Hadronic Transitions For Quarkonium States Above Threshold

Estia Eichten (Fermilab)

Outline:

- Revisiting the QCD Multipole Expansion
- Hadronic Transitions Below Threshold
- New Dynamics for Hadronic Transitions At Threshold
- Systematics and Expectations
- ΔR_Q in the Threshold Region
- Summary

International Workshop on QCD Exotics
June 7-12, 2015
Shandong University
Jinan, China

Revisiting the QCDME Assumptions

- QCD multipole expansion (QCDME) in a nutshell
 - Analogous to the QED multipole expansion with gluons replacing photons.

- color singlet physical states means lowest order terms involve two gluon emission. So lowest multipoles E1 E1, E1 M1, E1 E2,
- factorize the heavy quark and light quark dynamics

$$\mathcal{M}(\Phi_i \to \Phi_f + h) = \frac{1}{24} \sum_{KL} \frac{\left\langle f \middle| d_m^{ia} \middle| KL \right\rangle \left\langle \middle| KL \middle| d_{ma}^{j} \middle| i \right\rangle}{E_i - E_{KL}} \left\langle h \middle| \mathbf{E}^{ai} \mathbf{E}_a^{j} \middle| 0 \right\rangle \quad \text{+ higher order multipole terms.}$$

- assume a model for the heavy quarkonium states Φ i, Φ f and a model for the intermediate states |KL> hybrid states.
- use chiral effective lagrangians to parameterize the light hadronic system.

QCD Multipole Expansion

 Below threshold this theory works well to describe the hadronic transitions.

- The transition rates are small.
- Heavy-quark symmetry (HQS) dictates that the leading transitions do not flip the spin of the heavy quarks (as it is for the usual EM transitions in nonrelativistic systems).
- Isospin breaking is suppressed.
- A few puzzles remain.

N. Brambilla, et al., Eur. Phys. J. C71 (2011) 1534

Transition	$\Gamma_{\rm partial} \ ({\rm keV})$	$\Gamma_{\rm partial} \ ({\rm keV})$
	(Experiment)	(KY Model)
$\psi(2S)$		
$\rightarrow J/\psi + \pi^+\pi^-$	102.3 ± 3.4	input (C_1)
$\rightarrow J/\psi + \eta$	10.0 ± 0.4	input (C_3/C_1)
$\rightarrow J/\psi + \pi^0$	$0.411 \pm 0.030 $ [446]	0.64 [522]
$\rightarrow h_c(1P) + \pi^0$	$0.26 \pm 0.05 \ [47]$	0.12-0.40 [527]
$\psi(3770)$		
$\rightarrow J/\psi + \pi^+\pi^-$	52.7 ± 7.9	input (C_2/C_1)
$\rightarrow J/\psi + \eta$	24 ± 11	
$\psi(3S)$		
$\rightarrow J/\psi + \pi^+\pi^-$	< 320 (90% CL)	
$\Upsilon(2S)$		
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$	5.79 ± 0.49	8.7 [528]
$\rightarrow \Upsilon(1S) + \eta$	$(6.7 \pm 2.4) \times 10^{-3}$	$0.025 \ [521]$
$\Upsilon(1^3D_2)$		
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$	0.188 ± 0.046 [63]	0.07 [529]
$\chi_{b1}(2P)$		
$\rightarrow \chi_{b1}(1P) + \pi^+\pi^-$	0.83 ± 0.33 [523]	0.54 [530]
$\rightarrow \Upsilon(1S) + \omega$	1.56 ± 0.46	
$\chi_{b2}(2P)$		
$\to \chi_{b2}(1P) + \pi^+\pi^-$	0.83 ± 0.31 [523]	0.54 [530]
$\rightarrow \Upsilon(1S) + \omega$	1.52 ± 0.49	
$\Upsilon(3S)$		
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$	0.894 ± 0.084	1.85 [528]
$\rightarrow \Upsilon(1S) + \eta$	$<3.7\times10^{-3}$	0.012 [521]
$\rightarrow \Upsilon(2S) + \pi^+\pi^-$	0.498 ± 0.065	0.86 [528]
$\Upsilon(4S)$		
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$	1.64 ± 0.25	4.1 [528]
$\rightarrow \Upsilon(1S) + \eta$	4.02 ± 0.54	
$\rightarrow \Upsilon(2S) + \pi^+\pi^-$	1.76 ± 0.34	1.4 [528]

n Transitions

QCDME

$$\begin{array}{ll} \textbf{- E1-M2 dominate } \mathcal{M}^{gg}_{if} \ = \ \frac{1}{16} < B|\mathbf{r_i}\xi^a\mathcal{G}\mathbf{r_j}\xi^a|A> \frac{g_eg_M}{6}\langle\eta|\mathbf{E}_i\partial_j\mathbf{B}_k|0\rangle & \frac{(\epsilon_B^*\times\epsilon_A)_k}{3m_Q} \\ & \alpha_{AB}^{EE} & \\ & : i(2\pi)^{3/2}C_3q_k \end{array}$$

- Ratio of η to π π transitions: same initial and final quarkonium states at $(M_{\pi\pi} = M_{\eta})$

$$R_{Q\bar{Q}}(n \to m) \equiv \frac{\Gamma(n^3 S_1 \to m^3 S_1 + \eta)}{\Gamma(n^3 S_1 \to m^3 S_1 + \pi^+ \pi^-)} = \frac{8\pi^2}{27} \frac{1}{m_Q^2} (\frac{C_3}{C_1})^2 \left[\frac{[(M_i + M_f)^2 - M_\eta^2)((M_i - M_f)^2 - M_\eta^2)]^{3/2}}{G}\right]$$

is independent of the details of the intermediate states.

[kinematic factor]

- Comparing theory (KY) and experiment.

Ratio	theory	experiment
$R^{c\bar{c}}(2 \to 1)$	3.29×10^{-3}	9.78×10^{-2}
$R^{b\bar{b}}(2 \to 1)$	1.16×10^{-3}	1.16×10^{-3}
$R^{b\bar{b}}(3 \to 1)$	4.57×10^{-3}	$< 4.13 \times 10^{-3}$
$R^{b\bar{b}}(4 \to 1)$	2.23×10^{-3}	2.45
$R^{b\bar{b}}(4 \to 2)$	5.28×10^{-4}	

~ 30 > theory
sets
$$C_3/C_1$$
 = 0.143 ± 0.024
related to $\pi\pi$ suppression
~ 1000 > theory

- Transitions near and above threshold violate expectations of QCDME and sizable rates require large SU(3) breaking.
- We will see this is associated with the large SU(3) breaking in virtual and real heavy-light meson pair contributions to the states.

