Hadronic Transitions For Quarkonium States Above Threshold

Estia Eichten (Fermilab)

Outline: - Revisiting the QCD Multipole Expansion

- Hadronic Transitions Below Threshold
- New Dynamics for Hadronic Transitions At Threshold
- Systematics and Expectations
- ΔR_{Q} in the Threshold Region
- Summary

International Workshop on QCD Exotics June 7-12, 2015
Shandong University
Jinan, China

Revisiting the QCDME Assumptions

- QCD multipole expansion (QCDME) in a nutshell
- Analogous to the QED multipole expansion with gluons replacing photons.

$$
\begin{aligned}
& H_{\mathrm{QCD}}^{\mathrm{eff}}=H_{\mathrm{QCD}}^{(0)}+H_{\mathrm{QCD}}^{(1)}+H_{\mathrm{QCD}}^{(2)} \quad H_{\mathrm{QCD}}^{(1)} \equiv Q_{a} A_{0}^{a}(\mathbf{X}, t) \\
& \text { zero for color singlet } \\
& H_{\mathrm{QCD}}^{(2)} \equiv-\mathbf{d}_{a} \cdot \mathbf{E}^{a}(\mathbf{X}, \mathbf{t})-\mathbf{m}_{\mathbf{a}} \cdot \mathbf{B}^{\mathbf{a}}(\mathbf{X}, \mathbf{t})+\cdots \\
& \text { E1 M1 ... }
\end{aligned}
$$

- color singlet physical states means lowest order terms involve two gluon emission. So lowest multipoles E1 E1, E1 M1, E1 E2,
- factorize the heavy quark and light quark dynamics

$$
\begin{aligned}
& \mathcal{M}\left(\Phi_{i} \rightarrow \Phi_{f}+h\right)= \\
& \frac{1}{24} \sum_{K L} \frac{\left.\langle f| d_{m}^{i a}|K L\rangle\langle | K L\left|d_{m a}^{j}\right| i\right\rangle}{E_{i}-E_{K L}}\langle h| \mathbf{E}^{a i} \mathbf{E}_{a}^{j}|0\rangle \quad+\text { higher order multipole terms. }
\end{aligned}
$$

- assume a model for the heavy quarkonium states $\Phi i, \Phi f$ and a model for the intermediate states |KL> hybrid states.
- use chiral effective lagrangians to parameterize the light hadronic system.

QCD Multipole Expansion

- Below threshold this theory works well to describe the hadronic transitions.

- The transition rates are small.
- Heavy-quark symmetry (HQS) dictates that the leading transitions do not flip the spin of the heavy quarks (as it is for the usual EM transitions in nonrelativistic systems).
- Isospin breaking is suppressed.
- A few puzzles remain.
N. Brambilla, et al.,Eur.Phys.J. C71 (2011) 1534

Transition	$\Gamma_{\text {partial }}(\mathrm{keV})$ (Experiment)	$\Gamma_{\text {partial }}(\mathrm{keV})$ (KY Model)
$\psi(2 S)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	102.3 ± 3.4	input ($\left\|C_{1}\right\|$)
$\rightarrow J / \psi+\eta$	10.0 ± 0.4	input (C_{3} / C_{1})
$\rightarrow J / \psi+\pi^{0}$	0.411 ± 0.030 [446]	0.64 [522]
$\rightarrow h_{c}(1 P)+\pi^{0}$	0.26 ± 0.05 [47]	0.12-0.40 [527.
$\psi(3770)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	52.7 ± 7.9	input (C_{2} / C_{1})
$\rightarrow J / \psi+\eta$	24 ± 11	
$\psi(3 S)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	< 320 (90\% CL)	
$\Upsilon(2 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	5.79 ± 0.49	8.7 [528]
$\rightarrow \Upsilon(1 S)+\eta$	$(6.7 \pm 2.4) \times 10^{-3}$	0.025 [521]
$\Upsilon\left(1^{3} D_{2}\right)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	0.188 ± 0.046 [63]	0.07 [529]
$\chi_{b 1}(2 P)$		
$\begin{aligned} & \rightarrow \chi_{b 1}(1 P)+\pi^{+} \pi^{-} \\ & \rightarrow \Upsilon(1 S)+\omega \end{aligned}$	$\begin{gathered} 0.83 \pm 0.33[523] \\ 1.56 \pm 0.46 \end{gathered}$	0.54 [530]
$\chi_{b 2}(2 P)$		
$\begin{aligned} & \rightarrow \chi_{b 2}(1 P)+\pi^{+} \pi^{-} \\ & \rightarrow \Upsilon(1 S)+\omega \end{aligned}$	$\begin{gathered} 0.83 \pm 0.31[523] \\ 1.52 \pm 0.49 \end{gathered}$	0.54 [530]
$\Upsilon(3 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	0.894 ± 0.084	1.85 [528]
$\rightarrow \Upsilon(1 S)+\eta$	$<3.7 \times 10^{-3}$	0.012 [521]
$\rightarrow \Upsilon(2 S)+\pi^{+} \pi^{-}$	0.498 ± 0.065	0.86 [528]
$\Upsilon(4 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	1.64 ± 0.25	4.1 [528]
$\rightarrow \Upsilon(1 S)+\eta$	4.02 ± 0.54	
$\rightarrow \Upsilon(2 S)+\pi^{+} \pi^{-}$	1.76 ± 0.34	1.4 [528]

n Transitions

- QCDME

- E1-M2 dominate $\mathcal{M}_{i f}^{g g}=\frac{1}{16}<B\left|\mathbf{r}_{i} \xi^{a} \mathcal{G r}_{\mathbf{j}} \xi^{a}\right| A>\frac{g_{e} g_{M}}{6}\langle\eta| \mathbb{E}_{i} \partial_{j} \mathrm{~B}_{k}|0\rangle \frac{\left(\epsilon_{B}^{*} \times \epsilon_{A}\right)_{k}}{3 m_{Q}}$
- Ratio of n to $\pi \pi$ transitions: same initial and final quarkonium states at ($M_{\pi \pi}=M_{n}$)

$$
R_{Q \bar{Q}}(n \rightarrow m) \equiv \frac{\Gamma\left(n^{3} S_{1} \rightarrow m^{3} S_{1}+\eta\right)}{\Gamma\left(n^{3} S_{1} \rightarrow m^{3} S_{1}+\pi^{+} \pi^{-}\right)}=\frac{8 \pi^{2}}{27} \frac{1}{m_{Q}^{2}}\left(\frac{C_{3}}{C_{1}}\right)^{2}\left[\frac{\left.\left[\left(M_{i}+M_{f}\right)^{2}-M_{\eta}^{2}\right)\left(\left(M_{i}-M_{f}\right)^{2}-M_{\eta}^{2}\right)\right]^{3 / 2}}{G}\right]
$$

is independent of the details of the intermediate states.
[kinematic factor]

- Comparing theory (KY) and experiment.

Ratio	theory	experiment	$\sim 30>$ theory
$R^{c \bar{c}}(2 \rightarrow 1)$	3.29×10^{-3}	9.78×10^{-2}	
$R^{b \bar{b}}(2 \rightarrow 1)$	1.16×10^{-3}	1.16×10^{-3}	sets $C_{3} / C_{1}=0.143 \pm 0.024$
$R^{b \bar{b}}(3 \rightarrow 1)$	4.57×10^{-3}	$<4.13 \times 10^{-3}$	related to $\pi \pi$ suppression
$R^{b \bar{b}}(4 \rightarrow 1)$	2.23×10^{-3}	2.45	$\sim 1000>$ theory
$R^{b \bar{b}}(4 \rightarrow 2)$	5.28×10^{-4}		

- Transitions near and above threshold violate expectations of QCDME and sizable rates require large $S U(3)$ breaking.
- We will see this is associated with the large $S U(3)$ breaking in virtual and real heavy-light meson pair contributions to the states.

