

Remarks on resonances

Christoph Hanhart

Forschungszentrum Jülich

What is a resonance?

The S-matrix is characterized by its analytic structure (in s).

- → branch points (and the corresponding cuts)
 - \longrightarrow at each channel opening for $s > s^{\text{thres}}$: right hand cut
 - \longrightarrow in the crossed channels for $s < s^{\text{thres}}$: left hand cut
 - → inside the un-physical sheet (see below)
- → poles on the physical sheet: bound states
 - \longrightarrow only for real $s < s_{\min}^{\text{thres}}$ (no other singul. allowed here)
- → poles on the un-physical sheet (closest to the physical one)
 - \longrightarrow for real $s < s_{\min}^{\text{thres}}$: virtual state
 - \longrightarrow for complex s: resonance

For bound states

Weinberg PR 130 (1963) 776

Expand in terms of non-interacting quark and meson states

$$|\Psi\rangle = \begin{pmatrix} \lambda |\psi_0\rangle \\ \chi(\mathbf{p})|h_1h_2\rangle \end{pmatrix},$$

here $|\psi_0\rangle$ = elementary state and $|h_1h_2\rangle$ = two-hadron cont., then λ^2 equals probability to find the bare state in the physical state $\rightarrow \lambda^2$ is the quantity of interest!

After some algebra we get for the residue at the pole

$$g_{\text{eff}}^2 = 2(1-\lambda^2)\sqrt{\epsilon/m} \le 2\sqrt{\epsilon/m}$$

For bound state low E amplitude fixed in hh channel!

Picture not changed by far away threshold

Baru et al. PLB586 (2004) 53

Equivalent to, e.g.,

Morgan NPA543 (1992) 63; Törnqvist PRD51 (1995) 5312

More on Resonances

A resonance is uniquely and unambiguously characterized by its pole position and residues

$$BR_{\text{pole}}(i) = \frac{|\text{res}_i|^2 \sigma_i}{2 |m_{\text{pole}}| (\Gamma_{\text{pole}}/2)}$$

with σ_i =phase space channel i

used e.g. for $f_0(500) \rightarrow \gamma \gamma$

Thus, naively one may write

$$T_{ij} = -\sum_{r} \frac{\text{res}_{i}^{r} \text{res}_{j}^{r}}{s - s_{r}}$$

which is a sum of Breit-Wigners

But, in general this is wrong!

Reason I: Unitarity

For one channel only one has: $Im(T) = \sigma |T|^2$ where $\sigma = \sqrt{1 - 4m^2/s}$ is the phase space. Then for

$$T = -\frac{\operatorname{res}_{(1)}^{2}}{s - M_{1}^{2} + iM_{1}\Gamma_{1}} - \frac{\operatorname{res}_{(2)}^{2}}{s - M_{2}^{2} + iM_{1}\Gamma_{2}}$$

we get using $\sigma \operatorname{res}_{(i)}^2 = M_i \Gamma_i$ (implies $\operatorname{res}_{(i)}$ real)

$$\begin{split} \mathsf{Im}(T) &= \frac{\operatorname{res}_{(1)}{}^2\Gamma_1 \mathbf{M}_1}{(s-M_1^2)^2 + M_1^2\Gamma_1^2} + \frac{\operatorname{res}_{(2)}{}^2\Gamma_2 \mathbf{M}_2}{(s-M_2^2)^2 + M_2^2\Gamma_2^2} \\ \sigma |T|^2 &= \frac{\operatorname{res}_{(1)}{}^2\Gamma_1 \mathbf{M}_1}{(s-M_1^2)^2 + M_1^2\Gamma_1^2} + \frac{\operatorname{res}_{(2)}{}^2\Gamma_2 \mathbf{M}_2}{(s-M_2^2)^2 + M_2^2\Gamma_2^2} \\ &+ 2\sigma \mathsf{Re} \left(\frac{\operatorname{res}_{(1)}{}^2}{s-M_1^2 + iM_1\Gamma_1} \frac{\operatorname{res}_{(2)}{}^2}{s-M_2^2 - iM_1\Gamma_2} \right) \end{split}$$

Interference term violates unitarity!