$Y(3S)-Y(1S) + \pi\pi$

- Suppressed overlaps $\Upsilon((n+2)S) \rightarrow \Upsilon(nS) + h$ or $\chi_b(nP) + \gamma$:
 - E1 photon transitions: $\Upsilon(3S) \rightarrow \chi_b(1P) + \gamma$ highly suppressed
 - $\Upsilon(35) = \Upsilon(15) + \pi\pi$: (leading term dynamically suppressed?)
 - Same for n transition?
- Measure ratios:
 - $R_{\eta} = R_{bb}(3->1)/R_{bb}(2->1)$
 - $R_{\pi\pi} = \Gamma(\Upsilon(3S) \rightarrow h_b + \pi\pi)/\Gamma(\Upsilon(3S) \rightarrow \Upsilon(1S) + \pi\pi)$
 - No new physics: $R_n \sim 1$, $R_{\pi\pi} \sim O(v^4) \sim small$
 - Significant coupled channel contributions: R_n >> 1
 - If Z⁺(10610) dominated: R $_{\pi\pi}$ ~ 1

Table 1: Cancellations in \mathcal{E}_{if} by node regions.

bb		initial st	ate node	9
Transition	< 1	1 to 2	2 to 3	total
$2S \rightarrow 1P$	0.07	-1.68		-1.61
$3S \rightarrow 2P$	0.04	-0.12	-2.43	-2.51
$3S \rightarrow 1P$	0.04	-0.63	0.65	0.06

CLEO [arXiv:0706.2317]

QCD Multipole Expansion (QCDME)

When should the QCDME work well?

- Transitions between tightly bound quarkonium states
- Small radius (R $\leftrightarrow \Lambda_{QCD}$)
 - bottomium 1S, 1P, 2S, 1D, 2P, 3S, ...
 - charmonium 1S, 1P, ...
- Small contributions from excitations involving QCD additional degrees of freedom.
 - · This is essential to the factorization assumption!

Above threshold

- light quark pairs
 - $D^{(*)} \overline{D^{(*)}}$ thresholds in 1D to 3S region
 - $B^{(*)} \overline{B^{(*)}}$ thresholds in 4S region
- gluonic string excitations
 - Hybrid states will appear in the spectrum associated with the potentials Π_u, \dots
 - In the static limit this occurs at separation $r \approx 1.2$ fm.
 - Between the 3S and 4S in (cc) system
 - Just above the 5S in the (bb) system
- New mechanisms can be expected for hadronic transitions above threshold.

Cornell Potential Model

Estia Eichten (Fermilab) QCD Exotics@Jinan, China June 8, 2015

Hadronic Transitions Above Threshold

- With BaBar, BES III, LHCb, BELLE and (CMS, ATLAS, CDF/DO)
 many new details of hadronic transitions have been observed.
- A clearer theoretical understanding hadronic transitions for quarkonium-like states above threshold should now be possible.
- However there are many the questions which arise as well:
 - The QCD Multipole Expansion fails above threshold. Why and how?
 - What are the remaining constraints of Heavy Quark Symmetry?
 - What explains the large rate of transitions for some states above threshold?
 - Can the pattern of transitions be understood?
 - Can detailed predictions be made?
- First let's look at the details of the transitions.

Hadronic Transitions Above Threshold

- Bottomonium systems:
- Y(4S)
 - $M = 10,579.4 \pm 1.2 \text{ MeV } \Gamma = 20.5 \pm 2.5 \text{ MeV};$
 - Open decay channels:
 - $M(B^+B^-) = 10,578.52 \text{ MeV}, M(B^0B^0) = 10,579.16 \text{ MeV}$
 - Essentially no isospin breaking in the masses.
 - Normal pattern of 2π decays, large η decays:

Table 1: Selected $\Upsilon(4S)$ decays.

Decay Mode	Branching Rate
B^+B^-	$(51.4 \pm 0.6)\%$
$B^0ar{B}^0$	$(48.6 \pm 0.6)\%$
total $B\bar{B}$	> 96%
$\Upsilon(1S) \pi^+\pi^-$	$(8.1 \pm 0.6) \times 10^{-5}$
$\Upsilon(2S) \pi^+\pi^-$	$(8.6 \pm 1.3) \times 10^{-5}$
$h_b(1P) \pi^+\pi^-$	(not seen)
$\Upsilon(1S)$ η	$(1.96 \pm 0.28) \times 10^{-4}$
$h_b(1P)$ η	$(1.83 \pm 0.23) imes 10$ ⁻⁴

- → partial rate = 1.66 ± 0.23 keV
- \rightarrow partial rate = 4.02 ± 0.89 keV
- → partial rate = 3.75 ± 0.73 keV

SU(3) violating HSQ violating

Heavy Quark Symmetry

- Large heavy quark spin symmetry breaking induced by the B^* B mass splitting. [Same for D^* -D and D_s^* - D_s]
 - Coupled channel calculations show a large virtual B B component to the $\Upsilon(4S)$. This accounts for the observed violation of the spin-flip rules of the usual QCDME.
 - $J^{PC} = 1^{--}$ in terms of B(*), B(*) mass eigenstates:

Voloshin [arXiv:1201.1222]

•
$$\mathbf{J}_{\text{SLB}} = \mathbf{j}_{\text{SLB}} + \mathbf{L}$$

$$B\bar{B} : \frac{1}{2\sqrt{3}} \psi_{10} + \frac{1}{2} \psi_{11} + \frac{\sqrt{5}}{2\sqrt{3}} \psi_{12} + \frac{1}{2} \psi_{01} ;$$

$$\frac{B^* \bar{B} - \bar{B}^* B}{\sqrt{2}} : \frac{1}{\sqrt{3}} \psi_{10} + \frac{1}{2} \psi_{11} - \frac{\sqrt{5}}{2\sqrt{3}} \psi_{12} ;$$

$$(B^* \bar{B}^*)_{S=0} : -\frac{1}{6} \psi_{10} - \frac{1}{2\sqrt{3}} \psi_{11} - \frac{\sqrt{5}}{6} \psi_{12} + \frac{\sqrt{3}}{2} \psi_{01} ;$$

$$(B^* \bar{B}^*)_{S=2} : \frac{\sqrt{5}}{3} \psi_{10} - \frac{\sqrt{5}}{2\sqrt{3}} \psi_{11} + \frac{1}{6} \psi_{12} .$$

$$\psi_{10} = 1_H^{--} \otimes 0_{SLB}^{++}, \quad \psi_{11} = 1_H^{--} \otimes 1_{SLB}^{++}, \quad \psi_{12} = 1_H^{--} \otimes 2_{SLB}^{++}, \text{ and } \psi_{01} = 0_H^{-+} \otimes 1_{SLB}^{+-}.$$

- $I^{G}(J^{P}) = 1^{-}(1^{+})$
 - S-wave (L=0)

$$(B^*\bar{B} - \bar{B}^*B) \sim \frac{1}{\sqrt{2}} \left(0_H^- \otimes 1_{SLB}^- + 1_H^- \otimes 0_{SLB}^- \right)$$
$$B^*\bar{B}^* \sim \frac{1}{\sqrt{2}} \left(0_H^- \otimes 1_{SLB}^- - 1_H^- \otimes 0_{SLB}^- \right) ,$$

Strange heavy-light meson thresholds

What about SU(3)?

- If there was no SU(3) breaking: only SU(3) singlet light hadron states could be produced. So single light hadron production (except the η') would be forbidden.

$$U = \exp\left(i\gamma_5 \frac{\varphi_a \lambda_a}{f_\pi}\right)$$

$$\varphi_a \lambda_a = \sqrt{2} \begin{pmatrix} \frac{\eta}{\sqrt{6}} + \frac{\pi^0}{\sqrt{2}}, & \pi^+, & K^+\\ \pi^-, & \frac{\eta}{\sqrt{6}} - \frac{\pi^0}{\sqrt{2}}, & K^0\\ K^-, & \bar{K}^0, & -\frac{2\eta}{\sqrt{6}} \end{pmatrix}$$

- BUT: SU(3) breaking is induced by the mass splitting of the (Q q) mesons with q=u,d (degenerate if no isospin breaking) and q=s.
- These splittings are large (~100 MeV) so there is large SU(3) breaking in the threshold dynamics.
- This greatly enhances the final states with $\eta + (Q\overline{Q})$. Yu.A. Simonov and A.I. Veselov [arXiv:0810.0366]
- This leads to large effects in the threshold region.
- Similarly important in ω and φ production.

