

Study of Thinner Thick Gaseous Electron Multiplier

```
Zhang Yuning, Q. Liu, H. B. Liu, Y. H. Zheng, Y. G. Xie, W. Q. Huang, B. L. Wang, S. Chen, W. T. Luo
```

Outline

- Introduction
- Spatial resolution
- Sealed chamber
- Summary

Thick Gaseous Electron Multiplier (THGEM)

THGEMs

- Thickness $t = 0.4 \sim 3 \text{ mm}$
- Hole diameter $d = 0.3 \sim 1 \text{ mm}$
- Pitch $a = 0.7 \sim 7 \text{ mm}$
- Robust
- Can be cascaded for higher gain
- Effective single-photon detection in cascade + photocathode
- Few-ns RMS time resolution
- Cryogenic operation: OK
- ♦ Sub-mm spatial resolution (for t=0.4mm, d=0.5mm, a=1mm, spatial resolution is 0.7mm)

^{*}L. Arazi, DARWIN meeting WIS Jan 2015

Thinner-THGEM

- Thinner-THGEM: t = 0.2 mm, d = 0.2mm, a = 0.5mm, $rim=5\sim20\mu m$.
- ◆ Thinner-THGEM chamber: active area of 5×5 cm².

Advantages:

- Under the conditions of obtaining the same gain, the operating voltage is lower.
- It is easy to curve. So it can be used for one-dimensional X-ray diffraction imaging.
- Better spatial resolution.

Spatial resolution

Experiment setup

Test procedure

- THGEM:
 150 μ m/300 μ m
- Anode: $150 \mu \text{ m}/300 \mu \text{ m}$
- We deem x₀ is the middle of the slit (the width of slit is 20 μ m)

cathode THGEM

Centers method

- Event by event.
- Digit signal
- Gastone64 read out.
- $\sigma_{\text{min}} = 0.5712 \times 300 \,\mu \,\text{m} = 171.36 \,\mu \,\text{m}$
- $\sigma_{\text{max}} = 0.6917 \times 300 \,\mu \,\text{m} = 207.51 \,\mu \,\text{m}$

Photo Multiplier Tube (PMT)

- High Gain
- Excellent time resolution (ps)
- Output channel limited
- Magnetic field deflected
- Expensive

GPM

- large areas, flat geometry
- operation in magnetic fields
- sensitivity to single photons
- spectral range from UV to visible
- fast (ns range)
- high localization accuracy (sub-mm range)

Seal

- Visible light
- Semi-transparent photocathodes
- K-Cs-Sb photocathodes are very chemically reactive and decay promptly. Therefore, detector comprising bialkali photocathodes must operate in a sealed chamber.
- Astrophysics

 (Atmospheric
 Cherenkov), medical applications, ...

Experiment setup

- We designed a small sealed chamber to study various types of anode, outgas of THGEM foils and so on.
- The front end uses a quartz of Ø80×2mm as the transparent window. Use the aciculiform valves to seal.
- Chase leaks with He. (10⁻¹⁰ Pa×m³/s)
- Ar $(97\%) + iC_4H_{10}$ (3%)

X-ray Spectrum

- Cu spectrum by gas flow THGEM detector: fullenergy peak and escape peak.
- Cu spectrum by CdTe detector: 8.04 keV (K_{α} , 80%) and 8.9 keV (K_{β} , 20%).

X-ray Spectrum

High energy Bremsstrahlung photons which come from the Xray tube, can transmitted through the quartz window, and hit the copper layer of the THGEM foil.

Gain

- The bigger the pressure of the chamber, the gain is smaller.
- Long-term stability. The data were obtained at a pressure of 60 kPa.
- Pressure remain unchanged.
- The gain decreases ~30% in 20 days.

Current state

Summary and next plan

- Spatial resolution: $\sigma = 171.36 \, \mu \, \text{m}$ (Centers method).
- Preliminary study sealed chamber.
- We will further study center of gravity method.
- We will further study the technology of coating alkali-antimonides.

Thank you!