Reason II: Analyticity

ightarrow For real $s < s_{\min}^{\text{thres}}$, S is real ightarrow Branchpoint at $s = s_{\min}^{\text{thres}}$

$$\rightarrow S(s^*) = S^*(s) \longrightarrow \text{pole at } s \text{ implies pole at } s^*$$

For narrow resonances:

In resonance region: only lower pole matters

At threshold: both poles important!

For broad resonances: always both important

Keep track of the cuts!

Structure of S**-matrix**

C.H., Pelaez, Rios, PLB739(2014) 375

lets assume there were a pole at $k = k_0 - i\gamma$, then

- \rightarrow there is also a pole at $k = -k_0 i\gamma$ (analyticity)
- \rightarrow there are zeros at $k = \pm k_0 + i\gamma$ (unitarity)

and we get for the simplest S-matrix with one pole

$$S(k) = \frac{(k-k_0-i\gamma)(k+k_0-i\gamma)}{(k-k_0+i\gamma)(k+k_0+i\gamma)}$$

$$= \frac{s-s_0-i\gamma\sqrt{s-4m^2}}{s-s_0+i\gamma\sqrt{s-4m^2}}$$

with $s = 4(m^2 + k^2)$ and $s_0 = 4(k_0^2 + \gamma^2 + m^2)$ and $\gamma = \gamma_0 k^{2L}$.

Pole Movement

On the second sheet (as k_0^2 is reduced):

Pole Movement

On the second sheet (as k_0^2 is reduced):

Thus ...

For a meson-meson molecule: necessary condition that follows from Weinberg criterion:

$$\gamma|_{k_0^2=0} \geqslant \Lambda_{QCD}$$

Then poles located very assymmetric.

To have a meson-meson molecule pole above threshold:

 k^2/s —dependent interaction needed

 \rightarrow natural for $\pi\pi$ -interaction in scalar-isoscalar channel:

Adler zero at
$$s=m_\pi^2/2$$

S. L. Adler, Phys. Rev. 137, B1022 (1965).

→ follows naturally from coupled channel dynamics

T. Hyodo, Int.J.Mod.Phys. A28 (2013) 1330045

Only poles are physical

Line shapes and peak positions are channel dependent

Only pole-locations are physical!

J. J. Wu et al., PRL108, 081803 (2012)

Crossing a threshold

M. Döring et al. NPA 829(2009)170

- \rightarrow The amplitude is non–analytic in s at the threshold
- ightarrow The imaginary part rises as $\sqrt{1-s^{\rm thres}/s}^{(2L+1)}$ very steep for s-waves; no cusp for L>0

... with unstable constituents

M. Döring et al. NPA 829(2009)170

- \rightarrow Non-analyticity in s is moved into complex plane
- → The shorter the life time the weaker the structure

Not every bump is a resonance ...

In the complex plane there are

- \rightarrow poles = states
- → branch points
 - on the real axis = channel with stable particles
 - in the complex plane = channel with un-stable particles
- → triangle-singularities

See talk by Xiao-Hai Liu

Analysis without ρN —channel gives pole at 1698-130 i MeV

S. Ceci et al. PRC84 (2011) 015205

Lineshapes of near threshold states

Braaten & Lu PRD76 (2007) 094028; C.H. et al. PRD81(2010)094028

Direct channel

Inelastic channel

bound state:

virtual state:

Only molecules can appear as virtual states!

Summary

Physical states show up as poles in the S-matrix

Poles appear as

- → on the physical sheet (bound states)
- → or on the unphysical sheets (virtual states/resonances)

In addition there are

- → branch points (on the real axis or in the unphysical sheets)
- → triangle singularities ...

To understand QCD in the non-perturbative regime its singularity structure needs to be mapped out and understood