$\curlyvee(3 S)->(1 S)+\pi \pi$

- Suppressed overlaps $Y((n+2) S) \rightarrow Y(n S)+h$ or $x b(n P)+y$:
- E1 photon transitions: $Y(3 S)$-> $X_{b}(1 P)+\gamma$ highly suppressed
- $Y(3 S)=Y(1 S)+\pi \pi$: (leading term dynamically suppressed?)
- Same for n transition?
- Measure ratios:
- $R_{n}=R_{b b}(3->1) / R_{b b}(2->1)$
- $R_{\pi \pi}=\Gamma\left(\curlyvee(3 S)->h_{b}+\pi \pi\right) / \Gamma(\curlyvee(3 S)->\curlyvee(1 S)+\pi \pi)$
- No new physics: $R_{n} \sim 1, R_{\pi \pi} \sim O\left(v^{4}\right) \sim$ small
- Significant coupled channel contributions: $R_{n} \gg 1$
- If $Z^{+}(10610)$ dominated: $\mathrm{R}_{\pi \pi} \sim 1$

Table 1: Cancellations in $\mathcal{E}_{\text {if }}$ by node regions.

	initial state node			
Transition	<1	1 to 2	2 to 3	total
$2 S \rightarrow 1 P$	0.07	-1.68		-1.61
$3 S \rightarrow 2 P$	0.04	-0.12	-2.43	-2.51
$3 S \rightarrow 1 P$	0.04	-0.63	0.65	0.06

QCD Multipole Expansion (QCDME)

- When should the QCDME work well ?
- Transitions between tightly bound quarkonium states
- Small radius ($\mathrm{R} \ll \Lambda_{Q C D}$)
- bottomium 1S, 1P, 2S, 1D, 2P, 3S, ...
- charmonium 1S, 1P, ...
- Small contributions from excitations involving QCD additional degrees of freedom.
- This is essential to the factorization assumption!
- Above threshold
- light quark pairs
- $D^{(*)} \bar{D}^{*}$ thresholds in 1D to 3 region
- $B^{(*)} \bar{B}^{(*)}$ thresholds in 45 region
- gluonic string excitations
- Hybrid states will appear in the spectrum associated with the potentials Π_{u},...
- In the static limit this occurs at separation $r \approx 1.2 \mathrm{fm}$.
- Between the 3 S and 4 S in (cc) system
- Just above the 5 S in the (bb) system
- New mechanisms can be expected for hadronic transitions above threshold.

Cornell
Potential Model

$D D, B B$

Hadronic Transitions Above Threshold

- With BaBar, BES III, LHCb, BELLE and (CMS, ATLAS, CDF/DO) many new details of hadronic transitions have been observed.
- A clearer theoretical understanding hadronic transitions for quarkonium-like states above threshold should now be possible.
- However there are many the questions which arise as well:
- The QCD Multipole Expansion fails above threshold. Why and how?
- What are the remaining constraints of Heavy Quark Symmetry?
- What explains the large rate of transitions for some states above threshold?
- Can the pattern of transitions be understood?
- Can detailed predictions be made?
- First let's look at the details of the transitions.

Hadronic Transitions Above Threshold

- Bottomonium systems:
- $\mathrm{r}(4 \mathrm{~S})$
- $M=10,579.4 \pm 1.2 \mathrm{MeV} \Gamma=20.5 \pm 2.5 \mathrm{MeV}$;
- Open decay channels:
- $M\left(B^{+} B^{-}\right)=10,578.52 \mathrm{MeV}, M\left(B^{0} B^{0}\right)=10,579.16 \mathrm{MeV}$
- Essentially no isospin breaking in the masses.
- Normal pattern of 2π decays, large n decays:

Table 1: Selected $\Upsilon(4 S)$ decays.

Decay Mode	Branching Rate
$B^{+} B^{-}$	$(51.4 \pm 0.6) \%$
$B^{0} \bar{B}^{0}$	$(48.6 \pm 0.6) \%$
total $B \bar{B}$	$>96 \%$
$\Upsilon(1 S) \pi^{+} \pi^{-}$	$(8.1 \pm 0.6) \times 10^{-5}$
$\Upsilon(2 S) \pi^{+} \pi^{-}$	$(8.6 \pm 1.3) \times 10^{-5}$
$h_{b}(1 P) \pi^{+} \pi^{-}$	$($not seen $)$
$\Upsilon(1 S) \quad \eta$	$(1.96 \pm 0.28) \times 10^{-4}$
$h_{b}(1 P) \quad \eta$	$(1.83 \pm 0.23) \times 10^{-4}$

 \(\rightarrow\) partial rate \(=1.66 \pm 0.23 \mathrm{keV}\)
 $\Upsilon(2 S) \pi^{+} \pi^{-} \quad(8.6 \pm 1.3) \times 10^{-5}$

$h_{b}(1 P) \pi^{+} \pi^{-}$	$($not seen $)$				
$\Upsilon(1 S)$	η	$(1.96 \pm 0.28) \times 10^{-4}$			
$h_{b}(1 P)$	η	$(1.83 \pm 0.23) \times 10^{-4}$	\quad	\rightarrow partial rate $=4.02 \pm 0.89 \mathrm{keV}$	SU(3) violating
:---	:---				

Heavy Quark Symmetry

- Large heavy quark spin symmetry breaking induced by the $B^{\star}-B$ mass splitting. [Same for $D^{*}-D$ and $D_{s}{ }^{\star}-D_{s}$]
- Coupled channel calculations show a large virtual B B component to the $\mathrm{Y}(4 \mathrm{~S})$. This accounts for the observed violation of the spin-flip rules of the usual QCDME.
- $J^{P C}=1^{--}$in terms of $B\left(^{*}\right), B\left(^{*}\right)$ mass eigenstates:
- $J_{S L B}=j_{S L B}+L$

$$
\begin{aligned}
& B \bar{B}: \quad \frac{1}{2 \sqrt{3}} \psi_{10}+\frac{1}{2} \psi_{11}+\frac{\sqrt{ } 5}{2 \sqrt{3}} \psi_{12}+\frac{1}{2} \psi_{01} ; \\
& \frac{B^{*} \bar{B}-\bar{B}^{*} B}{\sqrt{2}}: \quad \frac{1}{\sqrt{3}} \psi_{10}+\frac{1}{2} \psi_{11}-\frac{\sqrt{5}}{2 \sqrt{3}} \psi_{12} ; \\
& \left(B^{*} \bar{B}^{*}\right)_{S=0}: \quad-\frac{1}{6} \psi_{10}-\frac{1}{2 \sqrt{3}} \psi_{11}-\frac{\sqrt{5}}{6} \psi_{12}+\frac{\sqrt{3}}{2} \psi_{01} ; \\
& \left(B^{*} \bar{B}^{*}\right)_{S=2}: \quad \frac{\sqrt{5}}{3} \psi_{10}-\frac{\sqrt{5}}{2 \sqrt{3}} \psi_{11}+\frac{1}{6} \psi_{12} . \\
& \psi_{10}=1_{H}^{--} \otimes 0_{S L B}^{++}, \quad \psi_{11}=1_{H}^{--} \otimes 1_{S L B}^{++}, \quad \psi_{12}=1_{H}^{--} \otimes 2_{S L B}^{++}, \quad \text { and } \quad \psi_{01}=0_{H}^{-+} \otimes 1_{S L B}^{+-} .
\end{aligned}
$$

