Measurement of $e^+e^- \rightarrow \gamma \chi_{cJ}$ via ISR at Belle Experiment

Yanliang Han

Shandong University

June 11, 2015

1/32

Data Sample and Selection Rules

Backgrounds

Efficiency

 $\psi(2S)$ branching fractions

High mass region study

Summary

Data Sample and Selection Rules

Backgrounds

Efficiency

 $\psi(2S)$ branching fractions

High mass region study

Summary

 The potential models predict five vector states

Figure: The charmonium $c\bar{c}$ [1]

[1] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985)

 The potential models predict five vector states

Figure: The charmonium $c\bar{c}$ [1]

[1] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985)

 Six vector states are discovered at Experiments.

 The potential models predict five vector states

- Figure: The charmonium $c\bar{c}$ [1]
- [1] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985)

- Six vector states are discovered at Experiments.
- The conventional ψ(4040), ψ(4160) and ψ(4415)

イロト イポト イヨト イヨト

4/32

 The potential models predict five vector states

Figure: The charmonium $c\bar{c}$ [1]

 S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985)
 C. Z. Yuan *et al.* (Belle Collaboration), Phys. Rev. Lett. 99, 182004 (2007)

- Six vector states are discovered at Experiments.
- The conventional ψ(4040), ψ(4160) and ψ(4415)

Figure: Invariant mass of $\pi^+\pi^- J/\psi$, Y(4260) [2] $\rightarrow \langle \sigma \rangle \langle \sigma$

 The potential models predict five vector states

Figure: The charmonium $c\bar{c}$ [1]

 S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985)
 X. L. Wang *et al.* (Belle Collaboration), Phys. Rev. Lett. 99, 142002 (2007)

- Six vector states are discovered at Experiments.
- The conventional ψ(4040), ψ(4160) and ψ(4415)

^{4/32}

- The potential models predict five vector states
- Six vector states are discovered at Experiments.

Some of these states show unusual properties: Maybe exotic states.

- The potential models predict five vector states
- Six vector states are discovered at Experiments.

Some of these states show unusual properties: Maybe exotic states.

▶ Y(4260),Y(4360) did not show up in hadronic R inclusive scan

- The potential models predict five vector states
- Six vector states are discovered at Experiments.

Some of these states show unusual properties: Maybe exotic states.

- ▶ Y(4260),Y(4360) did not show up in hadronic R inclusive scan
- Large dipion transitions rate than conventional charmonium.

- The potential models predict five vector states
- Six vector states are discovered at Experiments.

Some of these states show unusual properties: Maybe exotic states.

- ▶ Y(4260), Y(4360) did not show up in hadronic R inclusive scan
- Large dipion transitions rate than conventional charmonium.
 It is important to investigate them using much larger data samples and new decay channels.

- The potential models predict five vector states
- Six vector states are discovered at Experiments.

Some of these states show unusual properties: Maybe exotic states.

- ▶ Y(4260), Y(4360) did not show up in hadronic R inclusive scan
- Large dipion transitions rate than conventional charmonium.

It is important to investigate them using much larger data samples and new decay channels.

Full Belle data sample

- The potential models predict five vector states
- Six vector states are discovered at Experiments.

Some of these states show unusual properties: Maybe exotic states.

- ▶ Y(4260), Y(4360) did not show up in hadronic R inclusive scan
- Large dipion transitions rate than conventional charmonium.

It is important to investigate them using much larger data samples and new decay channels.

- Full Belle data sample
- ► Radiative transitions: $e^+e^- \rightarrow \gamma \chi_{cJ}$ via ISR, $\chi_{cJ} \rightarrow \gamma J/\psi$, $J/\psi \rightarrow \mu^+\mu^-$

Data Sample and Selection Rules

Backgrounds

Efficiency

 $\psi(2S)$ branching fractions

High mass region study

Summary

Data and MC Samples

DATA

▶ Full Belle data sample, integrated luminosity is 980 fb⁻¹.

