LHCb Results on Exotic Mesons

Xuhao Yuan on behalf of LHCb collaboration BINP, Russia 08 June 2015

➢ Introduction
 ➢ X(3872)
 □ J^{PC} determination
 □ Radiative decays
 ➢ Z(4430)[±] confirmation
 ➢ Conclusion

Exotic states

- ➢ BES III, Belle/BaBar, CDF/D0
- > Mass/width, decay, J^{PC}

Possible structure

Hyperfine Interact. 229 (2014) 1-3, 7-20

LHCb detector

A signal-arm forward spectrometer covering $2 < \eta < 5$

Vertex Locator: Tracking (TT, T1-T3): RICHs: Muon system (M1-M5): ECAL/HCAL:

 $\sigma_{PV,x/y} \sim 10 \ \mu m, \sigma_{PV,z} \sim 60 \ \mu m$ $\Delta p/p: 0.4 \% @ 5 \ GeV/c, 0.6 \% @ 100 \ GeV/c$ $\epsilon(K \to K) \sim 95 \%, \text{ misID rate } (\pi \to K) \sim 5 \%$ $\epsilon(\mu \to \mu) \sim 97 \%, \text{ misID rate } (\pi \to \mu) \sim 1 - 3 \%$ $\sigma_E/E \sim 10 \% (ECAL) 70 \% (HCAL)/\sqrt{E} \otimes 1 \% (E \text{ in GeV})$

➢ Introduction
 ➢ X(3872)
 □ J^{PC} determination
 □ Radiative decays
 ➢ Z(4430)[±] confirmation
 ➢ Conclusion

Quantum numbers of the X(3872) state and orbital angular momentum in its $\rho^0 J/\psi$ decay arXiv: 1504.06339

- \succ C = + since X(3872) $\rightarrow J/\psi\gamma$ and $X(3872) \rightarrow \psi(2S)\gamma$ ➤ LHCb determined 1⁺⁺ [PRL110,222001 (2013)] ⁸/₂ **D** 5D angular analysis with 1 fb^{-1} data
 - \square 2⁻⁺ rejected @ 8.5 σ
 - \square X(3872) as $\eta_{c2}(1^1D_2)$ excluded

Assuming: Lowest possible orbital angular momentum (L_{min})

low p of decay products

Large $L(> L_{min})$ hint molecular structure of X(3872)**\square** Exotic state (D^*D molecule) \Rightarrow large size (r) \Box Large size \Rightarrow $L > L_{min}$ happen $\checkmark L = r \times p$

The analysis without L assumption needed

Simulated

-200

Number c 10⁴

10³

10²

 $I^{\text{PC}} = 2^{-+}$ $I^{\text{PC}} = 1^{++}$

-100

Simulated

0

LHCb

200

Idata

100

 $t = -2\ln\frac{\mathcal{L}(2^{-1})}{\mathcal{L}(2^{-1})}$

Signals of $B^+ \rightarrow X(3872)K^+$

Event selection optimized in low Q region

- ► Energy release: $Q = m_{X(3872)} m_{J/\psi} m_{\pi^+\pi^-}$
- > Background suppressed with Q < 0.25 GeV/c
- Signal yields for X(3872): 1011 ± 38 with 80 % purity
- 3 times more than LHCb previous analysis [PRL110,222001 (2013)]
 1 fb⁻¹ => 3 fb⁻¹
 - \blacksquare Efficiency increased: lower p_T requirement for μ^\pm & π^\pm

Angular distribution

- J^{PC} & *L* determined by the fit to 5 angles distributions > θ_X , $\theta \rho$ and $\theta_{I/\psi}$: helicity angles in *X*(3872), ρ^0
 - and J/ψ decays
- > $\Delta \phi_{X,J/\psi}$, $\Delta \phi_{X,\rho}$: angle between decay planes of X(3872) and of its decay products

The probability density function:

 $\mathcal{P}(\boldsymbol{\Omega}|J_X) \propto |\mathcal{M}(\boldsymbol{\Omega}|J_X)|^2$

- $\succ \Omega \equiv \left(\cos \theta_X, \cos \theta_\rho, \Delta \phi_{X,\rho}, \cos \theta_{J/\psi}, \Delta \phi_{X,J/\psi}\right)$
- > J_X : assumed value of J for X(3872)
 - \square each J^{PC} hypothesis tested
- $\succ \mathcal{M}$: decay matrix element
- efficiency correction = small and neglected