- $I^{G}\left(J^{P}\right)=1^{-}\left(1^{+}\right)$
- S-wave ($\mathrm{L}=0$)

$$
\begin{aligned}
& \left(B^{*} \bar{B}-\bar{B}^{*} B\right) \sim \frac{1}{\sqrt{2}}\left(0_{H}^{-} \otimes 1_{S L B}^{-}+1_{H}^{-} \otimes 0_{S L B}^{-}\right) \\
& B^{*} \bar{B}^{*} \sim \frac{1}{\sqrt{2}}\left(0_{H}^{-} \otimes 1_{S L B}^{-}-1_{H}^{-} \otimes 0_{S L B}^{-}\right),
\end{aligned}
$$

Strange heavy-light meson thresholds

- What about SU(3)?
- If there was no $S U(3)$ breaking: only $S U(3)$ singlet light hadron states could be produced. So single light hadron production (except the n^{\prime}) would be forbidden.

$$
\begin{aligned}
U & =\exp \left(i \gamma_{5} \frac{\varphi_{a} \lambda_{a}}{f_{\pi}}\right) \\
\varphi_{a} \lambda_{a} & =\sqrt{2}\left(\begin{array}{ccc}
\frac{\eta}{\sqrt{6}}+\frac{\pi^{0}}{\sqrt{2}}, & \pi^{+}, & K^{+} \\
\pi^{-}, & \frac{\eta}{\sqrt{6}}-\frac{\pi^{0}}{\sqrt{2}}, & K^{0} \\
K^{-}, & \bar{K}^{0}, & -\frac{2 \eta}{\sqrt{6}}
\end{array}\right)
\end{aligned}
$$

- BUT: SU(3) breaking is induced by the mass splitting of the ($Q q$) mesons with $q=u, d$ (degenerate if no isospin breaking) and $q=s$.
- These splittings are large ($\sim 100 \mathrm{MeV}$) so there is large $S U(3)$ breaking in the threshold dynamics.
- This greatly enhances the final states with $\eta+(Q \bar{Q})$. Yu.A. Simonov and A.I. Veselov [arXiv:0810.0366]
- This leads to large effects in the threshold region.
- Similarly important in ω and ϕ production.

Heavy-Light Mesons

- Observed low-lying (1S, 1P, and 1D) charm and bottom mesons:
- Very similar excitation spectrum - HQS

Charm Meson Spectrum
Bottom Meson Spectrum

- There are 9 narrow (<2 MeV) charm meson states [and 10 bottom mesons states]. Any pair of these might have a cusp at S-wave threshold.

Hadronic Transitions Above Threshold

- $\mathbf{Y}(55)$ hadronic transitions
- $M=10,876 \pm 11 \mathrm{MeV} \Gamma=55 \pm 26 \mathrm{MeV}$;
- Open Ground State ($\mathrm{j}^{\mathrm{p}}=\frac{1}{2}^{-}$) Decay Channels:
- $M(B \bar{B})=10,559 \mathrm{MeV}, M\left(B^{\star} \bar{B}\right)=10,604 \mathrm{MeV}, M\left(B^{\star} \bar{B}^{\star}\right)=10,650 \mathrm{MeV}$
- $M\left(B_{s} \bar{B}_{s}\right)=10,734 \mathrm{MeV}, M\left(B{ }^{\star}{ }_{s} \bar{B}_{s}\right)=10,782 \mathrm{MeV}, M\left(B^{\star}{ }_{s} \bar{B}^{\star}{ }_{s}\right)=10,831 \mathrm{MeV}$
- Also some P state $\left(j^{p}=\frac{1}{2}^{+}\right)$Decay Channels are essentially open
- $M\left(B\left[1^{\frac{1}{2}+}+P_{0}\right] \bar{B}^{\star}\right)=11,055 \mathrm{MeV} \quad$ (notation: $n^{j} \mathrm{~L}_{J}$)
- $M\left(B\left[1^{\frac{1}{2}+} P_{1}\right] \bar{B}\right)=11,045 \mathrm{MeV}, \quad M\left(B\left[1^{\frac{1}{2}+} P_{1}\right] B^{\star}\right)=11,091 \mathrm{MeV}$
- I have assumed: $\Gamma\left(B\left[1^{\frac{1}{2}+} P_{\{0,1\}}\right]\right) \sim 300 \mathrm{MeV}$ (wide); $\Gamma\left(B\left[1^{3 / 2+} P_{\{1,2\}}\right]\right)$ are narrow

B

B_{s}

Hadronic Transitions Above Threshold

$\Upsilon(5 S)$ nearby thresholds

Low-lying thresholds

Low-lying (Narrow) Bottom Meson Pair Thresholds

Narrow-Wide Thresholds
$B_{s}^{*} B\left(P_{1}\right)$
$B_{s}{ }^{*} B\left(P_{0}\right) ; B_{s} B\left(P_{1}\right)$
$B B\left(P_{1}\right) ; B_{s} B\left(P_{0}\right)$
$B^{*} B\left(P_{0}\right)$
B B(P_{0})

Hadronic Transitions Above Threshold

- $\Upsilon(5 S)$ decay pattern:

Table 2: Selected $\Upsilon(5 S)$ decays.

Decay Mode	Branching Rate	Decay Mode	Branching Rate	
$B \bar{B}$	(5.5 $\pm 1.0) \%$	$\Upsilon(1 S) \pi^{+} \pi^{-}$	$(5.3 \pm 0.6) \times 10^{-3}$	\rightarrow partial rate $=0.29 \pm 0.13 \mathrm{MeV}$
$B \bar{B}^{*}+$ c.c.	$(13.7 \pm 1.6) \%$	$\Upsilon(2 S) \pi^{+} \pi^{-}$	$(7.8 \pm 1.3) \times 10^{-3}$	
$B^{*} \bar{B}^{*}$	$(38.1 \pm 3.4) \%$	$\Upsilon(3 S) \pi^{+} \pi^{-}$	$\left(4.8{ }_{-1.7}^{+1.9}\right) \times 10^{-3}$	
		$\Upsilon(1, S) K \bar{K}$	$(6.1 \pm 1.8) \times 10^{-4}$	
$B_{s} \bar{B}_{s}$	$(5 \pm 5) \times 10^{-3}$	$h_{b}(1 P) \pi^{+} \pi^{-}$	$\left(3.5{ }_{-1.3}^{+1.0}\right) \times 10^{-3}$	
$B_{s} \bar{B}_{s}^{*}+$ c.c.	$(1.35 \pm 0.32) \%$	$h_{b}(1 P) \pi^{+} \pi^{-}$	$\left(6.0{ }_{-1.8}^{+2.1}\right) \times 10^{-3}$	
$B_{s}^{*} \bar{B}_{s}^{*}$	$(17.6 \pm 2.7) \%$	$\chi_{b 1} \pi^{+} \pi^{-} \pi^{0}$ (total)	$(1.85 \pm 0.33) \times 10^{-3}$	
$B \bar{B} \pi$	$(0.0 \pm 1.2) \%$	$\chi_{62} \quad \pi^{+} \pi^{-} \pi^{0}$ (total)	$(1.17 \pm 0.30) \times 10^{-3}$	
$B^{*} \bar{B} \pi+B \bar{B}^{*} \pi$	$(7.3 \pm 2.3) \%$		$(1.57 \pm 0.32) \times 10^{-3}$	\rightarrow partial rate $=86 \pm 41 \mathrm{keV}$
$B^{*} \bar{B}^{*} \pi$	$(1.0 \pm 1.4) \%$	$\chi_{b 2} \quad \omega$	$(0.60 \pm 0.27) \times 10^{-3}$	\rightarrow partial rate - 86 $\pm 41 \mathrm{keV}$
$B \bar{B} \pi \pi$	< 8.9%	$\Upsilon(1 S) \eta$	$(0.73 \pm 0.18) \times 10^{-3}$	
		$\Upsilon(2 S) \eta$	$(2.1 \pm 0.8) \times 10^{-3}$	
		$\Upsilon(1 D) \eta$	$(2.8 \pm 0.8) \times 10^{-3}$	\rightarrow partial rate $=0.15 \pm 0.08 \mathrm{MeV}$
total $B \bar{B} \mathrm{X}$	$\left(76.2-4.0{ }_{-4}^{+2.7}\right) \%$			

- Very large 2π hadronic transitions [> 100 times $r(4 S)$ rates]
- Very large n (single light hadron) transitions. Related to nearby $B_{s} * B_{s} *$ threshold?