Heavy-Light Mesons

- Observed low-lying (15, 1P, and 1D) charm and bottom mesons:
 - Very similar excitation spectrum HQS

- There are 9 narrow (< 2 MeV) charm meson states [and 10 bottom mesons states]. Any pair of these might have a cusp at 5-wave threshold.

Hadronic Transitions Above Threshold

Y(5S) hadronic transitions

- $M = 10,876 \pm 11 \text{ MeV } \Gamma = 55 \pm 26 \text{ MeV};$
- Open Ground State $(j^p = \frac{1}{2})$ Decay Channels:
 - M(BB) = 10,559 MeV, M(B*B) = 10,604 MeV, M(B*B*) = 10,650 MeV
 - $M(B_s\overline{B_s}) = 10,734 \text{ MeV}, M(B_s\overline{B_s}) = 10,782 \text{ MeV}, M(B_s\overline{B_s}) = 10,831 \text{ MeV}$
- Also some P state $(j^p = \frac{1}{2})$ Decay Channels are essentially open
 - $M(B[1^{\frac{1}{2}}P_0]\overline{B}^*) = 11,055 \text{ MeV}$ (notation: $n^{jP}L_J$)
 - $M(B[1^{\frac{1}{2}}P_1]B) = 11,045 \text{ MeV}, M(B[1^{\frac{1}{2}}P_1]B^*) = 11,091 \text{ MeV}$
- I have assumed: $\Gamma(B[1^{\frac{1}{2}} P_{\{0,1\}}]) \sim 300 \text{ MeV (wide)}; \Gamma(B[1^{3/2} P_{\{1,2\}}])$ are narrow

 B_{s}

Hadronic Transitions Above Threshold

Low-lying thresholds

Low-lying (Narrow) Bottom Meson Pair Thresholds

Narrow-Wide Thresholds

 B_s * $B(P_1)$

 $B_s* B(P_0); B_s B(P_1)$

B B(P₁); B_s B(P₀)

 $B* B(P_0)$

 $B B(P_0)$

Hadronic Transitions Above Threshold

- $\Upsilon(5S)$ decay pattern:

Table 2: Selected $\Upsilon(5S)$ decays.

Decay Mode	Branching Rate	Decay Mode	Branching Rate
$B\bar{B}$	$(5.5 \pm 1.0)\%$	$\Upsilon(1S) \pi^+\pi^-$	$(5.3 \pm 0.6) \times 10^{-3}$
$B\bar{B}^* + c.c.$	$(13.7 \pm 1.6)\%$	$\Upsilon(2S) \pi^+\pi^-$	$(7.8 \pm 1.3) \times 10^{-3}$
$B^*ar{B}^*$	$(38.1 \pm 3.4)\%$	$\Upsilon(3S) \pi^+\pi^-$	$(4.8^{+1.9}_{-1.7}) \times 10^{-3}$
		$\Upsilon(1S)Kar{K}$	$(6.1 \pm 1.8) \times 10^{-4}$
$B_sar{B}_s$	$(5\pm5)\times10^{-3}$	$h_b(1P)\pi^+\pi^-$	$(3.5^{+1.0}_{-1.3}) \times 10^{-3}$
$B_s\bar{B}_s^* + c.c.$	$(1.35 \pm 0.32)\%$	$h_b(1P)\pi^+\pi^-$	$(6.0^{+2.1}_{-1.8}) \times 10^{-3}$
$B_s^* \bar{B}_s^*$	$(17.6 \pm 2.7)\%$	$\chi_{b1} \pi^+\pi^-\pi^0 \text{ (total)}$	$(1.85 \pm 0.33) \times 10^{-3}$
$Bar{B}\pi$	$(0.0 \pm 1.2)\%$	$\chi_{b2} \pi^+\pi^-\pi^0 \text{ (total)}$	$(1.17 \pm 0.30) \times 10^{-3}$
$B^*\bar{B}\pi + B\bar{B}^*\pi$	$(7.3 \pm 2.3)\%$	χ_{b1} ω	$(1.57 \pm 0.32) \times 10^{-3}$
$B^*ar{B}^*\pi$	$(1.0 \pm 1.4)\%$	χ_{b2} ω	$(0.60 \pm 0.27) \times 10^{-3}$
$Bar{B}\pi\pi$	< 8.9%	$\Upsilon(1S)\eta$	$(0.73 \pm 0.18) \times 10^{-3}$
		$\Upsilon(2S)\eta$	$(2.1 \pm 0.8) \times 10^{-3}$
		$\Upsilon(1D)\eta$	$(2.8 \pm 0.8) \times 10^{-3}$
total $B\bar{B}{\bf X}$	$(76.2 ^{+2.7}_{-4.0})\%$		

→ partial rate = 0.29 ± 0.13 MeV

- -> partial rate = 86 ± 41 keV
- → partial rate = 0.15 ± 0.08 MeV
- Very large 2π hadronic transitions [> 100 times $\Upsilon(4S)$ rates]
- Very large η (single light hadron) transitions. Related to nearby B_s*B_s* threshold?

Hadronic Transitions Above Threshold

- Contributions of P-state decays:
 - $n^3S_1(QQ) \rightarrow 1^{\frac{1}{2}}P_J(Qq) + 1^{\frac{1}{2}}S_{J'}(qQ)$:

S-wave decays

$$\begin{array}{c|c|c} \hline C(J, J') & J' = 0 & J' = 1 \\ \hline J = 0 & 0 & 2/3 \\ J = 1 & 2/3 & 4/3 \\ \hline \end{array}$$

- $1^{\frac{1}{2}} P_{J}(Qq) \rightarrow 1^{\frac{1}{2}} S_{J'}(Qq') + {}^{1}S_{0}(qq')$ for S-wave J=J'
- Dominant two body decays of the Y(5S)

Example

Remarks:

- (1) $\Upsilon(5S)$ strong decay is S-wave
- (2) The large width of the $B_1(1P)$ implies that the first π is likely emitted while the $B_1(1P)$ and $B^{(*)}$ are still nearby.

16

- (3) The $B_1(1P)$ decay is S-wave
- (4) Therefore the $B^{(*)}$ B^* system is in a relative S-wave and near threshold.
- (5) No similar BB system is possible.

- A new factorization for hadronic transitions above threshold.
 - Production of a pair of heavy-light mesons ($H'_1 H_2$) near threshold. Where $H'_1 = H_1$ or H'_1 decays rapidly to H_1 + light hadrons (h_b), yielding $H_1 H_2 < h_b > 1$
 - Followed by recombination of this $(H_1 H_2)$ state into a narrow quarkonium state (Φ_f) and light hadrons (h_a) .

- The time scale of the production process has to be short relative to the time scale over which $H_1\ H_2$ rescattering can occur.
- The relative velocity in the H_1 H_2 system must be low. This is only possible near threshold.
- Here we need not speculate on whether the observed rescattering is caused by a threshold bound state, cusp, or other dynamical effect.

