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Technologies used in modern accelerators

large scale vacuum
high power microwave
superconducting (magnets, microwave) technology
computer control
very strong/very high precision magnets
large scale scientific project management (very important)
accelerator physics (beam dynamics) (beam physics)
…
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How to design a storage ring

charged particles
Lorentz force

F⃗ = q(E⃗ + v⃗ × B⃗)

why magnetic field, not electric field
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Stability Principle

A stable storage ring must also store nonideal particles with “slight
deviations” from the ideal conditions, i.e. the accelerator must have a
finite acceptance around the ideal condition. Otherwise it is not a stable
accelerator.
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Living in an n-D world, we need to consider 2n kinds of deviations. Why
twice of n? Because of the fundamental property of natural laws that all
dynamics involve second order differential equations, led by Newton’s
equation m¨⃗x = F⃗ (or Hamilton equations if you so prefer). Had the
dynamics required third order differential equations, then we will need to
consider 3n deviations.
Motion must be stable for particles with all these six kinds of initial
deviations: x0, x′0,∆P0, z0, y0, y′0.
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If there exist deviation in x0 and x′0
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If there exist deviation in P0 and z0
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If there exist deviation in y0 and y′0

9 / 52



Weak focusing Magnet

B⃗ = B0ŷ + G(yx̂ + xŷ)
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2-D Magnetostatics

iron-dominated, uses iron pole face to shape the magnetic field.
Because the iron typically saturates when the magnetic field reaches
beyond 2 Tesla or so, iron-dominated magnets typically has maximum
pole tip field less than 2 Tesla.
current-dominated, uses little iron and is most likely using
superconducting wires to carry the large currents. The
superconducting current-dominated magnets typically reach 4-10
Tesla.
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Iron-dominated magnets
Dipole, Quadrupole and Sextupole

Quadrupole

Dipole

Sextupole

D. Einfeld, CELLS CAS, Frascati, Nov. 2008
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Magnets within an Accelerator Complex
Insertion Device

Quadrupole
Bending

Septump

Sextupole and Bending Sextupolep g p

4
Correctors

QuadrupoleSextupoles
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cos θ Magnet
Consider a cylindrical infinitely-thin sheet of current distribution

J(q, ϕ) = I0
2aδ(q − a) cosϕ

where a is the current-carrying cylinder radius. The right half of the sheet
(cosϕ > 0) carries current out of the board. There are no currents at the
north and the south poles.

By + iBx =
µ0I0
4

{
−1

a ,
√

x2 + y2 < a
a
z2 ,

√
x2 + y2 > a
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cos θ and cos 2θ magnet field

15 / 52



16 / 52



Solenoid
Another common magnet not of a multipole type is the solenoid. It is no
longer a 2-D system.
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Beam Field & Space Charge
Consider a cylindrically shaped beam with uniform distribution moving in the z-direction as
shown below:

Appling the Gauss’s law,

Er =

{ Ne
2πϵ0a2L r, (r < a)

Ne
2πϵ0L

1
r , (r > a)

Applying Ampere’s law,

Bθ =

{
µ0vNe
2πa2L r, (r < a)
µ0vNe
2πL

1
r , (r > a)

The Lorentz force experienced by a particle in the beam
due to the space charge fields it sees,

F⃗ =
Ne2

2πϵ0a2Lγ2
rr̂

This almost-perfect cancellation between the electric and the magnetic forces is very important
for relativistic particles, without which most accelerators will not work.
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Design of an accelerator
To design an accelerator, one first considers the motion of a single charged
particle in the environment of magnets and RF cavities. The motion of
this single particle in this environment must be stable.

For example, in a circular accelerator, the particle must stay inside of the
accelerator vacuum chamber for many many revolutions, typically ≪ 1010

revolutions — and much more than that of the lifetime of earth around
the sun!

Accelerator physicists design accelerators with three basic elements 

 Element Function Field Focusing 

 Dipoles Guide particle trajectory Magnetic weak focusing in x 

 Quadrupoles Confine particle motion near  Magnetic x,y 

  the design trajectory 

 RF cavities Keep particle energy near the  Electric z 

  design energy 

All these are just to make sure that single-particle motion is stable. With
these three elements arranged, the basic layout of an accelerator is
determined. 19 / 52



Design of an accelerator (2)

Having provided a design trajectory, and made sure that there are focusing
in x,y, and z, there seems to be nothing left to do. But that is not true.
We still have to examine the stability of the beam particles in much more
detail.