Hadronic Transitions Above Threshold

- Contributions of P-state decays:
- $n^{3} S_{1}(Q Q)->1^{\frac{1}{2}+} P_{J}(Q \bar{q})+1^{\frac{1}{2}-} S_{J}(q Q):$

S-wave decays		
$C\left(J, J^{\prime}\right)$	$J^{\prime}=0$	$J^{\prime}=1$
$J=0$	0	$2 / 3$
$J=1$	$2 / 3$	$4 / 3$

- $1^{1^{\frac{1}{2}}+} P_{J}(Q q)$-> $1^{\frac{1}{2}-} S_{J}\left(Q^{\prime} q^{\prime}\right)+{ }^{1} S_{0}\left(q q^{\prime}\right)$ for S-wave $J=J^{\prime}$
- Dominant two body decays of the $r(5 S)$

Example

Remarks:
(1) $Y(5 S)$ strong decay is S-wave
(2) The large width of the $B_{1}(1 P)$ implies that the first π is likely emitted while the $B_{1}(1 P)$ and $B^{(*)}$ are still nearby.
(3) The $B_{1}(1 P)$ decay is S-wave
(4) Therefore the $B^{(*)} B^{*}$ system is in a relative S-wave and near threshold.
(5) No similar BB system is possible.

New Dynamics for Hadronic Transitions

- A new factorization for hadronic transitions above threshold.
- Production of a pair of heavy-light mesons $\left(\mathrm{H}_{1}^{\prime} \mathrm{H}_{2}\right)$ near threshold. Where $H_{1}^{\prime}=H_{1}$ or H_{1}^{\prime} decays rapidly to $H_{1}+$ light hadrons (h_{b}), yielding $H_{1} H_{2}\left\langle h_{b}\right.$ >
- Followed by recombination of this $\left(\mathrm{H}_{1} \mathrm{H}_{2}\right)$ state into a narrow quarkonium state (Φ_{f}) and light hadrons ($h_{\text {a }}$).

$$
\mathcal{M}\left(\Phi_{i} \rightarrow \Phi_{f}+h>=\right.
$$

$$
\left.\sum_{H_{1} H_{2}} \sum_{p_{1}, p_{2}}\left\langle\Phi_{f} h_{a}\right| \mathcal{H}_{I}^{\prime}\left|H_{1}\left(p_{1}\right) \bar{H}_{2}\left(p_{2}\right)\right\rangle \frac{1}{\left(E_{f}+E_{a}\right)-\left(E_{1}+E_{2}\right)}\left\langle H_{1} \bar{H}_{2}\left[h_{b}\right]\right| \mathcal{H}_{I}| | \phi_{i}\right\rangle
$$

- The time scale of the production process has to be short relative to the time scale over which $\mathrm{H}_{1} \mathrm{H}_{2}$ rescattering can occur.
- The relative velocity in the $\mathrm{H}_{1} \mathrm{H}_{2}$ system must be low. This is only possible near threshold.
- Here we need not speculate on whether the observed rescattering is caused by a threshold bound state, cusp, or other dynamical effect.

F.K. Gao, C. Hanhart, Q. Wang, Q. Zhao [arXiv:1411.5584]

New Dynamics for Hadronic Transitions

- Production modes
- e+e-
- direct

- Can compute using coupled channel formalism

- B decays
- More quantum numbers accessible

New Dynamics for Hadronic Transitions

- Physical Expectations for Threshold Dynamics:

1. There is a large rescattering probability per unit time into light hadrons and quarkonium states for two heavy light mesons both near threshold and nearby in position.
2. For direct decays of a quarkonium resonance:

New S-wave channels peak rapidly near threshold. This is an expected property of the decay amplitudes into two narrow two heavy mesons and is an explicit feature of coupled channel calculations.
3. For sequential decays: the strong scattering dynamics of two narrow heavy-light mesons is peaked near threshold for S-wave initial states.

Ratios determined by LQCD calculations and judicious use of $S U(3)$.
M. Padmanath, C. B. Lang and S. Prelovsek [arXix:1503.03257]

New Dynamics for Hadronic Transitions

- Strong threshold dynamics
- Strong peaking at threshold $B B^{*}$ and $B^{*} B^{*}$
- Z+(10610) and Z+(10650) states

$$
\frac{\mathcal{B}\left(Z_{b}(10610) \rightarrow B B^{*}\right)}{\sum_{n} \mathcal{B}\left(Z_{b}(10610) \rightarrow \Upsilon(n S) \pi\right)+\sum_{m} Z_{b}(10610) \rightarrow h_{b}(m P)}=6.2 \pm 0.7 \pm 1.3_{-1.8}^{+0.0}
$$

and

$$
\frac{\mathcal{B}\left(Z_{b}(10650) \rightarrow B^{*} B^{*}\right)}{\sum_{n} \mathcal{B}\left(Z_{b}(10650) \rightarrow \Upsilon(n S) \pi\right)+\sum_{m} Z_{b}(10650) \rightarrow h_{b}(m P)}=2.8 \pm 0.4 \pm 0.6_{-0.4}^{+0.0} .
$$

- HQS implies that the same mechanism applies for charmonium-like states

Systematics and Expectations

- Charmonium-like states: $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \Psi$ at $\sqrt{s}=4.26 \mathrm{GeV} \quad[\mathrm{Y}(4260)]$
- $Z_{c}(3885), Z_{c}(4020)$ both have $I^{G}\left(J^{P}\right)=1^{-}\left(1^{+}\right)$.
- As expected by HQS between the bottomonium and charmonium systems

$M\left(D^{0}+D^{*-}\right)=3.8752$

$$
\begin{aligned}
M_{\text {pole }} & =3883.9 \pm 1.5 \pm 4.2 \mathrm{MeV} \\
\Gamma_{\text {pole }} & =24.8 \pm 3.3 \pm 11.0 \mathrm{MeV}
\end{aligned}
$$

$$
M\left(D^{\star 0}+D^{\star-}\right)=4.0178
$$

BESIII Z. Lin
[arXiv:1504.06102]
$\frac{\Gamma\left[Z_{c}(4025) \rightarrow D^{*} D^{*}\right]}{\Gamma\left[Z_{c}(4020) \rightarrow \pi h_{c}\right]} \sim 9$

$$
M=4022.9 \pm 0.8 \pm 2.7 \mathrm{MeV}
$$

$\frac{\Gamma\left[Z_{c}(3900) \rightarrow D D^{*} \mid\right.}{\Gamma\left[Z_{c}(3900) \rightarrow \pi J / \psi\right]}=6.2 \pm 1.1_{\text {stat }} \pm 2.7_{\text {sys }}$.