F.K. Gao, C. Hanhart, Q. Wang, Q. Zhao [arXiv:1411.5584]

 $\Phi_{\rm f}$

 H_{2}

Production modes

· Can compute using coupled channel formalism

- B decays

More quantum numbers accessible

- Physical Expectations for Threshold Dynamics:
 - 1. There is a large rescattering probability per unit time into light hadrons and quarkonium states for two heavy light mesons both near threshold and nearby in position.
 - 2. For direct decays of a quarkonium resonance:
 New S-wave channels peak rapidly near threshold.
 This is an expected property of the decay
 amplitudes into two narrow two heavy mesons
 and is an explicit feature of coupled channel
 calculations.
 - 3. For sequential decays: the strong scattering dynamics of two narrow heavy-light mesons is peaked near threshold for S-wave initial states.

Ratios determined by LQCD calculations and judicious use of SU(3).

M. Padmanath, C. B. Lang and S. Prelovsek
[arXix:1503.03257]

- Strong threshold dynamics
 - Strong peaking at threshold BB* and B*B*
 - Z+(10610) and Z+(10650) states

- HQS implies that the same mechanism applies for charmonium-like states

Estia Eichten (Fermilab) QCD Exotics@Jinan, China June 8, 2015

Systematics and Expectations

- Charmonium-like states: $e^+e^- \rightarrow \pi^+ \pi^- J/\psi$ at $\sqrt{s} = 4.26$ GeV [Y(4260)]
- $Z_c(3885)$, $Z_c(4020)$ both have $I^G(J^P) = 1^-(1^+)$.
- As expected by HQS between the bottomonium and charmonium systems

 $M(D^0+D^{*-}) = 3.8752$

 $M_{\rm pole} = 3883.9 \pm 1.5 \pm 4.2 \text{ MeV}$ $\Gamma_{\rm pole} = 24.8 \pm 3.3 \pm 11.0 \text{ MeV}$ BESIII Z. Lin

[arXiv:1504.06102]

3.95 4.00 4.05 4.10 4.15 4.20 4.25
$$M_{\pi^{+}h_{c}}(\text{GeV}/c^{2})$$

$$M(D^{*0}+D^{*-}) = 4.0178$$

 $\frac{\Gamma[Z_c(4025)\rightarrow D^*D^*]}{\Gamma[Z_c(4020)\rightarrow \pi h_c]}\sim 9.$

Systematics and Expectations

- Charmonium systems:
- Ψ(1D)
 - $M = 3773.15 \pm 0.33 \text{ MeV}$ $\Gamma = 27.2 \pm 1.1 \text{ MeV}$;
 - Open decay channels:
 - $M(D^0D^{\overline{0}}) = 3,729.72 \text{ MeV}, M(D^+D^-) = 3,739.26 \text{ MeV}$
 - Normal pattern

Decay Mode	Branching Rate
$D^0 \bar{D}^0$	$(52 \pm 5)\%$
D^+D^-	$(41 \pm 4)\%$
total $D\bar{D}$	$93^{+8}_{-9}\%$
$\psi(1S) \ \pi^+\pi^-$	$(1.93 \pm 0.28) \times 10^{-3}$
$\psi(1S) \eta$	$(9 \pm 4) \times 10^{-4}$

partial rate = 52.5 ± 7.6 keV

- Puzzle is the total DD branching fraction

Only ground state heavy-light meson pair decays allowed

Systematics and Expectations

Ψ(35)

- $M = 4039 \pm 1 \text{ MeV}$ $\Gamma = 80 \pm 10 \text{ MeV};$
- Open decay channels:
 - $M(D^0\overline{D^0}) = 3,729.72 \text{ MeV}, M(D^+D^-) = 3,739.26 \text{ MeV}$
 - $M(D^0 \overline{D^{*0}}) = 3.871.85 \text{ MeV}, M(D^+ D^{*-}) = 3.879.92 \text{ MeV}$
 - $M(D_s^+D_s^-) = 3,937$. MeV
 - $M(D^{*0}\overline{D^{*0}}) = 4,013.98 \text{ MeV}, M(D^{*+}D^{*-}) = 4,020.58 \text{ MeV}$

Table 4: Selected $\psi(3S)$ decays.

Decay Mode	Branching Rate
$D*\bar{D}*$	
$D_s^+ D_s^- * + c.c.$	
DD*	$\frac{\Gamma(D*\bar{D}+c.c.)}{\Gamma(D*\bar{D}*} = 0.34 \pm 0.14 \pm 0.05$
$Dar{D}$	$\frac{\Gamma(D*\bar{D}+c.c.)}{\Gamma(D*\bar{D}*)} = 0.02 \pm 0.03 \pm 0.02$
$\psi(1S) \eta$	$(5.2 \pm 0.7) \times 10^{-3}$

Charm threshold region has very large induced HQS breaking effects due to spin splitting in j₁ heavy-light multiplets

24

Systematics: $\psi(4040)$ and Below

• Charmonium-like state transitions for masses at or below the $\psi(3S)$

State	Mass Transition Observed	Width Branching Fraction	J^{PC}	Comments
$\overline{\psi(3770)}$	3773.15 ± 0.33 $\pi^{+}\pi^{-}J/\psi$ $\pi^{0}\pi^{0}J/\psi$ $\eta J/\psi$	27.2 ± 1.0 $(1.93 \pm 0.28) \times 10^{-3}$ $(8.0 \pm 3.0) \times 10^{-4}$ $(9 \pm 4) \times 10^{-4}$	1	$1^{3}D_{1}$
X(3872)	3871.68 ± 0.17 $\pi^{+}\pi^{-}J/\psi$ $\omega J/\psi$ $D^{0}\bar{D}^{0}\pi^{0}$ $D^{*0}\bar{D}^{0}$	$< 1.2 \mathrm{MeV}$	1++	large ρ component off shell
X(3915)	3918.4 ± 1.9 $\omega J/\psi$	20 ± 5	0++	$2^{3}P_{0}$
$\chi_{c2}(2P)$ $Z(3900)^+$	3927.2 ± 2.6 $3899.0 \pm 3.6 \pm 4.9$ $\pi^{+}J/\psi$	24 ± 6 $46 \pm 10 \pm 20$ $\left(\frac{Z_c(3885) \to D\bar{D}^*}{Z_c \to \pi J/4b}\right) = 6.2 \pm 1.1 \pm 2.7$	2 ⁺⁺ 1 ⁺ 1 ⁺	$2^{3}P_{2}$ $e^{+}e^{-}(4260) \to \pi^{+}\pi^{-}J/\psi$
$Z(3900)^0$	$3894.8 \pm 2.3 \pm 2.7$ $\pi^0 J/\psi$	$2c \to \pi J/\psi$ 29.2 ± 3.3 ± 11	1+	I = 1
X(3940)	$3942 \pm 7/6 \pm 6$ $\omega J/\psi$	$37 \pm 26/15 \pm 8$?	
$Z(4020)^{+}$	$4022.9 \pm 0.8 \pm 2.7$ $4026.3 \pm 2.6 \pm 3.7$	$7.9 \pm 2.7 \pm 2.6$ $24.8 \pm 5.6 \pm 7.7$		$e^+e^-(4260) \to \pi^+\pi^-h_c$ $e^+e^-(4260) \to \pi^{\pm}(D^*\bar{D}^*)^{\mp}$
$Z(4020)^0$ $\psi(4040)$	$4023.9 \pm 2.2 \pm 3.8$ 4039 ± 1 $\eta J/\psi$	fixed to Z^+ 60 ± 10 $(5.2 \pm 0.5 \pm 0.2 \pm 0.5) \times 10^{-3}$	1	$I = 1$ $3^3 S_1$

Low-lying thresholds

Low-lying (Narrow) Charm Meson Pair Thresholds

Narrow-Wide Thresholds

$$D_s$$
* $D(P_1)$

$$D_s D(P_1); D_s * D(P_0)$$

$$D_s D(P_0)$$
; $D^* D(P_0)$; $D D(P_1)$

Systematics: **Y(4160)**, **Y(4415)**

Many open channels for heavy-light meson pair decays.