MC Samples

- ► EVTGEN with the VECTORISR model is used to simulate the signal process $e^+e^- \rightarrow \gamma_{\rm ISR}V \rightarrow \gamma_{\rm ISR}\gamma\chi_{cJ} \rightarrow \gamma_{\rm ISR}\gamma\gamma J/\psi$
- Background MC samples are generated with PHOKHARA

Two good charged tracks with zero net charge

- Two good charged tracks with zero net charge
- Muon identification is required

- Two good charged tracks with zero net charge
- Muon identification is required
- ▶ Two highest energy photons (Non ISR) in the lab. system

- Two good charged tracks with zero net charge
- Muon identification is required
- ▶ Two highest energy photons (Non ISR) in the lab. system
- Reject $\eta(\pi^0)J/\psi$ events
 - $M(\gamma\gamma)$ are not in the η mass region [0.50, 0.58] GeV/ c^2
 - M(γγ) > 0.20 GeV/c² to reject π⁰ and other low invariant mass events

8/32

Missing Mass Square

Defined as $M_{
m rec}^2 = (P_{e^+e^-} - P_{\gamma\gamma\mu^+\mu^-})^2$

Figure: MMS distribution with $M(\gamma_l \gamma_h J/\psi) < 5.56 \text{ GeV}/c^2$

Here $M(\gamma_I \gamma_h J/\psi) = M(\gamma_I \gamma_h \mu^+ \mu^-) - M(\mu^+ \mu^-) + m_{J/\psi}$ We require: $-1 (\text{GeV}/c^2)^2 < M_{\text{rec}}^2 < 2 (\text{GeV}/c^2)^2$

Invariant mass of $\mu^+\mu^-$

Figure: Invariant mass distribution of $\mu^+\mu^-$. The shaded area in the middle is the J/ψ signal region, and the shaded regions on both sides are the J/ψ mass sidebands.

J/ψ signal region: Within ±45 MeV/c² of the J/ψ mass
 J/ψ sideband: [3.172, 3.262] or [2.932, 3.022] GeV/c²

Invariant mass of $\gamma J/\psi$

Including $M(\gamma_h J/\psi)$ and $M(\gamma_I J/\psi)$, two entries per event

Figure: Invariant mass distribution of $\gamma J/\psi$ for candidate events with $M(\gamma_l \gamma_h J/\psi) < 5.56 \text{ GeV}/c^2$. The shaded histograms show the χ_{c1} ([3.48, 3.535] GeV/c²) and χ_{c2} ([3.535, 3.58] GeV/c²) regions.

Data Sample and Selection Rules

Backgrounds

Efficiency

 $\psi(2S)$ branching fractions

High mass region study

Summary

▶ Non J/ψ background. This can be estimated by J/ψ sideband

- ▶ Non J/ψ background. This can be estimated by J/ψ sideband ▶ $e^+e^- \rightarrow \gamma_{\rm ISR}J/\psi$
 - This cross section can be calculated theoretically

▶ Non J/ψ background. This can be estimated by J/ψ sideband ▶ $e^+e^- \rightarrow \gamma_{\rm ISR}J/\psi$

This cross section can be calculated theoretically

$$\begin{array}{l} \bullet \ e^+e^- \to \gamma_{\rm ISR} \pi^0 \pi^0 J/\psi \\ \bullet \ \sigma(e^+e^- \to \pi^0 \pi^0 J/\psi) = \frac{1}{2} \sigma(e^+e^- \to \pi^+\pi^- J/\psi) \\ \bullet \ \sigma(e^+e^- \to \pi^+\pi^- J/\psi) \text{ can be got from [1]} \end{array}$$

[1] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013)

▶ Non J/ψ background. This can be estimated by J/ψ sideband ▶ $e^+e^- \rightarrow \gamma_{\rm ISR}J/\psi$