$$
\Gamma\left[Z_{\underline{c}}(3900) \rightarrow \pi J / \psi\right]_{-}=0.2 \pm 1.1_{\text {stat }} \pm 2.1_{\text {sys }}
$$

$$
\Gamma=7.9 \pm 2.7 \pm 2.6 \mathrm{MeV}
$$

Systematics and Expectations

- Charmonium systems:
- $\Psi(1 D)$
$-M=3773.15 \pm 0.33 \mathrm{MeV} \quad \Gamma=27.2 \pm 1.1 \mathrm{MeV}$;
- Open decay channels:
- $M\left(D^{0} D^{\top}\right)=3,729.72 \mathrm{MeV}, M\left(D^{+} D^{-}\right)=3,739.26 \mathrm{MeV}$
- Normal pattern

Decay Mode	Branching Rate
$D^{0} \bar{D}^{0}$	$(52 \pm 5) \%$
$D^{+} D^{-}$	$(41 \pm 4) \%$
total $D \bar{D}$	$93_{-9}^{+8 \%}$
$\psi(1 S) \pi^{+} \pi^{-}$	$(1.93 \pm 0.28) \times 10^{-3}$
$\psi(1 S) \eta$	$(9 \pm 4) \times 10^{-4}$

\rightarrow partial rate $=52.5 \pm 7.6 \mathrm{keV}$

- Puzzle is the total DD branching fraction

$\Psi(3770), \Psi(4040)$

- Only ground state heavy-light meson pair decays allowed
$\psi(3770)$ nearby thresholds

Systematics and Expectations

- $\Psi(3 S)$
$-M=4039 \pm 1 \mathrm{MeV} \quad \Gamma=80 \pm 10 \mathrm{MeV}$;
- Open decay channels:
- $M\left(D^{0} D^{0}\right)=3,729.72 \mathrm{MeV}, M\left(D^{+} D^{-}\right)=3,739.26 \mathrm{MeV}$
- $M\left(D^{0} \bar{D}^{* 0}\right)=3,871.85 \mathrm{MeV}, M\left(D^{+} D^{*-}\right)=3,879.92 \mathrm{MeV}$
- $M\left(D_{s}{ }^{+} D_{s}^{-}\right)=3,937 . \mathrm{MeV}$
- $M\left(D^{* 0} D^{\star 0}\right)=4,013.98 \mathrm{MeV}, M\left(D^{\star+} D^{\star-}\right)=4,020.58 \mathrm{MeV}$

Table 4: Selected $\psi(3 S)$ decays.

Decay Mode	Branching Rate
$D * \bar{D} *$	
$D_{s}^{+} D_{s}^{-} *+c . c$.	
$D D *$	$\frac{\Gamma(D * \bar{D}+c . c .)}{\Gamma(D * \bar{D} *}=0.34 \pm 0.14 \pm 0.05$
$D \bar{D}$	$\frac{\Gamma(D * \bar{D}+c . c .)}{\Gamma(D * \bar{D})}=0.02 \pm 0.03 \pm 0.02$
$\psi(1 S) \eta$	$(5.2 \pm 0.7) \times 10^{-3}$

Charm threshold region has very large induced HQS breaking effects due to spin splitting in j i heavy-light multiplets

Systematics: $\Psi(4040)$ and Below

- Charmonium-like state transitions for masses at or below the $\psi(3 S)$

Low-lying thresholds

Low-lying (Narrow) Charm Meson Pair Thresholds

Systematics: $\Psi(4160), \Psi(4415)$

- Many open channels for heavy-light meson pair decays.
$\psi(4160)$ nearby thresholds

Systematics and Expectations

- $\Psi(4 S)$
- $M=4421 \pm 4 \mathrm{MeV} \quad \Gamma=62 \pm 20 \mathrm{MeV}$;
- Open decay channels:
- Many

Decay Mode	Branching Rate
$D^{*} \bar{D}+\mathrm{cc}$	$\frac{\Gamma\left(D^{*} \overline{\bar{D}}\right)}{\Gamma\left(D^{*} \bar{D}^{*}\right)}=0.17 \pm 0.25 \pm 0.03$
$D^{*} \bar{D}^{*}$	seen
$D_{s}^{+*} D_{s}^{-}$	seen
$D D_{2}^{*}(\overline{2} 460)$	$(10 \pm 4) \%$
$\eta J / \psi$	$<6 \pm 10^{-3}$

- Would be nice to see more study here.

Systematics: $\Psi(4160), \Psi(4415)$

- Charmonium-like state transitions for masses above the $\psi(35)$

Strange heavy-light meson thresholds

- What happens at strange heavy-light meson thresholds?
- There should be threshold enhancements for strange heavy-light meson pair production leading to sizable production of single n and ϕ light hadrons.

- No wide P-states -> no sequential transitions with these states.
- $M\left(D_{s}{ }^{+} D_{s}{ }^{-\star}\right)=4,081 \mathrm{MeV}, M\left(D_{s}{ }^{+*} D_{s}{ }^{-*}\right)=4,225 \mathrm{MeV}$; $M\left(3^{3} P_{2}\right)=4,315 \mathrm{MeV}$
- Direct transitions?
- Narrow $D\left({ }^{\frac{1}{2}+} P\right)+D\left({ }^{\frac{1}{2}-S}\right)$ thresholds? (and B analogs)
- At higher energies the $D_{s}(2 S)$ wide states could play a role in sequential transitions.

Systematics: Other States

- Same mechanism in B-decays with $2 \mathrm{~S}_{\{0,1\}}\left(\mathrm{D}_{s}\right)$ states: $\mathrm{Z}^{+}(4430)$
P. Pakhlov [arXiv:1105.2945]
- $D_{s}{ }^{*}(2 S) M=2,709 \pm 4 \mathrm{MeV} \quad \Gamma=117 \pm 13 \mathrm{MeV}$
- $D_{s}(2 S) M=2,610-2660 \mathrm{MeV}$
- Relevant open thresholds:
- $M(D D(2 S))=4,449 \mathrm{MeV} ; ~ M\left(D D^{*}(2 S)\right)=4,519 \mathrm{MeV}$
- $M\left(D^{*} D(2 S)\right)=4,586 \mathrm{MeV} ; M\left(D^{*} D^{*}(2 S)\right)=4,659 \mathrm{MeV}$

P. Pakhlov and T. Uglov
[arXiv:1408.5295]

ΔR_{Q} in the Threshold Region

- $R=\sigma\left(e+e-->\gamma^{*}->\right.$ hadrons $) / \sigma\left(e+e-->\gamma^{*}->\mu^{+} \mu-\right) J^{P C}=1^{--}$
- Resonance region ~ 1 GeV
- Two body decays
- $D 0=(c u), D+=(c d)$
- $M\left(D^{0} D^{0}\right)=3,729.72 \mathrm{MeV}$
- $M\left(D^{+} D^{-}\right)=3,739.26 \mathrm{MeV}$
- $B-=(b u), B O=(b d)$
- $M\left(B^{+} B^{-}\right)=10,578.52 \mathrm{MeV}$
- $M\left(B^{0} B^{0}\right)=10,579.16 \mathrm{MeV}$
- $e_{c}=2 / 3 ; e_{b}=-1 / 3$

Quark-Hadron Duality

- Two pictures of R

$$
-\left(g_{\mu \nu} q^{2}-q_{\mu} q_{\nu}\right) \rho_{c}(W)
$$

$$
\Delta R(W)=\frac{6 \pi}{W^{2}} \rho_{c}(W)
$$

$$
=\left.\int d^{4} x e^{i q x}\langle 0| j_{\mu}(x) j_{\nu}(0)|0\rangle\right|_{\text {charm }} .
$$

Heavy-Light Mesons

- Observed low-lying (1S, 1P, and 1D) charm and bottom mesons:
- Very similar excitation spectrum - HQS

Charm Meson Spectrum
Bottom Meson Spectrum

- There are 9 narrow (< 2 MeV) charm meson states [and 10 bottom mesons states]. Any pair of these might have a cusp at S-wave threshold.