Angular distribution

Distributions of $\cos \theta_x$ for signals after background subtraction

> All J^{PC} hypotheses used for fits 1^{++} favored to data

Determination of J^{PC}

13

Determination of D-wave fraction

- ➢ No hints for a large size of X(3872) from the studies of the orbital angular momentum in X(3872) → $\rho^0 J/\psi$ decay
- Typical charmonium size

➢ Introduction
 ➢ X(3872)
 □ J^{PC} determination
 □ Radiative decays
 ➢ Z(4430)[±] confirmation
 ➢ Conclusion

Evidence for the decay $X(3872) \rightarrow \psi(2S)\gamma$

NPB 886, 665 (2014)

Structure of X(3872) sensitive to ratio $R_{\psi\gamma}$

- *D***D* molecular model: (3 − 4) × 10⁻³
 □ PLB588, 189 (2004); JPG38, 015001 (2011)
- Pure charmonium state: 1.2 15
 PRD72, 054026 (2005); PRD69, 054008 (2004); PRD79, 094004 (2009); NPA714,183 (2003); ...

 $\mathcal{B}(\chi_{c1}(2P) \to \psi(2S)\gamma) \sim \mathcal{O}(10) \times \mathcal{B}(\chi_{c1}(2P) \to J/\psi\gamma)$ enhance for $R_{\psi\gamma}$

Mixing: 0.5 – 5
 PRD73, 014014 (2006); PRD85, 114004(2012) ...

Decay of $X(3872) \rightarrow \psi(2S)\gamma$

Signals of $X(3872) \rightarrow \psi(2S)\gamma$

- ➢ 3 fb⁻¹ data used
- > X(3872) from $B^+ \rightarrow X(3872)K^+$; $\psi(2S)(J/\psi) \rightarrow \mu^+\mu^-$
- \succ p_T(γ) > 1.0 (0.6) GeV/c for J/ψγ (ψ(2S)γ) → Different energy release
- ➤ Mass veto for $π^0 → γγ$
 - **D** Photons that can form part of π^0 candidate within 25 MeV/ c^2 not used

Branching fraction ratio

Branching fraction measured as

➢ Introduction
 ➢ X(3872)
 □ J^{CP} determination
 □ Radiative decays
 ➢ Z(4430)[±] confirmation
 ➢ Conclusion

Observation of the resonant character of $Z(4430)^{\pm}$

PRL 112 (2014) 22, 222002

 $Z(4430)^{\pm}$

Observed by Belle but not confirmed by BaBar → Observed in $B^{0(+)} \rightarrow Z(4430)(\rightarrow \psi(2S)\pi^+)K^{-(0)}$ PRL100, 142001 (2008) $m = 4433 \pm 4 \pm 2 \text{ MeV}/c^2$; $\Gamma = 45^{+18+30}_{-13-13} \text{ MeV}/c^2$ → 2D "Dalitz" analysis: $M^2(\psi(2S)\pi^+)$ vs $M^2(K^-\pi^+)$ PRD80, 031104 (R) (2009) $m = 4443^{+15+19}_{-43-56} \text{ MeV}/c^2$; $\Gamma = 107^{+86+74}_{-43-56} \text{ MeV}/c^2$

- No signals at BaBar PRD79, 112001 (2009)
 Not confirmed; not excluded
 The extent from reflection of K = mass and encular structure
 - **The extent from reflection of** $K\pi$ mass and angular structures

Exotic state

Clear signature of exotic:

- ➤ Decay to charmonium: B⁰⁽⁺⁾ → Z(4430)(→ ψ(2S)π⁺)K⁻⁽⁰⁾
 □ $c\bar{c}$ pair content
- ➢ Electric charged: distinguished from all charmonia
 □ At least 2 more light quarks $N_{quark} \ge 4$
- > Tetraquark, D^*D_1 molecule?

Figure 3 : The X(3872) particle, which is electrically neutral, cannot be clearly distinguished from an unusual charmonium meson. On the other hand, the newly found Z(4430), which is electrically charged, can be clearly distinguished from all charmonium mesons.