This cross section can be calculated theoretically

$$e^+e^- \to \gamma_{\rm ISR}\pi^0\pi^0 J/\psi$$

$$\sigma(e^+e^- \to \pi^0\pi^0 J/\psi) = \frac{1}{2}\sigma(e^+e^- \to \pi^+\pi^- J/\psi)$$

$$\sigma(e^+e^- \to \pi^+\pi^- J/\psi) \text{ can be got from [1]}$$

$$e^+e^- \to \gamma_{\rm ISR}\eta J/\psi$$

$$\sigma(e^+e^- \to \eta J/\psi) \text{ can be got from [2]}$$

[1] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013)

[2] X. L. Wang et al. (Belle Collaboration), Phys. Rev. D 87, 051101 (2013).

Non J/ψ background. This can be estimated by J/ψ sideband
e⁺e⁻ → γ_{ISR}J/ψ
This cross section can be calculated theoretically
e⁺e⁻ → γ_{ISR}π⁰π⁰J/ψ
σ(e⁺e⁻ → π⁰π⁰J/ψ) = ½σ(e⁺e⁻ → π⁺π⁻J/ψ)
σ(e⁺e⁻ → π⁺π⁻J/ψ) can be got from [1]
e⁺e⁻ → γ_{ISR}ηJ/ψ
σ(e⁺e⁻ → ηJ/ψ) can be got from [2]
e⁺e⁻ → γ_{ISR}ψ(2S) at high mass region

[1] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013)

[2] X. L. Wang et al. (Belle Collaboration), Phys. Rev. D 87, 051101 (2013).

Data Sample and Selection Rules

Backgrounds

Efficiency

 $\psi(2S)$ branching fractions

High mass region study

Summary

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ 三 ・ つ へ (C)
14 / 32

Efficiency

There is only one ISR photon generated in EVTGEN. The efficiency will be over-estimated. We need to correct this.

- ▶ PHOKHARA can be used to generate $e^+e^- \rightarrow \gamma_{ISR}\eta J/\psi$ with one or two ISR photons.
- EVTGEN can also generate $e^+e^- \rightarrow \gamma_{ISR}\eta J/\psi$
- The difference is used to correct the ISR effect

The process $\psi(2S) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma \gamma J/\psi$ is dominated by "E1" transition, with some mixing of "M2" and "E3". The photon angular distribution is given in [1]. This is also considered by assuming that all ISR photons is emitted from initial electrons.

[1] Karl G et al. Phys. Rev. D 13, 1203 (1976)

Efficiency curve and $\gamma\gamma J/\psi$ mass

Figure: Invariant mass distributions of $\gamma \chi_{cJ}$ candidates. Shown from top to bottom are $\gamma \chi_{c1}$, $\gamma \chi_{c2}$, and their sum.

Data Sample and Selection Rules

Backgrounds

Efficiency

 $\psi(2S)$ branching fractions

High mass region study

Summary

 $\psi(2S) \rightarrow \gamma \chi_{cJ}$ branching fractions $\psi(2S)$ signal region: $3.65 < M(\gamma_I \gamma_h J/\psi) < 3.72 \text{ GeV}/c^2$.

Figure: Energy distributions of the low energy photon in the $\gamma_I \gamma_h J/\psi$ CM system for events in the $\psi(2S)$ mass region.

The fit gives $340 \pm 20 \chi_{c1}$ and $97 \pm 12 \chi_{c2}$ signal events.

► $\sigma[e^+e^- \rightarrow \gamma_{\rm ISR}\psi(2S)] =$ (14.25 ± 0.26) pb

•
$$\mathcal{L} = 980 \text{ fb}^{-1}$$

• $\epsilon_{\chi_{c1}} = 1.4\%$, $\epsilon_{\chi_{c2}} = 0.7\%$

$$\begin{split} \mathcal{B}[\psi(2S) &\to \gamma \chi_{c1} \to \gamma \gamma J/\psi) = \\ (2.92 \pm 0.19)\% \\ \mathcal{B}[\psi(2S) \to \gamma \chi_{c2} \to \gamma \gamma J/\psi) = \\ (1.65 \pm 0.21)\% \\ \text{PDG14 gives } 2.93 \pm 0.15 \text{ and} \\ 1.52 \pm 0.15 \end{split}$$