Low-lying thresholds

Low-lying (Narrow) Bottom Meson Pair Thresholds

Narrow-Wide Thresholds
$B_{s}^{*} B\left(P_{1}\right)$
$B_{s}{ }^{*} B\left(P_{0}\right) ; B_{s} B\left(P_{1}\right)$
$B B\left(P_{1}\right) ; B_{s} B\left(P_{0}\right)$
$B^{*} B\left(P_{0}\right)$
B B(P_{0})

Low-lying thresholds

Low-lying (Narrow) Charm Meson Pair Thresholds

Decay Amplitudes

- For resonances (with no radial nodes) as expected:
wds $1 S_{-1} 1$

IPuds_1s_0_0

- But complicated dependence on heavy-light momentum for radially excited resonances.

- $\Delta E=E-m_{1}-m_{2}=\sqrt{ }\left(m_{1}^{2}+p^{2}\right)+\sqrt{\left(m_{2}^{2}+p^{2}\right)-m_{1}-m_{2}}$

Complicated pattern in ΔR_{c}

- $\Psi(3 S)$ in exclusive channels (2006 CCM)
- At 4.04 GeV :

$$
\text { - } p(D D)=0.77 ; p\left(D^{\star}\right)=0.57 ; p\left(D^{*} D^{\star}\right)=0.20
$$

- At 4.00 GeV :
- $p(D D)=0.72 ; p\left(D D^{*}\right)=0.49 ; p\left(D^{*} D^{*}\right)=0.0$
- At 3.96 GeV :
- $p(D D)=0.66 ; p\left(D^{*}\right)=0.40 ; p\left(D^{*} D^{*}\right)=-$
luds_3S_1

Two requests

- To BES: Measure the line shape ΔR_{c} in the threshold region. Give results for each individual channel for:
- pairs of narrow states of the heavy-light systems + pions
- Quarkonium bound states + light hadrons.
- It is the theorist challenge to make their model fit the data.
- To Lattice QCD: Calculate the behavior of scattering of heavy-light meson pairs in the threshold region.
- Consider S-wave amplitudes (at first)
- Include the mixing between two HL mesons and quarkonium + a single light hadron.
- This is an difficult but not impossible challenge.

Summary

- Above heavy flavor production threshold the usual QCDME fails.
- The transitions rate are much larger than expected.
- The factorization assumption fails. Heavy quark and light hadronic dynamics interact strongly due to heavy flavor meson pair (four quark) contributions to the quarkonium wavefunctions. Magnetic transitions not suppressed.
- A new mechanism for hadronic transitions is required.
- A new mechanism, in which the dynamics is factored differently, is purposed.
- It requires an intermediate state containing two narrow heavy-light mesons nearby and near threshold ($v \rightarrow$ zero). This is the factor. Other light hadrons may be present or not.
- The production of this state from the initial state is calculated using familiar strong dynamics of coupled channels.
- The evolution of this threshold system into the final quarkonium state and light hadrons requires a new threshold dynamics.
- HQS as well as the usual SU(3) and chiral symmetry expectations are recovered.
- Resolves the puzzles in η transitions.
- With BES III and LHCb and soon BELLE 2. I expect even more progress in understanding hadronic transitions in the near future.

Backup Slides

Potential model states

Partial Waves for Various Decays

- Decays Near Threshold in e+e-

$\mathrm{j}_{1}^{\mathrm{P}}=00^{-}\left[n^{3} S_{1}\right]$	$j 1^{P}=1 / 2^{-}$	j1 ${ }^{P}=1 / 2^{+}$	j $1^{P}=3 / 2^{+}$	$j i^{P}=3 / 2^{-}$	$j i^{P}=5 / 2^{-}$
$\mathrm{j} 1^{P}=1 / 2^{-}$	$\mathrm{L}=1$	L=0	$\mathrm{L}=2$	$\mathrm{L}=1$	-
$\mathrm{j}_{1}{ }^{\mathrm{j}}=1 / 2^{+}$	L=0	L=1	L=1	L=2	-
ji ${ }^{P}=3 / 2^{+}$	L=2	L=1	$\mathrm{L}=1,3$	$\mathrm{L}=0,2$	$\mathrm{L}=1,3$
$j j^{P}=3 / 2^{-}$	L=1	$\mathrm{L}=2$	$\mathrm{L}=0,2$	$\mathrm{L}=1,3$	$\mathrm{L}=2,4$
j $1^{P}=5 / 2^{-}$	-	-	$\mathrm{L}=1,3$	$\mathrm{L}=2,4$	$\mathrm{L}=1,3,5$
$\mathrm{jl}^{P}=0^{-}\left[n^{3} D_{1}\right]$	$\mathrm{j}^{\mathrm{P}}=1 / 2^{-}$	$\mathrm{j}^{\mathrm{P}}=1 / 2^{+}$	$j^{P}=3 / 2^{+}$	$j^{P}=3 / 2^{-}$	$j^{P}=5 / 2^{-}$
$\mathrm{j} 1^{P}=1 / 2^{-}$	L=1,3	L=2	$\mathrm{L}=0,2,4$	L=1,3	L=1,3,5
$j j^{P}=1 / 2^{+}$	L=2	$\mathrm{L}=1,3$	$\mathrm{L}=1,3$	L=0,2,4	$L=0,2,4$
ji ${ }^{P}=3 / 2^{+}$	L=0,2,4	L=1,3	$L=1,3,5$	L=0,2,4	$\mathrm{L}=0,2,4,6$
$j_{j}{ }^{P}=3 / 2^{-}$	$\mathrm{L}=1,3$	$\mathrm{L}=0,2,4$	$\mathrm{L}=0,2,4$	$\mathrm{L}=1,3,5$	L=1,3,5
$j_{j}{ }^{P}=5 / 2^{-}$	L=1,3,5	$L=0,2,4$	L=0,2,4,6	$\mathrm{L}=1,3,5$	$\mathrm{L}=1,3,5,7$
$\underbrace{}_{P}$					

Decay Couplings

TABLE II: Statistical recoupling coefficients C, defined by Eq. D19 of Ref. [10], that enter the calculation of charmonium decays to pairs of charmed mesons. Paired entries correspond to $\ell=L-1$ and $\ell=L+1$.