 $\psi(4160)$ nearby thresholds

Systematics and Expectations

- Ψ(45)
 - $M = 4421 \pm 4 \text{ MeV}$ $\Gamma = 62 \pm 20 \text{ MeV}$;
 - Open decay channels:
 - Many

Decay Mode	Branching Rate
$D^*\bar{D} + cc$	$\frac{\Gamma(D^*\bar{D})}{\Gamma(D^*\bar{D}^*)} = 0.17 \pm 0.25 \pm 0.03$
$D^*\bar{D}^*$	seen
$D_s^{+*}D_s^-$	seen
$DD_2^*(\bar{2}460)$ $\eta J/\psi$	$(10 \pm 4)\%$ $< 6 \pm 10^{-3}$

- Would be nice to see more study here.

Systematics: **Y(4160)**, **Y(4415)**

• Charmonium-like state transitions for masses above the $\psi(35)$

State	Mass	Width	J^{PC}	Comments
	Transition Observed	Branching Fraction		
X(4140)	$4148.0 \pm 3.9 \pm 6.3$	$28 \pm 15 \pm 19$?	
	$\phi J/\psi$			
X(4160)	$4156 \pm 25/20 \pm 15$	$139 \pm 111/61 \pm 21$?	
$\psi(4160)$	4153 ± 3	103 ± 8	1	$2^{3}D_{1}$
	$\eta J/\psi$	1.70		
$Z(4200)^{+}$	$4196 \begin{array}{ccc} 81 & +17 \\ -29 & -13 \end{array}$	$370 \pm 70 {}^{+70}_{-132}$	1+	
Y(4260)	4250 ± 9	108 ± 12	1	
	$\pi^+\pi^-J/\psi$			
	$\pi^0\pi^0J/\psi$			
	$K^+ K^- J/\psi \ \gamma X(3872)$			
X(4350)	$4350.6 \pm 4.6/5.1 \pm 0.7$	$13 \pm 18/9 \pm 4$	$2^{++}/0^{++}$	$23 P_{\circ}$
71 (4000)	$\phi J/\psi$	10 \(\perp \) 10/ 3 \(\perp \) 4	2 /0	5 1 2
Y(4360)	$4337 \pm 6 \pm 3$	$103 \pm 9 \pm 5$	1	
- (-000)	$\pi^+\pi^-\psi(2S)$			
	$\eta J/\grave{\psi}$			
	$\pi^{\pm}(Dar{D}^*)^{\mp}$			
	$\pi^+\psi(2S)$			
$\psi(4415)$	4421 ± 4	62 ± 20	1	$4^{3}S_{1}$
$Z(4430)^{+}$	$4475 \pm 7^{+15}_{-25}$	$172 \pm 13 + ^{+37}_{-34}$	1+	
	$\pi^+\psi(2S)$			
	$\pi^+ J/\psi$			
Y(4660)	$4652 \pm 10 \pm 8$	$68 \pm 11 \pm 1$	1	
	$\pi^+\pi^-\psi(2S)$			
	$\eta J/\psi$			
	$\pi^{\pm}(D\bar{D}^*)^{\mp}$			

Strange heavy-light meson thresholds

- What happens at strange heavy-light meson thresholds?
 - There should be threshold enhancements for strange heavy-light meson pair production leading to sizable production of single η and φ light hadrons.

Belle Pakhlova et.al [arXiv:1011.4397]

- No wide P-states -> no sequential transitions with these states.
- $M(D_s^+ D_s^{-*}) = 4,081 \text{ MeV}, M(D_s^{+*}D_s^{-*}) = 4,225 \text{ MeV};$ $M(3^3P_2) = 4,315 \text{ MeV}$
- Direct transitions?
- Narrow $D(\frac{1}{2}+P) + D(\frac{1}{2}-S)$ thresholds? (and B analogs)
- At higher energies the $D_s(25)$ wide states could play a role in sequential transitions.

Systematics: Other States

- Same mechanism in B-decays with $2S_{\{0,1\}}(D_s)$ states: $Z^+(4430)$
- P. Pakhlov [arXiv:1105.2945]

Ψ(25)

D(*)

- $D_s*(25)$ M = 2,709 ± 4 MeV Γ = 117 ± 13 MeV
- $D_s(25)$ M = 2,610-2660 MeV
- Relevant open thresholds:
 - M(D D(25)) = 4,449 MeV; M(D D*(25)) = 4,519 MeV
 - M(D*D(25)) = 4,586 MeV; M(D*D*(25)) = 4,659 MeV

,519 MeV ,659 MeV

D(*)_s(25)

P. Pakhlov and T. Uglov [arXiv:1408.5295]

В

ΔR_Q in the Threshold Region

- R = $\sigma(e+e--) \%$ -> hadrons)/ $\sigma(e+e--) \%$ -> $\mu+\mu-$) $J^{PC} = 1^{--}$
 - Resonance region ~ 1 GeV
 - Two body decays
 - D0 = (cu), D+ = (cd)
 - $M(D^0D^0) = 3,729.72 \text{ MeV}$
 - $M(D^+D^-) = 3,739.26 \text{ MeV}$
 - B- = (bu), B0 = (bd)
 - $M(B^+B^-) = 10,578.52 \text{ MeV}$
 - $M(B^0B^0) = 10,579.16 \text{ MeV}$
 - $-e_c = 2/3$; $e_b = -1/3$

32

Quark-Hadron Duality

 \equiv

Two pictures of R

$$\Delta R(W) = \frac{6\pi}{W^2} \rho_c(W)$$

$$= \int d^4 x \, e^{iqx} \langle 0 | j_{\mu}(x) j_{\nu}(0) | 0 \rangle \Big|_{\text{charm}}$$

QCD - hadronic A,B (QQ) , C (QQg) H₁,H₂(Qq)

$$\sum A,C \times \xrightarrow{A} \times + \times \xrightarrow{C} \times$$

Simple expansion near threshold.

33

Simple expansion far above threshold.

Heavy-Light Mesons

- Observed low-lying (15, 1P, and 1D) charm and bottom mesons:
 - Very similar excitation spectrum HQS

- There are 9 narrow (< 2 MeV) charm meson states [and 10 bottom mesons states]. Any pair of these might have a cusp at 5-wave threshold.

34

Estia Eichten EQT@China June 5, 2015

Low-lying thresholds

Low-lying (Narrow) Bottom Meson Pair Thresholds

Narrow-Wide Thresholds

 $B_s* B(P_1)$

 $B_s* B(P_0); B_s B(P_1)$

B B(P₁); B_s B(P₀)

 $B* B(P_0)$

 $B B(P_0)$

Low-lying thresholds

Low-lying (Narrow) Charm Meson Pair Thresholds

Narrow-Wide Thresholds

 D_s * $D(P_1)$

 $D_s D(P_1); D_s * D(P_0)$

 $D_s D(P_0)$; $D^* D(P_0)$; $D D(P_1)$

D D(P₀)

Decay Amplitudes

For resonances (with no radial nodes) as expected:

But complicated dependence on heavy-light momentum for radially excited resonances.