Single-particle stability. This is one very important area of accelerator
physics, i.e. single-particle nonlinear dynamics

Multi-particle stability. There is a second significant part of accelerator
physics. It is called multi-particle collective beam instability effects,
sometimes also called collective beam instabilities, coherent beam
instabilities, beam instabilities, or simply instabilities.
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Linear Betatron Motion

Hill’s Equation
u′′ + Ku(s)u = 0

Matrix Form (
u
u′

)
=

(
C S
C′ S′

)(
u0

u′
0

)
≡ M

(
u0

u′
0

)
a beamline with n elements

from s
0
 to s

1 
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0
 to s
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S
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S
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S
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(
u0

u′
0

)
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On matrix formalism
Mathematics Accelerator physics
linear system vectors for phase space coordinate and

transfer matrices
separability of beam properties (vector)
and accelerator properties (transfer
matrix)

matrix multiplication beamlines
non-commutative can’t switch magents around
similarity transformation observation of beam dynamics at different loca-

tions
eigenvalues tunes (i.e. natural frequencies)
eigenvalues and trace are invariant under si-
miliarity transformations

tunes don’t change with observation
location
stability/instability of beam dynamics
doesn’t change with observation location

symplecticity Hamiltonian dynamics
conservation of phase space

normal form Courant-Snyder analysis
β function
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FODO

Mx =

 1− 2 L
f∗ 2L

[
1− L

2f2

]
− 2

f∗
[
1− L

2f1

]
1− 2 L

f∗

 ,

where 1

f∗ =
1

2f1
+

1

2f2
− L

4f1f2

Trying too hard to speed up only
slows you down!
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Stability Criterion

Stability of a linear system has nothing to do with the observation
point.
Stability of a linear system has nothing to do with the initial condition(

x0
x′0

)
.

Stability of a non-linear system is related not only to the observation
point, but also to the initial condition. There exist a “Dynamic
Aperture”.
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Twiss Functions (Courant-Snyder Parameters)

The solution of Hill’s Equation

u′′ + K(s)u = 0, K(s + L) = K(s)

can be represented in Courant-Snyder formalism

u(s) =
√

2Jβ(s) cos(ψ(s) + ψ0)

We define α function,
α(s) = −1

2
β′(s)

The unit of β is meter, and α is dimensionless.
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Twiss parameters, emittance and beam sizes

Twiss parameters and emittance
determine the size and shape of
the beam at some observation
point

⟨x2⟩ = βx⟨Jx⟩
⟨xx′⟩ = −αx⟨Jx⟩
⟨x′2⟩ = γx⟨Jx⟩

ϵx = ⟨Jx⟩ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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Betatron tune

The quantity Φ is related to another important quantity betatron tune per
period,

ν =
Φ

2π
=

1

2π

∫ s+L

s

dt
β(t) =

1

2π

∮ ds
β(s)
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β function in a drift space

β(s) = β(0) +
s2
β(0)
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β functions in one period
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The β-functions are necessarily positive, and they are periodic with
the lattice period, as evidenced by the fact that their values are equal
at the two end-points.
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Closed orbit distortion

u(s) = θ

√
β0β(s)

2 sinπν cos(πν − |ψ(s)− ψ(s0)|)

A dipole field error causes a distortion of the closed orbit. There is a “kink”
in the closed orbit at the location of the dipole field error.
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Image Current & Beam Position Monitor
Consider a beam moving inside a perfectly conducting metal pipe in the z-direction. The pipe
has a circular transverse cross-section with radius b. Let the beam be represented as an infinitely
long moving line charge with linear density λ. The beam is displaced transversely by
a⃗ = (a cosϕ, a sinϕ) relative to the axis of the pipe.

We can calculate the surface charge Σ on the
conducting pipe wall,

Σ(θ) = −
λ

2πb
b2 − a2

a2 + b2 − 2ab cos(ϕ− θ)

b

x

ϕ
e

L R

beam The signal seen by the stripline is obtained by
integrating the wall current it carries. One then
combines the signals L and R to extract the
horizontal beam position,

R − L
R + L

=
2x
b

sin(ψe/2)

(ψe/2)
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Image Current & Beam Position Monitor (Cont.)