State	$D \bar{D}$	$D \bar{D}^{*}$	$D^{*} \bar{D}^{*}$
${ }^{1} \mathrm{~S}_{0}$	$-: 0$	--2	$-: 2$
${ }^{3} \mathrm{~S}_{1}$	$-: \frac{1}{3}$	$-: \frac{4}{3}$	$-: \frac{7}{3}$
${ }^{3} \mathrm{P}_{0}$	1	$: 0$	$0: 0$
${ }^{3} \mathrm{P}_{1}$	$0: 0$	$\frac{4}{3}: \frac{2}{3}$	$\frac{1}{3}: \frac{8}{3}$
${ }^{1} \mathrm{P}_{1}$	$0: 0$	$\frac{2}{3}: \frac{4}{3}$	$0: 2$
${ }^{3} \mathrm{P}_{2}$	$0: \frac{2}{5}$	$0: \frac{2}{5}$	$\frac{4}{3}$
${ }^{3} \mathrm{D}_{1}$	$\frac{2}{3}: 0$	$\frac{2}{3}: 0$	$\frac{16}{15}$
${ }^{3} \mathrm{D}_{2}$	$0: 0$	$\frac{6}{5}: \frac{4}{5}$	$\frac{4}{5}: \frac{12}{5}$
${ }^{1} \mathrm{D}_{2}$	$0: 0$	$\frac{4}{5}: \frac{6}{5}$	$\frac{4}{5}: \frac{6}{5}$
${ }^{3} \mathrm{D}_{3}$	$0: \frac{3}{7}$	$0: \frac{8}{7}$	$\frac{8}{5}: \frac{29}{35}$
${ }^{3} \mathrm{~F}_{2}$	$\frac{3}{5}: 0$	$\frac{4}{5}: 0$	$\frac{11}{35}: \frac{16}{7}$
${ }^{3} \mathrm{~F}_{3}$	$0: 0$	$\frac{8}{7}: \frac{6}{7}$	$\frac{4}{7}: \frac{10}{7}$
${ }^{1} \mathrm{~F}_{3}$	$0: 0$	$\frac{6}{7}: \frac{8}{7}$	$\frac{6}{7}: \frac{8}{7}$
${ }^{3} \mathrm{~F}_{4}$	$0: \frac{4}{9}$	$0: \frac{10}{9}$	$\frac{12}{7}: \frac{46}{63}$
${ }^{3} \mathrm{G}_{3}$	$\frac{4}{7}: 0$	$\frac{6}{7}: 0$	$\frac{22}{63}: \frac{20}{9}$
${ }^{3} \mathrm{G}_{4}$	$0: 0$	$\frac{10}{9}: \frac{8}{9}$	$\frac{2}{3}: \frac{4}{3}$
${ }^{1} \mathrm{G}_{4}$	$0: 0$	$\frac{8}{9}: \frac{10}{9}$	$\frac{8}{9}: \frac{10}{9}$
${ }^{3} \mathrm{G}_{5}$	$0: \frac{5}{11}$	$0: \frac{12}{11}$	$\frac{16}{9}: \frac{67}{99}$

Structure in two pion transitions

- For example, the $Y(5 S)$ has a $B\left(1 / 2^{-}\right)+B_{p}\left(1 / 2^{+}\right)$component. The $B_{p}\left(1 / 2^{+}\right)$state decays rapidly into a B meson and pion, leaving a $B\left(1 / 2^{-}\right)+B\left(1 / 2^{-}\right)$nearly at rest. They then recombine into the final $\left(\mathrm{V}\right.$ or $\left.h_{b}\right)$ and pion.

- Both the $Y(5 S)$) $\operatorname{Bp}\left(0^{+}\right) B^{\star}$ and $B p\left(0^{+}\right)->\pi B$ decays are S-wave
- The analogy in the charmonium system is the structure seen in the $\psi(4160)-y$ or $h \mathrm{~J} / \psi$ transition.
- This provides a dynamical mechanism for the Meson Loop and ISPE models.

Transitions

Transition	$\Gamma_{\text {partial }}(\mathrm{keV})$ (Experiment)	$\Gamma_{\text {partial }}(\mathrm{keV})$ (KY Model)
$\psi(2 S)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	102.3 ± 3.4	input ($\left\|C_{1}\right\|$)
$\rightarrow J / \psi+\eta$	10.0 ± 0.4	input (C_{3} / C_{1})
$\rightarrow J / \psi+\pi^{0}$	0.411 ± 0.030 [446]	0.64 [522]
$\rightarrow h_{c}(1 P)+\pi^{0}$	0.26 ± 0.05 [47]	0.12-0.40 [527]
$\psi(3770)$		
$\rightarrow J / \psi+\pi^{+} \pi^{-}$	52.7 ± 7.9	input (C_{2} / C_{1})
$\rightarrow J / \psi+\eta$	24 ± 11	
~~		
$\Upsilon(2 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	5.79 ± 0.49	8.7 [528]
$\rightarrow \Upsilon(1 S)+\eta$	$(6.7 \pm 2.4) \times 10^{-3}$	0.025 [521]
$\Upsilon\left(1^{3} D_{2}\right)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	0.188 ± 0.046 [63]	0.07 [529]
$\chi_{b 1}(2 P)$		
$\begin{aligned} & \rightarrow \chi_{b 1}(1 P)+\pi^{+} \pi^{-} \\ & \rightarrow \Upsilon(1 S)+\omega \end{aligned}$	$\begin{gathered} 0.83 \pm 0.33[523] \\ 1.56 \pm 0.46 \end{gathered}$	0.54 [530]
$\chi_{b 2}(2 P)$		
$\begin{aligned} & \rightarrow \chi_{b 2}(1 P)+\pi^{+} \pi^{-} \\ & \rightarrow \Upsilon(1 S)+\omega \end{aligned}$	$\begin{gathered} 0.83 \pm 0.31[523] \\ \quad 1.52 \pm 0.49 \end{gathered}$	0.54 [530]
$\Upsilon(3 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	0.894 ± 0.084	1.85 [528]
$\rightarrow \Upsilon(1 S)+\eta$	$<3.7 \times 10^{-3}$	0.012 [521]
$\rightarrow \Upsilon(2 S)+\pi^{+} \pi^{-}$	0.498 ± 0.065	0.86 [528]
$\Upsilon(4 S)$		
$\rightarrow \Upsilon(1 S)+\pi^{+} \pi^{-}$	1.64 ± 0.25	4.1 [528]
$\rightarrow \Upsilon(1 S)+\eta$	4.02 ± 0.54	
$\rightarrow \Upsilon(2 S)+\pi^{+} \pi^{-}$	1.76 ± 0.34	1.4 [528]

Heavy quarkonium: progress, puzzles, and opportunities
N. Brambilla et.al. [arXiv:1010.5827]

Determining the Hybrid Potentials

- Putting the ends together
- Toy model - minimal parameters

$$
\begin{aligned}
& V_{n}(R)=\frac{\alpha_{s}}{6 R}+\sigma R \sqrt{1+\frac{2 \pi}{\sigma R^{2}}\left(n(R)-\frac{1}{24}(d-2)\right)}+V_{0} \quad(n>0) \\
& V_{\Sigma_{g}^{+}}(R)=-\frac{4 \alpha_{s}}{3 R}+\sigma R+V_{0} \quad(n=0)
\end{aligned}
$$

Fixes $M c=1.84 \mathrm{GeV}, \sqrt{ } \sigma=.427 \mathrm{GeV}, \alpha_{\mathrm{s}}=0.39$

$$
\begin{aligned}
n(R)= & {[n] \text { (string level) if no level crossing } } \\
& {\left[n-2 \tanh \left(R_{0} / R\right)\right] \text { for } \sum_{u} \text { potential }(n=3) }
\end{aligned}
$$

FIG. 2: Short-distance degeneracies and crossover in the spectrum. The solid curves are only shown for visualization. The dashed line marks a lower bound for the onset of mixing effects with glueball states which requires careful interpretation.

Spectrum of Low-Lying Hybrid States

- Only interested in states below 4.8 GeV for cc system. Unlikely higher states will be narrow (DD, glueball+J/ ψ, etc)

- Only $\Pi_{u}, \Sigma_{u}{ }^{-}$, and $\Sigma_{g}{ }^{+1}$ systems have sufficiently light states.

