

Huirong

2015.07.23

Contents

- 物理需求
- ILD-TPC研究现状
- ILC与CEPC TPC相同与不同
- CEPC-TPC现状
- CEPC-TPC主要预研方向

物理实验对径迹探测的需求

- 物理研究背景
 - 希格斯粒子被发现后,高能区物理欲对其实现精确测量,得到其绝对衰变分支比和耦合常数,并可寻找其衰变中可能出现的暗物质和奇异新粒子等新的物理现象
 - □ 以上物理目标对测量提出了更高的需求,特别是径迹和动量测量
 - □ 位置分辨率 ~100µm
 - 动量分辨率 $\sigma(l/p_T) = 10^{-4} \text{GeV}^{-1}$
 - 直线对撞机: ILC
 - 环形对撞机: CEPC <u>、FCC-ee、CLIC</u>
- 常用的径迹探测器
 TPC时间投影室
 - □ Si径迹探测器
 - □ 漂移室

国际直线对撞机上ILD探测器结构组成及径迹探测器 第五届微结构气体探测器研讨会 兰州 2015.7.23

时间投影室TPC

- 工作原理
 - 被测带电粒子在穿过工作气体时产生的 电子离子对,利用电子漂移实现三维径 迹测量和重建
- 主要结构
 - 气体室本体
 - 场笼(Field Cage)
 - 位置灵敏读出探测器
 - 读出电子学
- 优点
 - 近4π的覆盖角度,灵敏体积大
 - 同时测量动量与dE/dx,实现粒子鉴别
 - 具有多径迹分辨能力
 - 工作介质为气体,物质量小

TPC探测器结构示意图

TPC粒子鉴别

第五届微结构气体探测器研讨会 兰州 2015.7.23

国际TPC研究现状

■ TPC 探测器在已有实验装置的应用

 实验	磁场[T]	动量分[GeV ⁻¹]	σ(rΦ)[μm]	dE/dx
ALEPH	1.5	1.2×10^{-3}	160-400	4.5%
STAR	0.5	1.2×10^{-3}	500-2000	3%
T2K	0.2	0.1	700	10%
HARP	0.7	0.02-0.25	600-2400	16%
ALICE	0.5	0.01	800-1100	5%

 现有的TPC探测器大部分采用多丝室作为读出,具有各自的激光校正系统,但分 辨率还不能满足最新的物理需求。

TPC发展趋势

- 采用微结构气体探测器GEM或者Micromegas,可以实现更高的位置分辨
- 在高精度位置分辨的TPC系统中,采用激光校正方法对造成径迹畸变的各种影响因素进行修正

ILD-TPC Collaboration

- 至2015年4月:30个研 究机构在MoA上签字 ,18个研究机构作为 观察团组织
- 去年中国武汉大学签 署MoA
- 2015年日本横滨大学 考虑加入,中国高能 物理研究所考虑加入
- 不是所有的参与机构 都处于活跃状态,大 部分由于缺少经费的 原因
- 中国加入的现在总共
 两所大学:清华大学
 和武汉大学

参与ILD-TPC的国际组织分布

<u>更新至2015.4@ALCW2015</u> KEK

ILD-TPC Hardware

- 束流测试去年下半年关闭,开始
 实验场地维护工作
- PCMAG测试场地的地面进行重新 铺整,进行了防静电地面铺设, 真空吸尘器进行了地面清理,非 常整洁干净
- 进行了几个方面的改进
 - □ 增加了两相二氧化碳冷却装置
 - 触发装置进行升级,更容易实 现位置标定
 - □ 固定测试TPC的支架升级,移 动精度更高,并且更加稳定
- 重新启动后进行了两个LCTPC模 块研究组的性能测量
 - 测试过程中气体、安装等出现 了小的问题
 - □ 均得到了很快的解决

改造中的PCMAG磁铁测试场所

- □ Micromegas测试组(2015.3.4~14)
 - 测量了两个新的阻性模块,采用Black
 Diamond阻性材料
 - 数据采集准备分析发表
- □ InGrid测试组(2015.3.23~4.7)
 - 大面积覆盖,共160个inGrid模块

阻性Micromegas测试组

- □ 安装7个阻性Mciromegas探测器模块
- □ 采用两相CO₂的冷却系统
- □ 其中两个采用最新的BD阻性材料
- □ 前端AFTER读出芯片

阻性Micromegas测试组

束流测试结果

InGrid测试组

□ 3个模块,总共读出路数105,000,000通道

□ TOT前端处理

第五届微结构气体探测器研讨会 兰州 2015.7.23

InGrid测试组

束流测试结果

ILD-TPC Modules

- □ 德国DESY组的模块
 - 整个尺寸220mm×170mm
 - 1.26mm×5.85mm/Pad, 交错排列
 - 28排,每个模块4829个Pads
 - 小边框,每边~1mm边框
 - 顶部有20个高压连接头

2015年之后开始通用性模块设计和研制

- □ 日本KEK组的模块
 - 整个尺寸220mm×170mm
 - 1.2mm×5.4mm/Pad, 交错排列
 - 28行(每行从172Pads~192Pads)
 - 每个模块的共5152Pads
 - 上下边框均有10mm
 - 左右基本无边框