Four-button BPM
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Dispersion Function

A closed orbit solution of x for the off-momentum particle can be written
as

x(s) = D(s)δ

where D(s) is called the dispersion function. In other words, we have
defined

(
dispersion
function

)
=

(
closed orbit distortion for

a particle with momentum error δ

)
δ

The general solution for x of an off-momentum particle is given by

x(s) = xβ(s) + D(s)δ

33 / 52



Dispersion Function (Cont.)
Dispersion in a uniform magnetic field

Dispersion in FODO cells

⟨D⟩ ≈
R
ν2x

.Example

..

......

A storage ring with R = 100 m and νx ≈ 10, we will have βx ≈ 10 m and D ≈ 1m. A particle
with momentum error of δ = 1% has a dispersive orbit of Dδ = 1 cm.
To appreciate the strong suppression effect on dispersion, one should consider a particle moving
in a uniform magnetic field. Recalling that the dispersion function D = R in that case, a particle
with 1% momentum error will have an orbit as large as 1 m.
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Momentum compaction factor

Dispersion function describes the horizontal closed orbit distortion of an
off-momentum particle. In the ideal case, the momentum error does not
cause any vertical orbit effect. However, it does cause a longitudinal effect
because the total circumference of an off-momentum particle will no
longer be given by the design circumference C.

A momentum compaction factor αc is defined by

∆C
C = αcδ, or αc =

1

δ

∆C
C =

1

C

∮ D(S)
ρ(s) ds
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Momentum compaction factor (Cont.)

αc ≈ ⟨D⟩
R ≈ 1

ν2x

As discussed earlier, in a uniform magnetic field, we have D = R, and then
we have a large momentum compaction factor αc = 1. Strong focusing
has very much suppressed the value of αc.
The momentum compaction factor is a fundamental parameter in a lattice
design. A large αc means the path length varies by a large amount with a
small momentum error. In such a storage ring, a stored bunched beam will
tend to have a long bunch length because a large αc makes it easy for
particles to spread out longitudinally. Therefore, large αc means long
bunch length, i.e. the beam bunch is less compact.
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Chromaticity

For an off-momentum particle, its momentum deviation δ induces dipole
perturbations that gives rise to a closed orbit distortion, which we have
now discussed in terms of a dispersion function. We have been calling
such beam dynamical effects caused by momentum deviation chromatic
effects. Now we discuss another important chromatic effect related to
δ-dependent quadrupole perturbations. Basically what happens is the
following. Higher momentum particles (δ > 0) have higher rigidity, and
therefore experience weaker effect due to magnetic fields. Dispersion
comes from the weakened dipoles. The weakened quadrupoles will
introduce chromaticities, i.e. the betatron tunes will depend on δ,

νx,y(δ) = νx,y(0) + ξx,yδ

where the parameters ξx,y are the chromaticities.
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Pill box cavity
A simplified model of the RF cavity is a pill box cavity with length L and
radius R.

Ez H
θ

k

Ez(r) = E0J0(
ω

c r) cosωt

Bθ(r) = −E0

c J1(
ω

c r) sinωt

The mode frequency,

ω = 2.405
c
R [example : R = 30cm, f = 400MHz]

38 / 52



A more realistic pill-box cavity

The design of a pill-box cavity can 
be sophisticated in order to p
improve its performances:

-A nose cone can be introduced in 
order to concentrate the electric 
field around the axis,

-Round shaping of the corners 
allows a better distribution of the 
magnetic field on the surface and a 
reduction of the Joule losses. It 
also prevent from multipactoring 
effectseffects.

A good cavity is a cavity which 
efficiently transforms the RF 
power into accelerating voltage.power into accelerating voltage.
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Break Down
The peak field in a cavity in vacuum is limited by breakdown. One often uses the Kilpatrick
limit (1953) to determine where the breakdown might occur. It is an empirical relation derived
from data taken before the era of ultra-highvacuum technology. The maximum field Ek [MV/m]
at any frequency f [GHz] according to this criterion is determined by the following equation:

f = 0.00164E2
k exp(−8.5/Ek)

The breakdown limit increases as the RF frequency is increased. This is one reason why linear
colliders tend to push for technologies of higher frequency RF systems.
Today, with ultra-high-vacuum technology, much higher fields are often achieved. Indeed a more
recent fit (although more studies are being carried out in this active research area) gives

Ek[MV/m] = 220(f[GHz])1/3
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Principle of phase stability

We assume the longitudinal voltage across an RF cavity is

V = V0 sin(ωrft + ϕs)

where ϕs is the RF phase angle relative to the synchronous particle. The RF frequency
ωrf is an integral multiple of the revolution frequency ω0, i.e.