Spectrum of Low-Lying Hybrid States

- $\Pi_{u}(1 \mathrm{~S}) \mathrm{m}=4.132 \mathrm{GeV} \quad \Pi_{u}(2 \mathrm{~S}) \mathrm{m}=4.465 \mathrm{GeV} \quad \mathrm{J}^{\mathrm{PC}}=0^{++}, 0^{--}, 1^{+-}, 1^{-+}$ $\Pi_{u}(1 P) m=4.445 \mathrm{GeV} \quad \Pi_{u}(2 P) m=4.773 \mathrm{GeV} \quad J^{P C}=1^{--}, 1^{++}, 0^{-+}, 0^{+-}, 1^{+-}, 1^{-+}, 2^{+-}, 2^{-+}$

- The $\Pi_{u}(1 P), \Pi_{u}(2 P)$ and $\Sigma_{g}{ }^{+1}(1 S)$ have 1-- states with spacing seen in the $Y(4260)$ system
- $\Sigma_{u}{ }^{-}(1 \mathrm{~S}) \mathrm{m}=4.292 \mathrm{GeV} \quad \Sigma_{u}{ }^{-}(1 \mathrm{P}) \quad \mathrm{m}=4.537 \mathrm{GeV} \quad \Sigma_{u}{ }^{-}(2 \mathrm{~S}) \quad \mathrm{m}=4.772 \mathrm{GeV}$
- Numerous states with $C=+$ in the 4.2 GeV region.

Spectrum of Low-Lying Hybrid States

- The spectrum of bottomonium hybrids is completely predicted as well
- For the Π_{u} states

Other Decay Structures

- $1^{3} D_{3}(c c)$
- very small decay width
- How to observe?

- $2^{3} P_{0}(c c)$
- wide state but complex structure in line shape.
- $M\left(D_{s}{ }^{+}+D_{s}{ }^{-}\right)=3,937 \mathrm{MeV}$
- large SU(3) breaking
- hadronic transitions observable near dip.

QCDME

- QCD multipole expansion (basics)
- Factorize heavy quark dynamics and light hadron production.
$\mathcal{M}\left(\Phi_{i} \rightarrow \Phi_{f}+h\right)=$
$\frac{1}{24} \sum \frac{\left.\langle f| d_{m}^{i a}|K L\rangle\langle | K L\left|d_{m a}^{j}\right| i\right\rangle}{E_{i}-E_{K L}}\langle h| \mathbf{E}^{a i} \mathbf{E}_{a}^{j}|0\rangle \quad$ + higher order multipole terms.
 states |KL> (QCS Buchmueller-Tye)
where |KL> are a complete set of intermediate states.

$$
\langle f h| H_{2} \mathcal{G}\left(E_{i}\right) H_{2}|i\rangle=\sum_{K L}\langle f h| H_{2}|K L\rangle \frac{1}{E_{i}-E_{K L}}\langle K L| H_{2}|i\rangle
$$

- Chiral effective lagrangiath to parameterize light hadron matrix elements.

$$
E-H_{\mathrm{QCD}}^{(0)}+i \partial_{0}-H_{\mathrm{QCD}}^{(1)}+i \epsilon
$$

QCDME

- two pion transitions (E1-E1)

$$
\left(\mathrm{C}_{\mathrm{A}} \mathrm{C}_{\mathrm{B}}=+1\right)
$$

- Factorization

$$
\mathcal{M}_{i f}^{g g}=\frac{1}{16}<B\left|\mathbf{r}_{\mathbf{i}} \xi^{a} \mathcal{G} \mathbf{r}_{\mathbf{j}} \xi^{a}\right| A>\frac{g_{\mathrm{E}}^{2}}{6}<\pi_{\alpha} \pi_{\beta}\left|\operatorname{Tr}\left(\mathbb{E}^{\mathbf{i}} \mathbb{E}^{j}\right)\right| 0>
$$

- Chiral symmetry

Hadronize
D-wave

$$
d \Gamma \sim K \sqrt{1-\frac{4 m_{\pi}^{2}}{M_{\pi \pi}^{2}}}\left(M_{\pi \pi}^{2}-2 m_{\pi}^{2}\right)^{2} d M_{\pi \pi}^{2} \quad K \equiv \frac{\sqrt{\left(M_{A}+M_{B}\right)^{2}-M_{\pi \pi}^{2}} \sqrt{\left(M_{A}-M_{B}\right)^{2}-M_{\pi \pi}^{2}}}{2 M_{A}}
$$

S state -> S state

$$
\Gamma=\mathrm{G}\left|\alpha_{\mathrm{AB}}^{\mathrm{EE}} \mathrm{C}_{1}\right|^{2}
$$

Phase Space

Overlap - Buchmuller-Tye string inspired model)

SofrenRincixages

- $\quad Y(3 S)->Y(1 S) \pi \pi$ and $Y(4 S)->Y(2 S) \pi \pi$ transitions
- $M_{\pi \pi}$ distributions NOT the expected S-wave behaviour
- Likely explanation - same as overlap dynamically suppressed
- CLEO detailed study [arXiv:0706.2317]
- Hindered M1-M1 term => C ≈ 0. Consistent with CLEO resulfs

- Small D-wave contributions
- Further study would be useful. Look at polarization. Dubynsk售

$M_{\pi \pi}=\sqrt{q^{2}}\left(\mathrm{GeV} / \mathrm{c}^{2}\right)$

QCDME

- eta transitions (E1-M2, M1-M1)

$$
\left(\mathrm{C}_{A} \mathrm{C}_{B}=+1\right) \quad O\left(v^{2}\right)
$$

- E1-M2 expected to dominate
- Factorization
$-\mathrm{Cr}$

$$
\begin{gathered}
\mathcal{M}_{i f}^{g g}=\frac{1}{16}<B\left|\mathbf{r}_{\mathbf{i}} \xi^{a} \mathcal{G} \mathbf{r}_{\mathbf{j}} \xi^{a}\right| A>\frac{g_{e} g_{M}}{6}\langle\eta| \mathbb{E}_{i} \partial_{j} \mathrm{~B}_{k}|0\rangle \frac{\left(\epsilon_{B}^{*} \times \epsilon_{A}\right)_{k}}{3 m_{Q}} \\
\alpha_{A B}^{E E}
\end{gathered}
$$

Chiral symmetry breaking - Chiral effective lagrangian

$$
\begin{gathered}
\tilde{\pi}^{0}=\pi^{0}+\epsilon \eta+\epsilon^{\prime} \eta^{\prime} \quad \tilde{\eta}=\eta-\epsilon \pi^{0}+\theta \eta^{\prime} \quad \tilde{\eta}^{\prime}=\eta^{\prime}-\theta \eta-\epsilon^{\prime} \pi^{0} \\
\epsilon=\frac{\left(m_{d}-m_{u}\right) \sqrt{3}}{4\left(m_{s}-\frac{m_{u}+m_{d}}{2}\right)}, \quad \epsilon^{\prime}=\frac{\tilde{\lambda}\left(m_{d}-m_{u}\right)}{\sqrt{2}\left(m_{\eta^{\prime}}^{2}-m_{\pi^{0}}^{2}\right)}, \quad \theta=\sqrt{\frac{2}{3}} \frac{\tilde{\lambda}\left(m_{s}-\frac{m_{u}+m_{d}}{2}\right)}{m_{\eta^{\prime}}^{2}-m_{\eta}^{2}}
\end{gathered}
$$

$\Upsilon(6 S)$

- Belle [arXiv:1501.01137]

FIG. 1. R_{b}^{\prime}, data with components of fit: total (solid curve), constants $\left|A_{\mathrm{nr}}\right|^{2}$ (thin), $\left|A_{\mathrm{r}}\right|^{2}$ (thick); for $\Upsilon(5 \mathrm{~S})$ (thin) and $\Upsilon(6 \mathrm{~S})$ (thick), $|f|^{2}$ (dot-dot-dash), cross terms with A_{r} (dashed), and tworesonance cross term (dot-dash). Error bars are statistical only.

FIG. 2. $R_{\Upsilon \pi \pi}$ data for $\Upsilon(1 \mathrm{~S})$ (top), $\Upsilon(2 \mathrm{~S})$ (center), and $\Upsilon(3 \mathrm{~S})$ (bottom), with results of fit C. Error bars are statistical only.