 $\Delta E = E - m_1 - m_2 = \int (m_1^2 + p^2) + \int (m_2^2 + p^2) - m_1 - m_2$

Complicated pattern in ΔR_c

- Ψ(35) in exclusive channels (2006 CCM)
 - At 4.04 GeV:

•
$$p(DD) = 0.77$$
; $p(DD^*) = 0.57$; $p(D^*D^*) = 0.20$

- At 4.00 GeV:

•
$$p(DD) = 0.72$$
; $p(DD^*) = 0.49$; $p(D^*D^*) = 0.0$

- At 3.96 GeV:

•
$$p(DD) = 0.66$$
; $p(DD^*) = 0.40$; $p(D^*D^*) = -$

luds_3S_1

Two requests

- To BES: Measure the line shape ΔR_c in the threshold region. Give results for each individual channel for:
 - pairs of narrow states of the heavy-light systems + pions
 - Quarkonium bound states + light hadrons.
 - It is the theorist challenge to make their model fit the data.
- To Lattice QCD: Calculate the behavior of scattering of heavy-light meson pairs in the threshold region.
 - Consider S-wave amplitudes (at first)
 - Include the mixing between two HL mesons and quarkonium + a single light hadron.
 - This is an difficult but not impossible challenge.

Summary

- Above heavy flavor production threshold the usual QCDME fails.
 - The transitions rate are much larger than expected.
 - The factorization assumption fails. Heavy quark and light hadronic dynamics interact strongly due to heavy flavor meson pair (four quark) contributions to the quarkonium wavefunctions. Magnetic transitions not suppressed.
 - A new mechanism for hadronic transitions is required.
- A new mechanism, in which the dynamics is factored differently, is purposed.
 - It requires an intermediate state containing two narrow heavy-light mesons nearby and near threshold ($v \rightarrow zero$). This is the factor. Other light hadrons may be present or not.
 - The production of this state from the initial state is calculated using familiar strong dynamics of coupled channels.
 - The evolution of this threshold system into the final quarkonium state and light hadrons requires a new threshold dynamics.
- HQS as well as the usual SU(3) and chiral symmetry expectations are recovered.
- Resolves the puzzles in n transitions.
- With BES III and LHCb and soon BELLE 2. I expect even more progress in understanding hadronic transitions in the near future.

Backup Slides

Potential model states

Partial Waves for Various Decays

Decays Near Threshold in e+e-

	Partial Wave (L) of Two Body Decay to Heavy-Light Meson Pairs					
	$j_1^P = 0^- [n^3 S_1]$	j _l ^p =1/2-	j _l ^p =1/2+	j _l ^p =3/2+	j _l ^p =3/2-	j _l ^p =5/2 ⁻
S	j _l ^p =1/2 ⁻	L=1	L=0	L=2	L=1	-
P{	j _l ^P =1/2 ⁺	L=0	L=1	L=1	L=2	-
۲	j _l ^p =3/2+	L=2	L=1	L=1,3	L=0,2	L=1,3
Dί	jı ^P =3/2 ⁻	L=1	L=2	L=0,2	L=1,3	L=2,4
٦١	jı ^P =5/2⁻	ı	-	L=1,3	L=2,4	L=1,3,5
	j ₁ ^P =0 ⁻ [n ³ D ₁]	j _l ^P =1/2 ⁻	j₁ ^P =1/2⁺	j _l ^p =3/2 ⁺	j _l ^p =3/2 ⁻	j ₁ ^p =5/2 ⁻
	Ji o [ii o i]	J' -/ -	J1 -7 -	J1 0/ L	J1 -07 -	J1 - 37 L
S	j ₁ ^p =1/2 ⁻	L=1,3	L=2	L=0,2,4	L=1,3	L=1,3,5
_		_				•
S P{	j _l ^P =1/2 ⁻	L=1,3	L=2	L=0,2,4	L=1,3	L=1,3,5
_	j _l ^P =1/2 ⁻ j _l ^P =1/2 ⁺	L=1,3 L=2	L=2 L=1,3	L=0,2,4 L=1,3	L=1,3 L=0,2,4	L=1,3,5 L=0,2,4
_	j _I ^P =1/2 ⁻ j _I ^P =1/2 ⁺ j _I ^P =3/2 ⁺	L=1,3 L=2 L=0,2,4	L=2 L=1,3 L=1,3	L=0,2,4 L=1,3 L=1,3,5	L=1,3 L=0,2,4 L=0,2,4	L=1,3,5 L=0,2,4 L=0,2,4,6
_	$j_1^P = 1/2^ j_1^P = 1/2^+$ $j_1^P = 3/2^+$ $j_1^P = 3/2^-$	L=1,3 L=2 L=0,2,4 L=1,3	L=2 L=1,3 L=1,3 L=0,2,4	L=0,2,4 L=1,3 L=1,3,5 L=0,2,4	L=1,3 L=0,2,4 L=0,2,4 L=1,3,5	L=1,3,5 L=0,2,4 L=0,2,4,6 L=1,3,5

Decay Couplings

TABLE II: Statistical recoupling coefficients C, defined by Eq. D19 of Ref. [10], that enter the calculation of charmonium decays to pairs of charmed mesons. Paired entries correspond to $\ell = L - 1$ and $\ell = L + 1$.

State	$Dar{D}$	$Dar{D}^*$	$D^*\bar{D}^*$
$^{1}\mathrm{S}_{0}$	-: 0	-: 2	-: 2
$^3\mathrm{S}_1$	$-: \frac{1}{3}$	$-: \frac{4}{3}$	$-: \frac{7}{3}$
$^{3}P_{0}$	1: 0	0:0	$-: \frac{7}{3}$ $\frac{1}{3}: \frac{8}{3}$
$^{3}P_{1}$	0:0	$\frac{4}{3}$: $\frac{2}{3}$: $\frac{4}{3}$: 0 : $\frac{6}{5}$	0: 2
$^{1}\mathrm{P}_{1}$	0:0	$\begin{array}{c c} \frac{4}{3} & : & \frac{2}{3} \\ \frac{2}{3} & : & \frac{4}{3} \end{array}$	$\frac{2}{3}$: $\frac{4}{3}$
$^{3}P_{2}$	$0: \frac{2}{5}$	$0: \frac{6}{5}$	$ \begin{array}{c} \frac{2}{3} : \frac{4}{3} \\ \frac{4}{3} : \frac{16}{15} \\ \frac{4}{15} : \frac{12}{5} \\ \frac{2}{5} : \frac{8}{5} \\ \frac{4}{5} : \frac{6}{5} \end{array} $
$^{3}\mathrm{D}_{1}$	$\frac{2}{3}:0$	$\frac{2}{3}:0$	$\frac{4}{15}: \frac{12}{5}$
$^{3}\mathrm{D}_{2}$	0:0	$\frac{6}{5} : \frac{4}{5}$	$\frac{2}{5}:\frac{8}{5}$
$^{1}\mathrm{D}_{2}$	0:0	$\frac{4}{5} : \frac{6}{5}$	$\frac{4}{5}:\frac{6}{5}$
$^{3}\mathrm{D}_{3}$	$0: \frac{3}{7}$	$0:\frac{8}{7}$	$\frac{8}{5}:\frac{29}{35}$
$^3\mathrm{F}_2$	$\frac{3}{5}:0$	$\frac{4}{5}:0$	$\frac{11}{35}: \frac{16}{7}$
$^3\mathrm{F}_3$	0:0	$\frac{4}{5}:0$ $\frac{8}{7}:\frac{6}{7}$	
$^{1}\mathrm{F}_{3}$	0:0	$\frac{6}{7}:\frac{8}{7}$	$\frac{6}{7}:\frac{8}{7}$
$^3\mathrm{F}_4$	$0:\frac{4}{9}$	$0: \frac{10}{9}$	$\frac{12}{7}: \frac{46}{63}$
$^{3}G_{3}$	$\frac{4}{7}:0$	$\frac{6}{7}:0$	$\frac{22}{63}:\frac{20}{9}$
$^{3}\mathrm{G}_{4}$	0:0	$\frac{10}{9}:\frac{8}{9}$	$\frac{2}{3}:\frac{4}{3}$
$^{1}\mathrm{G}_{4}$	0:0	$\frac{8}{9}:\frac{10}{9}$	$\frac{8}{9}:\frac{10}{9}$
$^{3}\mathrm{G}_{5}$	$0: \frac{5}{11}$	$0: \frac{12}{11}$	$\frac{16}{9}:\frac{67}{99}$