Further confirmation at LHCb needed

uan An, bine, kussia

Signals of $B^0 \rightarrow \psi(2S)K^+\pi^-$

- > Integrated Luminosity of 3.0 fb^{-1}
- Sample of >25K $B^0 \rightarrow \psi(2S)K^+\pi^-$ candidates (× 10 Belle/BaBar)
- Backgrounds from misID physics decay is small
- Sidebands are used to build 4D model of the combinatorial background

Amplitude analysis

Amplitude calculated in 4D					
	Resonance	J^P	Likely $n^{2S+1}L_J$	Mass (MeV)	Width (MeV)
parameter space	$K_0^*(800)^0 (\kappa$) 0+	_	682 ± 29	547 ± 24
$\Phi = \left(m^2 m^2 \cos \theta + b\right)$	$K^{*}(892)^{0}$	1^{-}	$1^{3}S_{1}$	895.94 ± 0.262	48.7 ± 0.7
$\Psi = (m_{K\pi}, m_{\psi(2S)\pi}, \cos\theta_{\psi(2S)}, \varphi)$	$K_0^*(1430)^0$	0+	$1^{3}P_{0}$	1425 ± 50	270 ± 80
	$K_1^*(1410)^0$	1^{-}	$2^{3}S_{1}$	1414 ± 15	232 ± 21
$\begin{array}{c c} \mu^{+} & \phi & K^{+} \\ \theta_{\mu'} & \psi' & K^{*} & \theta_{K^{*}} \end{array}$	$K_{2}^{*}(1430)^{0}$	2^{+}	$1^{3}P_{2}$	1432.4 ± 1.3	109 ± 5
	$B^0 \to \psi(2S)$	$K^+\pi^-$	phase space limit	1593	
	$K_1^*(1680)^0$	1-	$1^{3}D_{1}$	1717 ± 27 룾	322 ± 110
	$K_{3}^{*}(1780)^{0}$	3^{-}	$1^{3}D_{3}$	1776 ± 7	159 ± 21
Βοκ+π-	$K_0^*(1950)^0$	0+	$2^{3}P_{0}$	1945 ± 22	201 ± 78
	$K_{4}^{*}(2045)^{0}$	4^{+}	1^3F_4	2045 ± 9	198 ± 30
[<i>n</i>]	$B^0 \rightarrow J/\psi K^+$	π^{-} p	hase space limit	2183	
(or $m_{K+\pi^{-}}^{2}$, $m_{\psi'\pi^{-}}^{2}$)	$K_5^*(2380)^0$	5^{-}	$1^{3}G_{5}$	2382 ± 9	178 ± 32

Amplitude

- ► Decay matrix element is sum of several two-body decays: $B^0 \rightarrow Z^- K^+ \& B^0 \rightarrow \psi(2S)K^*$
- ➢ All K^{*} resonances with J ≤ 3 consided
 □ Even K^{*}(1680): slightly above kinematic limit

Projections without $Z(4430)^{-}$

Projections with $Z(4430)^{-}$

- > The 4D χ^2 p-value = 12%
- > The data are well described when including a $J^P = 1^+ Z(4430)$ in the fit

$Z(4430)^{-}$ parameters from amplitude fit

- Very good agreement between LHCb/Belle results
- Errors substantially improved

Amplitude fractions [%]

-		LHCb	Belle	Contribution	LHCb	Belle
-	M(Z) [MeV]	$4475\pm7^{+15}_{-25}$	$4485 \pm 22^{+28}_{-11}$	S-wave total	10.8 ± 1.3	
	Г(<i>Z</i>) [MeV]	$172\pm13^{+37}_{-34}$	200^{+41}_{-46}	NR	0.3 ± 0.8	
	f- [%]	$5.0 \pm 0.0^{+1.5}$	10 3+3.0+4.3	$K_0^*(800)$	3.2 ± 2.2	5.8 ± 2.1
	'Z [/0]	$3.5 \pm 0.5_{-3.3}$	10.3 - 3.5 - 2.3	$K_0^*(1430)$	3.6 ± 1.1	1.1 ± 1.4
	f ^I _Z [%]	$16.7 \pm 1.6^{+2.6}_{-5.2}$	-	$K^{*}(892)$	59.1 ± 0.9	63.8 ± 2.6
	significance	$>$ 13.9 σ	$> 5.2\sigma$	$K_{2}^{*}(1430)$	7.0 ± 0.4	4.5 ± 1.0
	JP	1+	1+	$K_1^*(1410)$	1.7 ± 0.8	4.3 ± 2.3
		New (large)		$K_1^*(1680)$	4.0 ± 1.5	4.4 ± 1.9
Phase-space integral systematic inc		systematic included		$Z(4430)^{-}$	5.9 ± 0.9	$10.3^{+3.0}_{-3.5}$
$f_{\tau} = \frac{\int f_{\tau} }{\int f_{\tau} }$	$\mathcal{M}(Z) ^2 dPS$	$- f_{a}^{I} = 1$	$\int \mathcal{M}(Z) $	² dPS	Interfere	nces
$\int \mathcal{M}$	$(K^* + Z) ^2 d$	PS JZ I	$\int \mathcal{M}(K^* + Z) $	$Z) ^2 dPS$	included	