Data Sample and Selection Rules

Backgrounds

Efficiency

 $\psi(2S)$ branching fractions

High mass region study

Summary

・ロ ・ ・ 一部 ト ・ 注 ト ・ 注 ・ う へ で
19 / 32

High mass region study

The high mass region: $M(\gamma\gamma J/\psi) \in [3.8, 5.56] \text{ GeV}/c^2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

20/32

There is no obvious signals, upper limits are given.

Cross section upper limit

We first construct the likelihood function $L(N^{\chi_{c1}}, N^{\chi_{c2}})$ for the number of produced events.

Using $L(N^{\chi_{c1}}, N^{\chi_{c2}})$, upper limit of $N^{\chi_{c1}}$ and $N^{\chi_{c2}}$ at 90% C.L. can be got. And then the upper limit of $\sigma(e^+e^- \rightarrow \gamma \chi_{cJ})$.

Figure: Measured upper limits on the $e^+e^- \rightarrow \gamma \chi_{cJ}$ cross sections at the 90% C.L. for χ_{c1} (top) and χ_{c2} (bottom).

Transition rate of charmonium to $\gamma \chi_{cJ}$

We can fit the mass spectrum of $\gamma\gamma J/\psi$ to get transition rate of the vector charmonium to $\gamma\chi_{cJ}$.

- One Breit-Wigner function as the signal and a linear function as the background
- The mass and total width are fixed
- $\Gamma_{ee} \times \mathcal{B}(R \to \gamma \chi_{cJ})$ is scanned to obtain the p.d.f.

	χ_{c1} (eV)	χ_{c2} (eV)
$\Gamma_{ee}[\psi(4040)] imes \mathcal{B}[\psi(4040) o \gamma \chi_{cJ}]$	2.9	4.6
$\Gamma_{ee}[\psi(4160)] imes \mathcal{B}[\psi(4160) o \gamma \chi_{cJ}]$	2.2	6.1
$\Gamma_{ee}[\psi(4415)] \times \mathcal{B}[\psi(4415) \rightarrow \gamma \chi_{cJ}]$	0.47	2.3
$\Gamma_{ee}[Y(4260)] \times \mathcal{B}[Y(4260) \rightarrow \gamma \chi_{cJ}]$	1.4	4.0
$\Gamma_{ee}[Y(4360)] \times \mathcal{B}[Y(4360) \rightarrow \gamma \chi_{cJ}]$	0.57	1.9
$\Gamma_{ee}[Y(4660)] imes \mathcal{B}[Y(4660) o \gamma \chi_{cJ}]$	0.45	2.1

Table:	Upper	limits	on	Γ_{ee}	$\times \mathcal{B}$	at th	e 90%	C.L.
--------	-------	--------	----	---------------	-----------------------	-------	-------	------

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

22 / 32

Upper limits on branching fractions

Taking $\Gamma_{ee}[\psi(4040)]$ and $\Gamma_{ee}[\psi(4415)]$ from the world average values and $\Gamma_{ee}[\psi(4160)]$ from the BES II measurement.

Table: Upper limits on branching fractions $\mathcal{B}(R \to \gamma \chi_{cJ})$ at the 90% C.L.