ωrf = hω0

where h is the harmonic number. Note that we have ignored the r-depedentce of V here
because we consider on-axis field with r = 0.
As mentioned, h has to be exactly an integer. Otherwise we will lose the synchronism
and lose the ability to accelerate the beam. One might ask how exactly does this
condition have to be fulfilled? What if, for example, ωrf

ω0
= 200.000001? If this were the

case, then after 1
2
× 106 turns, the RF voltage will get out of phase with the beam’s

arrival time, and we will be decelerating the beam! Since a beam is to be stored much
longer than 1

2
× 106 turns, any tiny mismatch of frequencies must not be allowed.

41 / 52



Principle of phase stability (2)

This difficulty was resolved by the important phase stability principle of McMillan and
Veksler in 1945. What happens is that under some condition of stability, the beam will
settle this problem by itself! In particular, the phase stability principle states the
following two statements:

...1 You first choose your ωrf . Once ωrf is chosen, the beam —at least its synchronous
particle —will adjust its revolution frequency ω0 in such a way that it becomes
exactly equal to ωrf/200 even though its initial ω0 is slightly off.

...2 A particle with slight deviations in z, δ from the synchronous particle will oscillate
around the synchronous particle, and these deviations will not grow indefinitely
with time.

The phase stability is an extremely important principle in accelerator physics. Together
with the strong focusing principle, they provide the two foundations for all modern
accelerators, phase stability addressing the longitudinal dynamics while strong focusing
addressing the transverse dynamics of the particle motion.
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Longitudinal phase space topology & RF bucket
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A snapshot of the synchrotron radiation

Incidentally, the arrows in the left figure
were not drawn carelessly. Each arrow can
be traced back to a tangential point off the
electron’s circular orbit.
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Bending Magnet Radiation Power

The total power of radiation by the point charge, designated as Pγ ,is

Pγ =
dW
dψ

c
ρ
=

2r0mc3γ4
3ρ2

The total energy radiated per revolution, designated as U0, is

U0 = 2π
dW
dψ =

4πr0mc2γ4
3ρ

In practical units, we have

U0 =


0.0885[MeV] (E[GeV])4

ρ[m]
for electrons

0.00778[MeV] (E[TeV])4
ρ[m]

for protons
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Quantum fluctuations
In the classical picture, synchrotron radiation is described as a continuous
emission of electromagnetic waves. In quantum mechanics, however, we
understand that the radiation consists really of a large number of discrete
photons, each carrying an energy of u = ℏω.
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A few quantum quantities

The number of photons emitted per revolution

N0 =
5παγ√

3
≈ γ

15

Each photon emission takes place over a small piece of arc as the electron (or proton) is
being bent. The arc subtends an angle

∼ 2

γ

The total bending angle over which the electron is executing an emission is

∼ γ

15
× 2

γ
=

2

15
rad

A particle is radiating a photon over about 2/15
2π

≈ 2% of its bending trajectory, and is
doing nothing over the remaining 98% of the time. Radiation events are rather sparse.
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Radiation Damping & Robinson Sum Rule

The radiation damping time τx,y,z,

1

τx
+

1

τy
+

1

τz
= 2

U0

EsT0
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With radiation damping, then . . .

According to the picture so far, a beam of particles, once injected into a
storage ring, will damp to a zero size. This is of course absurd and we
must ask what effects will emerge as the beam size gets smaller. A long
list follows, e.g.

space charge effects
intrabeam scattering
collective instabilities for high intensity beams
magnet power supply ripples
continuous random motion of ground
quantum excitation (discussed below)

The surprise is that what comes first to limit the shrinking beam size is
synchrotron radiation itself!
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Equilibrium Beam Parameters

equilibrium beam emittance =
quantum excitation
radiation damping

energy spread σδ

σ2
δ =

55

32
√
3

ℏ
mc

γ2

(2 +D)ρ

bunch length σz

σz =
c|η|
ωs

σδ

horizontal emittance
ϵx =

σ2
xβ

βx
≈ 2R

ν3x
σ2
δ

horizontal beam size
σxβ ≈

√
2

R
ν2x

σδ

.Example

..

......
With R = 30 m and Es = 5 GeV, we had σδ = 0.8× 10−3. If νx ≈ 5, then σxβ ≈ 1.3
mm
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If you don’t plan to become a career accelerator physicist, and someone
asks you what you know about accelerator physics, you should quote

rms beam size =
√
β(s)ϵrms
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