Spin-parity analysis

 $J^P = 1^+$ now established beyond any doubt Including systematic variations

PRD 88, 074026 (2013)

	Rejection level relative to 1*		
Disfavored J ^P	LHCb	Belle	
0-	9.7σ	3.4σ	
1-	15.8σ	3.7σ	
2+	16.1σ	5.1σ	
2-	14.6σ	4.7σ	

- $P = + \text{ rules out interpretation in terms of } \overline{D}^*(2010)D_1^*(2420) \text{ molecule or threshold effect}$
- Four-quark bound state is a remaining explanation PRD89, 114010 (2014)
- > 2013: Observation of another exotic charged state: $Z_c(3900)^{\pm}$ \Box Is $Z(4430)^{\pm}$ a radial excitation of $Z_c(3900)^{\pm}$

PRL 110, 252001; PRL,110,252002

Resonance behavior

Does it follow resonant behavior if not forced to it by the amplitude model? ➤ BW function for amplitude fits

$$BW(m|m_0,\Gamma_0) = \frac{1}{m_0^2 - m^2 - im_0\Gamma(m)} \quad \text{Magnitude } |A^{Z^-}| \ddagger : 0 \to \text{peak value} \to 0$$

$$\Rightarrow \text{ Phase goes: } 0 \to \pi/2 \to \pi$$

Additional fit performed with $A^{Z^-} = \text{Re}A^{Z^-} + i\text{Im}A^{Z^-}$ ≥ 6 bins in $m^2(\psi(2S)\pi)$ range

6 bins in
$$m^2(\psi(2S)\pi)$$
 range
(18.0 - 21.5)GeV²/c⁴

First time the resonant character demonstrated in Argand diagram
➢ Phase rapidly changed with A^{Z⁻}
➢ An approximately circular trajectory
➡ Trajectory satisfies as what we expected as a resonance

Second exotic Z^+

Fit confidence level increases with a second exotic ($J^P = 0^-$) component > P value: 12 % \rightarrow 26 %

$$\succ$$
 0⁻ preferred over 1⁻, 2⁻, 2⁺ @ 8 σ

Mass and width consistent with other *Z* observed by Belle:

Z⁻ → $\chi_{c1}\pi^{-}$ [PRD78, 072004 (2008)]
 Z⁻ → J/ψπ⁻ [PRD90, 112009 (2014)]

 $M(Z_0) = 4239 \pm 18^{+45}_{-10} \text{ MeV}/c^2$ $\Gamma(Z_0) = 220 \pm 47^{+108}_{-74} \text{ MeV}/c^2$ $f(Z_0) = (1.6 \pm 0.5^{+1.9}_{-0.4}) \%$ $f^I(Z_0) = (2.4 \pm 1.1^{+1.7}_{-0.2}) \%$

No evidence for Z⁰ in model independent approach
 □ × Z⁻(0⁻) → χ_{c1}π⁻
 Argand diagram for Z⁰ is inconclusive

More data needed to characterize this state

Yuan XH, BINP, Russia

➢ Introduction
 ➢ X(3872)
 □ J^{CP} determination
 □ Radiative decays
 ➢ Z(4430)[±] confirmation
 ➢ Conclusion

Conclusion

≻ X(3872)

- **Q**uantum number determined, $J^{PC} = 1^{++}$, with no *L* hypothesis
- □ D-wave fraction $f_D < 4\%$ @ 95 % → typical charmonia behaviors
- $\square R_{\psi\gamma} = \mathcal{B}(X(3872) \rightarrow \psi(2S)\gamma)/\mathcal{B}(X(3872) \rightarrow J/\psi\gamma) = 2.46 \pm 0.64 \pm 0.29$

Ruling out the interpretation of a pure DD* melcule

\succ Z(4430)⁺

- **D** Confirmation of $Z(4430)^+$ @ 13.9 σ
- Resonant behavior shown in Argand diagram
- $\Box J^P = 1^+ \text{ established}$
 - → Disfavor the interpretation as a D^*D_1 molecule state or threshold
 - Tetraquark scenario still standing
- More results are expected with Run-II data