Resonance	$\gamma \chi_{c1} (10^{-3})$	$\gamma \chi_{c2} (10^{-3})$
ψ (4040)	3.4	5.5
ψ (4160)	6.1	16.2
ψ (4415)	0.83	3.9

Upper limits on branching fractions ratio

Taking
$$\Gamma_{ee}[Y(4260)] \times \mathcal{B}[Y(4260) \to \pi^+\pi^- J/\psi] = (6.4 \pm 0.8 \pm 0.6) \text{ eV}$$

or $(20.5 \pm 1.4 \pm 2.0) \text{ eV} [1]$
 $\Gamma_{ee}[Y(4360)] \times \mathcal{B}[Y(4360) \to \pi^+\pi^-\psi(2S)] = (10.4 \pm 1.7 \pm 1.4) \text{ eV}$ or
 $(11.8 \pm 1.8 \pm 1.4) \text{ eV} [2]$
 $\Gamma_{ee}[Y(4660)] \times \mathcal{B}[Y(4660) \to \pi^+\pi^-\psi(2S)] = (3.0 \pm 0.9 \pm 0.3) \text{ eV}$ or
 $(7.6 \pm 1.8 \pm 0.8) \text{ eV} [2]$

Table: Upper limits on branching fraction ratios at the 90% C.L.

Resonance	$\gamma\chi_{c1}$	$\gamma\chi_{c2}$
$\frac{\mathcal{B}[\Upsilon(4260) \rightarrow \gamma \chi_{cJ}]}{\mathcal{B}[\Upsilon(4260) \rightarrow \pi^+ \pi^- J/\psi]}$	0.3 or 0.07	0.7 or 0.2
$\frac{\mathcal{B}[Y(4360) \rightarrow \gamma \chi_{cJ}]}{\mathcal{B}[Y(4360) \rightarrow \pi^+ \pi^- \psi(2S)]}$	0.06 or 0.05	0.2 or 0.2
$\frac{\mathcal{B}[Y(4660) \rightarrow \gamma \chi_{c1}]}{\mathcal{B}[Y(4660) \rightarrow \pi^+ \pi^- \psi(2S)]}$	0.2 or 0.07	0.9 or 0.3

[1] Z. Q. Liu et al. (Belle Collaboration), Phys. Rev. Lett. 110, 252002 (2013)

[2] X. L. Wang et al. (Belle Collaboration), Phys. Rev. Lett. 99, 142002 (2007)

Systematic uncertainty

- Tracking efficiency: 0.35% per track
- particle identification: 1.9%
- J/ψ and χ_{cJ} mass: 1.0% and 1.3%
 - Estimate with $\psi(2S) \rightarrow \gamma \chi_{cJ}$
- Generator
 - ► Corrected with $e^+e^- \rightarrow \eta J/\psi$, The difference 9.0% between measured $\mathcal B$ and PDG14 is taken
 - ► EVTGEN: 1.0%
 - Statistical error of the MC samples: 2.0%
- ► Luminosity: 1.4%
- ► Trigger: 2%
- Branching fractions of the intermediate states: 4.5%

Assuming that all these systematic error sources are independent, the total systematic error is 13.4%.

Data Sample and Selection Rules

Backgrounds

Efficiency

 $\psi(2S)$ branching fractions

High mass region study

Summary

Summary

- ▶ The process $e^+e^- \rightarrow \gamma_{ISR}\gamma\chi_{cJ}$ is studied using full Belle data sample
- There is no obvious $\gamma \chi_{cJ}$ signal at high mass region
- ► The analysis is validated with branching fraction of $\mathcal{B}[\psi(2S) \rightarrow \gamma \chi_{cJ} \rightarrow \gamma \gamma J/\psi)]$
- ► Cross section upper limit of $e^+e^- \rightarrow \gamma \chi_{cJ}$ is set at 90% C.L. between $\sqrt{s} = 3.8$ to 5.56 GeV
- Upper limits on the decay rate of the vector charmonium [ψ(4040), ψ(4160), and ψ(4415)] and charmoniumlike [Y(4260), Y(4360), and Y(4660)] states to γχ_{cJ} is also set at 90% C.L.