Structure in two pion transitions

For example, the Y(5S) has a B($1/2^-$) + B_P($1/2^+$) component. The B_P($1/2^+$) state decays rapidly into a B meson and pion, leaving a B($1/2^-$) + B($1/2^-$) nearly at rest. They then recombine into the final (Y or h_b) and pion.

- This provides a dynamical mechanism for the Meson Loop and ISPE models.

transition.

Transitions

Transition	$\Gamma_{\text{partial}} \text{ (keV)}$ (Experiment)	$\Gamma_{ m partial} \; ({ m keV}) \ ({ m KY \; Model})$
$\psi(2S)$	(Emperiment)	(III Model)
$\rightarrow J/\psi + \pi^+\pi^-$	102.3 ± 3.4	input (C_1)
$ ightarrow J/\psi + \eta$	10.0 ± 0.4	input (C_3/C_1)
$\rightarrow J/\psi + \pi^0$	0.411 ± 0.030 [446]	0.64 [522]
$\rightarrow h_c(1P) + \pi^0$	$0.26 \pm 0.05 \ [47]$	0.12 - 0.40 [527]
$\psi(3770)$		
$\rightarrow J/\psi + \pi^+\pi^-$	52.7 ± 7.9	input (C_2/C_1)
$\rightarrow J/\psi + \eta$	24 ± 11	
1/201		
$\Upsilon(2S)$		
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$	5.79 ± 0.49	8.7 [528]
$\rightarrow \Upsilon(1S) + \eta$	$(6.7 \pm 2.4) \times 10^{-3}$	0.025 [521]
$\Upsilon(1^3D_2)$		
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$	0.188 ± 0.046 [63]	0.07 [529]
$\chi_{b1}(2P)$		
$\rightarrow \chi_{b1}(1P) + \pi^+\pi^-$	0.83 ± 0.33 [523]	0.54 [530]
$\rightarrow \Upsilon(1S) + \omega$	1.56 ± 0.46	
$\chi_{b2}(2P)$		
$\to \chi_{b2}(1P) + \pi^+\pi^-$	0.83 ± 0.31 [523]	0.54 [530]
$\rightarrow \Upsilon(1S) + \omega$	1.52 ± 0.49	
$\Upsilon(3S)$		
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$	0.894 ± 0.084	1.85 [528]
$\rightarrow \Upsilon(1S) + \eta$	$< 3.7 \times 10^{-3}$	0.012 [521]
$\rightarrow \Upsilon(2S) + \pi^+\pi^-$	0.498 ± 0.065	$0.86 \ [528]$
$\Upsilon(4S)$		
$\rightarrow \Upsilon(1S) + \pi^+\pi^-$	1.64 ± 0.25	4.1 [528]
$\rightarrow \Upsilon(1S) + \eta$	4.02 ± 0.54	[]
$\rightarrow \Upsilon(2S) + \pi^+\pi^-$	1.76 ± 0.34	1.4 [528]

Heavy quarkonium: progress, puzzles, and opportunities
N. Brambilla et.al. [arXiv:1010.5827]

Determining the Hybrid Potentials

- Putting the ends together
- Toy model minimal parameters

$$V_n(R) = \frac{\alpha_s}{6R} + \sigma R \sqrt{1 + \frac{2\pi}{\sigma R^2} (n(R) - \frac{1}{24} (d - 2))} + V_0 \quad (n > 0)$$

$$V_{\Sigma_g^+}(R) = -\frac{4\alpha_s}{3R} + \sigma R + V_0 \quad (n=0)$$

Fixes Mc = 1.84 GeV, $\sqrt{\sigma}$ = .427 GeV, α_s = 0.39

n(R) = [n] (string level) if no level crossing $[n - 2 \tanh(R_0/R)]$ for $\sum_{u} potential$ (n=3)

FIG. 2: Short-distance degeneracies and crossover in the spectrum. The solid curves are only shown for visualization. The dashed line marks a lower bound for the onset of mixing effects with glueball states which requires careful interpretation.

Spectrum of Low-Lying Hybrid States

Only interested in states below 4.8 GeV for cc system.
 Unlikely higher states will be narrow (DD, glueball+J/ψ, etc)

• Only Π_u , Σ_u^- , and Σ_g^{+} systems have sufficiently light states.

Spectrum of Low-Lying Hybrid States

•
$$\Pi_u$$
 (1S) m = 4.132 GeV Π_u (2S) m = 4.465 GeV J^{PC} = 0⁺⁺, 0⁻⁻, 1⁺⁻, 1⁻⁺ Π_u (1P) m = 4.445 GeV Π_u (2P) m = 4.773 GeV J^{PC} = 1⁻⁻, 1⁺⁺, 0⁻⁺, 0⁺⁻,

$$\Pi_u$$
 (25) m = 4.465 GeV Π_u (2P) m = 4.773 GeV

$$\Pi_{u}$$
 (1S) m = 4.132 GeV Π_{u} (2S) m = 4.465 GeV J^{PC} = 0⁺⁺, 0⁻⁻, 1⁺⁻, 1⁻⁺ Π_{u} (1P) m = 4.445 GeV Π_{u} (2P) m = 4.773 GeV J^{PC} = 1⁻⁻, 1⁺⁺, 0⁻⁺, 0⁺⁻, 1⁺⁻, 1⁻⁺, 2⁺⁻, 2⁻⁺

- The Π_u (1P), Π_u (2P) and Σ_q +'(1S) have 1⁻⁻ states with spacing seen in the Y(4260) system
- $\Sigma_u^{-}(15)$ m = 4.292 GeV $\Sigma_u^{-}(1P)$ m = 4.537 GeV $\Sigma_u^{-}(25)$ m = 4.772 GeV
- Numerous states with C=+ in the 4.2 GeV region.

