}_{3.4} \pm \ 2.0$	¹ AUBERT 08W BABR Superseded by DEL- AMO-SANCHEZ 10B		
${}^{1}\omega J/\psi$ threshold enhancement fitted as an S-wave Breit-Wigner resonance.			
 χ _{c0} (2 <i>P</i>) WIDTH			

VALUE (MeV)	EVTS	DOCUMENT ID	TECN	COMMENT	
20 ± 5 OUR AV	ERAGE Err	or includes scale fa	actor of 1.1.		
$13\pm$ $6\pm$ 3	59 ± 10	LEES	12ADBABR	$e^+ e^- \rightarrow e^+ e^- \omega J/\psi$	
$31^{+10}_{-8}\pm$ 5		DEL-AMO-SA.	.10B BABR	$B \to \omega J/\psi K$	
$17 \pm 10 \pm 3$ $87 \pm 22 \pm 26$	$\begin{array}{c} 49 \pm 15 \\ 58 \pm 11 \end{array}$	UEHARA ² CHOI	10 BELL 05 BELL	10.6 $e^+e^- \rightarrow e^+e^- \omega J/\psi$ $B \rightarrow \omega J/\psi K$	
 ● We do not use the following data for averages, fits, limits, etc. 					
$34^{+12}_{-8}\pm$ 5		² AUBERT	08W BABR	Superseded by DEL-AMO- SANCHEZ 10B	
$^{2}\omega J/\psi$ threshold enhancement fitted as an S-wave Breit-Wigner resonance.					

$\chi_{c0}(2P)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
Γ ₁	$\frac{\omega J}{\psi}$	seen
Γ2	$\overline{D}^{*0} D^0$	
Γ ₃	$\pi^+\pi^-\eta_c(1S)$	not seen
Γ ₄	$\gamma \gamma$	seen

Disagreement ? For example: S.Olsen, PRD91,057501(2015)

Belle is using full of data sample to update this analysis

Summary

- We report the first observation of the X(3872) in B⁰→X(3872)K⁺π⁻. In the K⁺π⁻ system, K^{*}(892)⁰ is not dominant, which is marked contrast to the ψ' case.
- No evident peaks in X(3872)K and X(3872) π
- We report a search for B decays to final states with the η_c meson. We also search for X(3872)-like molecular-state, neutral partners of the Z(3900)[±] and Z(4020)[±], and X(3915).
- We observe clear $\pi^+\pi^-\pi^0\chi_{b1,b2}$ signals, while no significant $\pi^+\pi^-\pi^0\chi_{b0}$ is found from Y(5S) decays for the first time. In $M(\pi^+\pi^-\pi^0)$, besides ω , significant non- ω signals are also observed.
- No $X_b \rightarrow \omega Y(1S)$ signal is seen in Y(5S) decays between 10.55 and 10.65 GeV.
- X(3915) was confirmed by Babar, which may not be χ'_{c0.} Belle is updating e⁺e⁻ →J/ ψ DD to confirm X(3878).