Thank You!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

28 / 32

Backup

- Two good charged tracks with zero net charge
 - ▶ $P_T > 0.1 \text{ GeV/c}$
 - ▶ |dr| < 0.5 cm, |dz| < 5.0 cm for charged tracks
- Muon identification is required
 - One track should satisfy $\mathcal{R}_{\mu} = \frac{\mathcal{L}_{\mu}}{\mathcal{L}_{\mu} + \mathcal{L}_{\pi}} > 0.95$
 - ▶ If $\mathcal{R}_{\mu} = 0$ for one track, $|\cos \theta_{\mu}| < 0.75$ is required for each track
- A photon candidate does not match any charged tracks
 - ▶ Photons with E_γ > 3 GeV in e⁺e⁻ CM will be labeled as ISR photon (Excluded)
 - $E_{\gamma} > 0.25 \,\, {
 m GeV}$ in lab. system
 - Two highest energy photons in the laboratory system
- Reject $\eta(\pi^0)J/\psi$ events
 - $M(\gamma\gamma)$ are not in the η mass region [0.50, 0.58] ${
 m GeV}/c^2$
 - M(γγ) > 0.20 GeV/c² to reject π⁰ and other low invariant mass events

Invariant mass of $\gamma_l \gamma_h J/\psi$

Figure: Invariant mass distribution of $\gamma_l \gamma_h J/\psi$. The background from the tail of the $\psi(2S)$ is plotted only for $M(\gamma_l \gamma_h J/\psi) > 3.75 \text{ GeV}/c^2$ and $M(\gamma_l \gamma_h J/\psi) < 3.65 \text{ GeV}/c^2$.

Cross section upper limit

Maximum likelihood is used to get the upper limits.

The numbers of the expected signal events, $\nu^{\chi_{c1}}$ and $\nu^{\chi_{c2}}$

$$\begin{pmatrix} \nu^{\chi_{c1}} \\ \nu^{\chi_{c2}} \end{pmatrix} = \begin{pmatrix} \epsilon_{11} & \epsilon_{21} \\ \epsilon_{12} & \epsilon_{22} \end{pmatrix} \begin{pmatrix} N^{\chi_{c1}} \times \mathcal{B}(\chi_{c1} \to \gamma J/\psi) \times \mathcal{B}(J/\psi \to \mu^+\mu^-) \\ N^{\chi_{c2}} \times \mathcal{B}(\chi_{c2} \to \gamma J/\psi) \times \mathcal{B}(J/\psi \to \mu^+\mu^-) \end{pmatrix}$$

The numbers of expected events

$$\left(\begin{array}{c} \mu^{\chi_{c1}} \\ \mu^{\chi_{c2}} \end{array}\right) = \left(\begin{array}{c} \nu^{\chi_{c1}} \\ \nu^{\chi_{c2}} \end{array}\right) + \left(\begin{array}{c} n_{\rm bkg}^{\chi_{c1}} \\ n_{\rm bkg}^{\chi_{c2}} \end{array}\right),$$

The probability of observing $(n_{obs}^{\chi_{c1}}, n_{obs}^{\chi_{c2}})$

$$p(N^{\chi_{c1}}, N^{\chi_{c2}}) = \frac{(\mu^{\chi_{c1}})^{n_{obs}^{\chi_{c1}}} e^{-\mu^{\chi_{c1}}}}{n_{obs}^{\chi_{c1}}!} \frac{(\mu^{\chi_{c2}})^{n_{obs}^{\chi_{c2}}} e^{-\mu^{\chi_{c2}}}}{n_{obs}^{\chi_{c2}}!}$$

Considering the uncertainty in the background estimation and systematic error

$$L(N^{\chi_{c1}}, N^{\chi_{c2}}) = \sum_{k,l,m,n} p(N^{\chi_{c1}}, N^{\chi_{c2}}) = \sum_{k,l,m,n} \frac{(\mu_{k,l}^{\chi_{c1}})^{n_{obs}^{\chi_{c1}}} e^{-\mu_{k,l}^{\chi_{c1}}}}{n_{obs}^{\chi_{c1}}!} \frac{(\mu_{m,n}^{\chi_{c2}})^{n_{obs}^{\chi_{c2}}} e^{-\mu_{m,n}^{\chi_{c2}}}}{n_{obs}^{\chi_{c2}}!}$$