ILC与CEPC TPC相同的物理需求

■ 基本类似的物理目标

Performance/ Design Goals

Momentum resolution at B=3.5T	δ(1/pt)≈10 ⁻⁴ /GeV/c TPC only		
δ_{point} in $r\Phi$	<100µm (avg for straight-radial tracks)		
δ_{point} in rz	≈0.4~1.4mm (for zero – full drift)		
Inner radius	329mm		
Outer radius	1800mm		
Half length	2350mm		
TDC meterial budget	$\approx 0.05 X_0$ including the outer field cage in r		
TPC material budgt	<0.25X ₀ for readout endcaps in z		
Pad pitch/no. padrows	≈1mm×4~10mm/≈200		
2-hits resolution in $r\Phi$	≈2mm (for straight-radial tracks)		
	>97% efficiency for TPC only (pt > 1GeV/c)		
Performance	>99% all tracking (pt > 1GeV/c)		

与ILD-TPC相同的物理需求

第五届微结构气体探测器研讨会 兰州 2015.7.23

ILC与CEPC对撞模式区别

- ILC束流结构间隔为200ms
- 每个Train内有1321个 Bunches
- 每个Bunches的间隔为554ns
- 0.73ms为对撞有效时间
- 正离子反馈门控装置必须采用
- 正离子门控开门时间为 50us+0.73ms

ILC对撞模式束流时间结构

- CEPC束流时间结构间隔为 3.63us
- CEPC无法采用开关型的正离 子门控装置

CEPC对撞模式束流时间结构

ILC与CEPC QD0不同 ■ L* = 2.5m

ILC与CEPC QD0不同

- 更小的L*长度,约为1.5m
- 覆盖角度变小,需要优化考虑
- 读出部分的边框设计,电磁场影响等因素
- 不同的背景噪声(环形对撞与直线对撞接近或更小)

CEPC的对撞区初步设计示意图

CEPC TPC现状

- CEPC项目现状
 - 2013年Kick-off会议在北京召开
 - 2014年CEPC加速器、物理与探测器分组成立
 - 2014年开始Pre-CDR的撰写
 - 2015年3月Pre-CDR概念设计报告国际评审会完成
 - 2015年5月Pre-CDR概念设计报告英文版发布
 - 2015年5月提出开始面向CDR概念设计报告撰写工作
- CEPC TPC子探测器现状
 - 完成Pre-CDR第六章TPC子探测器部分
 - 成立子探测器分组
 - 2015年开始得到高能物理研究所创新基金支持
 - 初步预研工作开始开展

第五届微结构气体探测器研讨会 兰州 2015.7.23

结构优化研究

- ILD参考ILD-TPC探测器
 - Meet the requirements of CEPC
- 基于ILD-TPC的主要参量的初步模拟 研究
 - □ Inner radius of 329 mm
 - **D** Pad size: $1mm \times 6mm$
 - □ Number of tracker:~200
 - $\square B = 3.5 \text{ Tesla}$
 - With multiple scattering and smearing
 - Varying half length and outer radius independently

To be further optimized

气体模拟研究

- 模拟软件Garfield7.41
- 模拟环境SLC5.4
- 单气体模拟时长2小时
- 磁场0T, 1T, 3T和5T
- 漂移场选择约200V/cm
- 漂移速度约80um/ns
- 趋近于饱和速度
- 横向与纵向扩散与300um/ns@1T
- 不同磁场下横纵向扩散变小

- 一种常规气体(Ar/CO2=90/10)
- 一种非常规气体(Ar/CF4/neoC5H12=90-9-1)
- 模拟评估可能的工作气体

一种可能的模块研究

GEM+Micromegas组装图

GEM+Micromegas能谱测量结果@⁵⁵Fe

Low material and thin frame GEM detector

读出电子学的需求

- 10⁶ channels in total
- High signal-to-noise ratio
- High density
- Low power consumption
 - □ For example: ILC TPC down to 100W/m² with power pulsing
- Cooling for heat dissipation
- Radiation tolerance

	PASA/ALTRO	AFTER	Super-ALTRO	Timepix
TPC	ALICE	T2K	ILC	ILC
Pad size	$4\times7.5~\mathrm{mm^2}$	$6.9\times9.7~\mathrm{mm^2}$	$1 \times 6 \ \mathrm{mm^2}$	$55 \times 55 \mu { m m}^2$
Pad channels	$5.7 imes10^5$	1.25×10^5	$1-2\times 10^6$	10^{6}
Max drift time	92 μs	$20 \mu s$	46 μs	46 μs
Readout Chamber	MWPC	MicroMegas	GEM/MicroMegas	GEM/MicroMegas

TPC readout ASIC chips on market

预研主要工作计划1

Welcome to join and contribute.

■ 结合CEPC的主要物理需求,优化主要的结构参量

- $\hfill\square$ Simulation of single point resolution $R\Phi$ and point resolution z
- Checked and optimized detector geometry
- Two-hit sepration (i.e. of occupancy in the beam structure)
- □ dE/dx
 - What is needed?
- Pad size and Hybrid detector test

■ 工作气体模拟与选择

- Long drift gas studies
- Fast drift velocity
- Low electric field

ILD-TPC 国际合作

- ILD-TPC Large prototype (understanding, learning, joining?)
- Beam test and data analysis

Things to be done Short time scale 1~3 years To CDR of CEPC

预研主要工作计划2

Welcome to join and contribute.

■ 正离子反馈

- Optimized of Hybrid detector with pre-amplifier GEM detector
- Optimized of the resistive Micromegas
- Hybrid detector performance

▶ 激光标定研究

- Calibration in the working gas
- Alignment in the modules

• 读出电子学

- Common
- …

■ 气体供给和高压供给系统

- Long HV stability
- Overall temperature uniformity and stability

▲ 其他配套条件

Other things to be done Longer time scale 3~5 years To CDR of CEPC

第五届微结构气体探测器研讨会 兰州 2015.7.23