

第五届全国微模式气体探测器研讨会 兰州

脉冲面积分析方法及应用

李东仓

兰州大学 核科学与技术学院

2015.07.24

◆引言

◆工作原理

◆仿真结果

◆实验结果

◆结论和展望

脉冲高度分析 (PHA)

引言

传统的核能谱获取方法是基于脉冲高度分析(PHA)技术,核 探测器输出的信号经过前置放大器预放大,主放大器的放大和滤 波成形处理,进入多道数据获取系统,经过峰值保持器和AD转换 ,得到与脉冲峰值幅度成比例的数字量,多道系统以此数字量为 道址,对其进行分类统计,从而得到幅度分布谱。

由于核脉冲信号叠加了高频噪声,尽管经过滤波器提高了信噪 比,但噪声对能谱分辨率的影响还是存在的。

脉冲面积分析 (PAA)

1.2

脉冲面积分析(PAA)方 法,通过对核脉冲波形面积积 分,获得与脉冲幅度成比例的 数字量,以此数字量进行多道 数据的统计获取能谱,通过求 和平均的方法可以一定程度消 除高频噪声对分辨率的不利影 响,提高能谱分辨率。

随着高速、高精度AD技术和高速数据获取技术的发 展,已经有大量商用的数字化仪应用于核数据获取,它具 有传统方法所无法比拟的优势,如能够完整采集记录核脉 冲的波形,通过分析核脉冲波形数据可以获取幅度,上升 时间,下降时间,宽度,波形,面积等方面的完整信息, 可用于能谱获取,波形甄别,粒子鉴别,离线事件多通道 符合处理等,能够获取更多的相关信息。

图3 数字化仪采样波形重建(U1066A-DC438, Agilent)

以通常高分辨核能谱获取采用半导体探测器为例,输出信 号经电荷灵敏前置放大器放大,再经准高斯滤波成形(CR-RC⁴) 放大,其输出波形为(1)所示:

工作原理

$$v_o(t) = A\left(\frac{t}{\tau}\right)^4 e^{-\frac{t}{\tau}} u(t) \qquad (1)$$

其中, τ为滤波器时间常数, A为与幅度有关的系数, u(t)为单 位阶跃函数, 该脉冲的峰值*P*_H为:

$$P_H = A4^4 e^{-4} \qquad (2)$$

10

该脉冲的积分面积P₄为:

$$P_{A} = \int_{0}^{+\infty} v_{o}(t)dt = 24A\tau \qquad (3)$$
$$P_{A} = P_{H} \cdot \frac{3\tau e^{4}}{2} \propto P_{H} \qquad (4)$$

当时间常数τ固定不变时,脉冲信号的全面积P₄与其峰 值P_H成正比关系。

(4)

对于其他类型的脉冲滤波成形电路的输出信号,其脉冲 峰值P_H与脉冲面积P_A也满足类似比例关系。

考虑噪声的影响,脉冲高度分析方法在脉冲峰值处(t=t_M)采样,计入 噪声,为(5)式所示,以V_{OM}为均值符合高斯分布。脉冲面积分析方法则 通过高速采样,对所有采样值求和得到其面积,如(6)所示,其中C为归 一化系数,噪声部分经过求和平均后会大大减小,可以有效降低噪声对能 谱分辨的影响。

$$P_{H} = V_{OM}(t_{M}) + v_{n}(t_{M})$$
(5)

$$P_{A} = \frac{1}{C} \left(\sum_{i=0}^{m} v_{o}(i) + \sum_{i=0}^{m} v_{n}(i) \right)$$
(6)

$$\frac{1}{C} \left(\sum_{i=0}^{m} v_{n}(i) \right) \to 0$$
(7)

PAA不同道数能谱重建

T.C.	0.5µs		1.0μs			<mark>2.0μs</mark>			<mark>3.0μs</mark>			
	FWHM _E (keV)		FWHM _E (keV)			FWHM _E (keV)			FWHM _E (keV)			
ENERGY	MCA	D	IG	MCA	D	IG	MCA DIG		MCA	DIG		
(keV)	PHA	PAA	PHA	PHA	PAA	PHA	PHA	PAA	PHA	PHA	PAA	PHA
80.999	1.944	1.559	1.944	1.351	1.132	1.369	0.979	0.980	0.954	0.872	0.956	0.859
356.014	3.197	1.900	3.189	1.805	1.603	1.763	1.311	1.550	1.332	1.183	1.373	1.400
661.661	5.014	2.602	4.718	2.247	1.784	2.213	1.600	1.651	1.707	1.474	1.578	1.702
1173.24	8.340	4.927	8.070	3.162	2.149	3.280	2.067	2.035	2.167	1.928	2.014	2.022
1332.51	9.168	5.861	8.692	3.498	2.216	3.309	2.249	2.160	2.260	2.048	2.041	2.015

T.C.	0.5	μs	1.0	μs	2.0µs		
ENERGY	MCA-PHA	DIG-PAA	MCA-PHA	DIG-PAA	MCA-PHA	DIG-PAA	
(keV)	η ₁ (%)	η ₂ (%)	η ₁ (%)	η ₂ (%)	η ₁ (%)	η ₂ (%)	
276.404	0.977	0.600	0.565	0.471	0.412	0.435	
302.858	0.923	0.559	0.531	0.423	0.391	0.389	
356.014	0.867	0.529	0.466	0.372	0.353	0.334	
383.859	0.831	0.477	0.424	0.351	0.318	0.301	
η	0.900%	0.541%	0.497%	0.404%	0.369%	<mark>0</mark> .365%	

◆在信噪比较低时PAA对能量分辨率的改善是显著的,在信噪比较高时改善不显著。
◆该方法适用于数字化仪获取能谱。
◆对脉冲波形涨落有一定的抑制作用。
◆采用低位数的ADC可以获取高道数的能谱。

结论和展望

◆可将该方法应用于闪烁体谱仪,由于荧光衰减和PMT电 子 渡越时间等的涨落,影响输出电流的波形,采用面积 分析方法,有可能提高闪烁谱仪的能量分辨率。 ◆ 对 谱 仪 系 统 的 微 分 非 线 性 应 该 有 改 善 , 该 工 作 也 在 进 行 。 ◆增加在能谱重建中对堆积信号的处理以提高计数率。 ◆ 采用基于FPGA的自主开发的数字化仪,以硬件实现处 理算法,逐步实现在线获取。