Shank you for your attention

Backup

LHCb detector

A signal-arm forward region spectrometer covering $2 < \eta < 5$

Data taking

pp collisions @ $\sqrt{s} = 7 \& 8 \text{ TeV}$ (2011-12)

Low and stable instantaneous luminosity $\Box \mathcal{L} \sim 4 \times 10^{32} \text{ cm}^2 \text{s}^{-1}$

- □ Factor 2 larger than design luminosity
- **\square** Average pile-up rate ~ 2
- pp primary vertex reconstructed well

LHCb run-I data $> 1 \text{ fb}^{-1} \text{ for } 2011 > 2 \text{ fb}^{-1} \text{ for } 2012$

- Efficient data taking @ LHCb **\square** Efficiency ~ 90 %
- Results based on 2 magnet configurations

Yuan XH, BINP, Russia

Signals of $X(3872) \rightarrow \psi(2S)\gamma$

Very different kinematics in $X(3872) \rightarrow \psi(2S)\gamma$ and $J/\psi\gamma$: $\gg M(X(3872)) - M(J/\psi) \approx 4 * (M(X(3872)) - M(\psi(2S)))$

Measurement of X(3872) mass & production in $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ EPJC72, 1972 (2012)

X(3872) mass & production

Lights on nature of X(3872)

For mass:

PR429, 243 (2006)

- > $\eta_{c2}(1D)$ meson: mass predicted far below the observed one
- > $D^{*0}\overline{D}^0$ molecule: m(X(3872)) less than $m(D^{*0}) + m(D^0)$

For production

> Tests needed for the prediction of $\sigma(X(3872))$ as the molecular nature

PRL103, 162001 (2006); PRD81, 114018 (2010)

LHCb can provide the measurements of mass and production of X(3872) in $X(3872) \rightarrow J/\psi \pi^+\pi^-$

Signals of $X(3872) \rightarrow J/\psi \pi^+ \pi^-$

Mass & signal yields of X(3872) determined by fit to m(X) distributions

- > Data sample: 35 pb^{-1}
- > Momentum scale: estimated from $J/\psi \rightarrow \mu^+\mu^-$

Production of X(3872)

Production cross-sections of *X*(3872)

 $\sigma(pp \to X(3872) + \dots) \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) = \frac{N^{\rm cor}(X(3872))}{\mathcal{B}(J/\psi \to \mu^+\mu^-) \times \mathcal{L}_{\rm int}}$

 $= 5.4 \pm 1.3(\text{stat}) \pm 0.8(\text{syst}) \text{ nb}$

$$2.5 < y < 4.5; 5 < p_{\rm T} < 20 \, {\rm GeV}/c$$

Prediction: $13.0 \pm 2.7 \text{ nb}^{-1}$

- NRQCD model
- > Assuming $\sigma(X(3872))$ dominated by charm quark pairs
- \succ Prompt production and from b decays taking into account
- \succ 2.8 σ deviation between LHCb measurement and prediction

PRD81, 114018 (2010)

Momentum scale

Mass of *X*(3872) determined by fit to $m(J/\psi\pi^+\pi^-)$ distributions

- Data sample: momentum scale taken into account
 - Tracks' momenta measured smaller than true one: interaction between daughter particles & material in detector
 - **D** Factor (1α) as factor multiplied with tracks' momenta

I, BINP, Russia

► Belle: No evidence of X(4140) in $\gamma\gamma \rightarrow J/\psi\phi$; Observation of a new state X(4350)PRL 104,112004 (2010)

D0: Threshold enhancement consistent with X(4140) (3.1σ) and X(4350) PRD 89, 012004

- CMS: Peak in $J/\psi\phi$ consistent with X(4140), Evidence of a 2nd peak affected by reflection PLB 734, 261 (2014)
- > BaBar: No evidence of X(4140)/X(4274)

More confirmation needed

2015/6/8

Search for *X*(4140) & *X*(4270)

 0.37 fb^{-1} data used

> $35 \pm 11 X(4140)$ and $53 \pm 19 X(4274)$ expected according to CDF results

Yuan XH, BINP, Russia

- > No narrow structure is observed near the threshold
- > The LHCb results disagree at 2.4 σ level with the CDF measurement

An amplitude analysis needed to investigate the resonance nature of these peaks