Spectrum of Low-Lying Hybrid States

- The spectrum of bottomonium hybrids is completely predicted as well
- For the Π_u states

(cc)	L	n	mass(GeV)	(bb)	L	n	mass(GeV)
	0	1	4.132580		0	1	10.783900
	0	2	4.454556		0	2	10.982855
	0	3	4.752947		0	3	11.172408
	0	4	5.032962		0	4	11.353469
	0	5	5.298250		0	5	11.527274
	0	6	5.551412		0	6	11.694851
	1	1	4.293717		0	7	11.856977
\checkmark	1	2	4.604123		0	8	12.014256
	1	3	4.893249	\checkmark	1	1	10.877928
	1	4	5.165793		1	2	11.073672
	1	5	5.424925		1	3	11.259766
	2	1	4.454768		1	4	11.437735
	2	2	4.753368		1	5	11.608810
	2	3	5.033384		1	6	11.773931
	۷	3	3.033304		1	7	11.933823
					2	1	10.976071
					2	2	11.167070
					2	3	11.349124
					2	4	11.523652
					2	5	11.691737
					2	6	11.854216

Other Decay Structures

- 1 ³D₃ (cc)
 - very small decay width
 - How to observe?

- $2^{3}P_{0}$ (cc)
 - wide state but complex structure in line shape.
 - $M(D_s^+ + D_s^-) = 3.937 \text{ MeV}$
 - large SU(3) breaking
 - hadronic transitions observable near dip.

8, 2015

QCDME

- QCD multipole expansion (basics)
 - Factorize heavy quark dynamics and light hadron production.

$$\begin{array}{l} \mathcal{M}(\Phi_i \to \Phi_f + h) = \\ \frac{1}{24} \sum \frac{\langle f | d_m^{ia} | KL \rangle \langle |KL| d_{ma}^j | i \rangle}{E_i - E_{KL}} \langle h | \mathbf{E}^{ai} \mathbf{E}_a^j | 0 \rangle \end{array} \\ \text{+ higher order multipole terms.} \\ \text{- Assume models for spectrum of $H^{(0)}$ (potential model) and intermediate}$$

- Assume model's for spectrum of H⁽⁰⁾ (potential model) and intermediate states |KL> (QCS Buchmueller-Tye)

where |KL> are a complete set of intermediate states.

$$\langle f \ h | H_2 \mathcal{G}(E_i) H_2 | i \rangle = \sum_{KL} \langle f \ h | H_2 | KL \rangle \frac{1}{E_i - E_{KL}} \langle KL | H_2 | i \rangle$$

- Chiral effective lagrangian to parametrize light hadron matrix elements. $E-H_{\rm QCD}^{(0)}+i\partial_0-H_{\rm QCD}^{(1)}+i\epsilon$

QCDME

two pion transitions (E1-E1)

$$(C_A C_B = +1)$$

- Factorization

$$\mathcal{M}_{if}^{gg} = \frac{1}{16} < B|\mathbf{r_i}\xi^a\mathcal{G}\mathbf{r_j}\xi^a|A> \quad \frac{g_{\rm E}^2}{6} < \pi_\alpha\pi_\beta|Tr(\mathbf{E^i}\mathbf{E^j})|0> \\ \alpha_{AB}^{EE} \qquad \qquad \text{Hadronize}$$

 $\frac{\delta_{\alpha\beta}}{\sqrt{(2\omega_1)(2\omega_2)}} \Big[C_1 \delta_{kl} q_1^\mu q_{2\mu} + C_2 \Big(q_{1k} q_{2l} + q_{1l} q_{2k} - \frac{2}{3} \delta_{kl} \ (q_1 \cdot q_2) \Big) \Big] \\ + \text{Explicit model}^2 \text{Kuang & Yan (PR D24, 2874 (1981))}$

$$d\Gamma \sim K \sqrt{1 - \frac{4m_{\pi}^2}{M_{\pi\pi}^2} (M_{\pi\pi}^2 - 2m_{\pi}^2)^2 \ dM_{\pi\pi}^2} \qquad K \equiv \frac{\sqrt{(M_A + M_B)^2 - M_{\pi\pi}^2} \sqrt{(M_A - M_B)^2 - M_{\pi\pi}^2}}{2M_A}$$

S state -> S state

$$\Gamma = G |\alpha_{AB}^{EE} C_1|^2$$

Phase Space

Overlap - Buchmuller-Tye string inspired model)

Sormen Binzizges

- $Y(3S) \rightarrow Y(1S) \pi\pi$ and $Y(4S) \rightarrow Y(2S) \pi\pi$ transitions
 - $M_{\pi\pi}$ distributions NOT the expected S-wave behaviour
 - Likely explanation same as overlap dynamically suppressed in
 - CLEO detailed study [arXiv:0706.2317]
 - Hindered M1-M1 term => C≈0. Consistent with CLEO resulf
 - Small D-wave contributions
 - Further study would be useful. Look at polarization. Dubynsksk

 Υ (3S) $\rightarrow \Upsilon$ (1S) $\pi\pi$

1600507-015

 Υ (3S) $\rightarrow \Upsilon$ (1S) $\pi\pi$

QCDME

eta transitions (E1-M2, M1-M1)

$$(C_AC_B = +1)$$

 $O(v^2)$

- E1-M2 expected to dominate
- Factorization

$$\mathcal{M}_{if}^{gg} = \frac{1}{16} < B | \mathbf{r_i} \xi^a \mathcal{G} \mathbf{r_j} \xi^a | A > \frac{g_e g_M}{6} \langle \eta | \mathbf{E}_i \partial_j \mathbf{B}_k | 0 \rangle \quad \frac{(\epsilon_B^* \times \epsilon_A)_k}{3m_Q}$$
 - Cr Hadronize

: $i(2\pi)^{3/2}C_3q_k$ - Relation to other single pseudoscalar transitions

Chiral symmetry breaking - Chiral effective lagrangian

$$\tilde{\pi}^{0} = \pi^{0} + \epsilon \eta + \epsilon' \eta' \qquad \tilde{\eta} = \eta - \epsilon \pi^{0} + \theta \eta' \qquad \tilde{\eta}' = \eta' - \theta \eta - \epsilon' \pi^{0},$$

$$\epsilon = \frac{(m_{d} - m_{u})\sqrt{3}}{4(m_{s} - \frac{m_{u} + m_{d}}{2})}, \quad \epsilon' = \frac{\tilde{\lambda}(m_{d} - m_{u})}{\sqrt{2}(m_{\eta'}^{2} - m_{\pi^{0}}^{2})}, \quad \theta = \sqrt{\frac{2}{3}} \quad \frac{\tilde{\lambda}\left(m_{s} - \frac{m_{u} + m_{d}}{2}\right)}{m_{\eta'}^{2} - m_{\eta}^{2}}.$$

Belle [arXiv:1501.01137]

FIG. 1. R_b' , data with components of fit: total (solid curve), constants $|A_{\rm nr}|^2$ (thin), $|A_{\rm r}|^2$ (thick); for $\Upsilon(5{\rm S})$ (thin) and $\Upsilon(6{\rm S})$ (thick), $|f|^2$ (dot-dot-dash), cross terms with $A_{\rm r}$ (dashed), and two-resonance cross term (dot-dash). Error bars are statistical only.

FIG. 2. $R_{\Upsilon\pi\pi}$ data for $\Upsilon(1S)$ (top), $\Upsilon(2S)$ (center), and $\Upsilon(3S)$ (bottom), with results of fit C. Error bars are statistical only.