Quantum Chromodynamics (QCD)

Jianwei Qiu
Brookhaven National Laboratory Stony Brook University

Weihai High Energy Physics School (WHEPS)
Shandong University - Weihai, Weihai, Shandong, China, August 1-11, 2015

The plan for my four lectures

\square The Goal:
To understand the strong interaction dynamics, and hadron structure, in terms of Quantum Chromo-dynamics (QCD)
\square The Plan (approximately):
Fundamentals of QCD, factorization, evolution,
and elementary hard processes
Two lectures
Role of QCD in high energy collider phenomenology
One lecture

QCD and hadron structure and properties
One lecture

Summary of lecture two

\square PQCD factorization approach is mature, and has been extremely successful in predicting and interpreting high energy scattering data with momentum transfer $>2 \mathrm{GeV}$
\square NLO calculations are available for most observables, NNLO are becoming available for the search of new physics
\square Direct photon data are still puzzling and challenging, has a good potential for extracting the gluon distribution
\square NLO PDFs are very stable now, and NNLO PDFs are becoming available

Multi-scale observables could be valuable for new physics search - new factorization formalism, resummation, ...

A complete example - "Drell-Yan"

\square Heavy boson production in hadronic collisions:

$$
A\left(P_{A}\right)+B\left(P_{B}\right) \rightarrow V\left[\gamma^{*}, W / Z, H^{0}, \ldots\right](p)+X
$$

\triangleleft Cross section with single hard scale: $\quad p_{T} \sim M_{V}$

$$
\begin{array}{r}
\frac{d \sigma_{A B \rightarrow V}}{d y d p_{T}^{2}}\left(p_{T} \sim M_{V}\right), \quad \frac{d \sigma_{A B \rightarrow V}}{d y}\left(M_{V}\right), \quad \sigma_{A B \rightarrow V}\left(M_{V}\right) \\
\sigma_{A B \rightarrow V}\left(M_{V}\right)=\sum_{f f^{\prime}} \int d x_{A} f\left(x_{A}, \mu^{2}\right) \int d x_{B} f\left(x_{B}, \mu^{2}\right) \hat{\sigma}_{f f^{\prime} \rightarrow V}\left(x_{A}, x_{B}, \alpha_{s}(\mu) ; M_{V}\right) \\
\text { - Fixed order pQCD calculation }
\end{array}
$$

\diamond Cross section with two different hard scales:

$$
\begin{aligned}
& \frac{d \sigma_{A B \rightarrow V}}{d y d p_{T}^{2}}\left(p_{T} \gg M_{V}\right) \\
& \frac{d \sigma_{A B \rightarrow V}}{d y d p_{T}^{2}}\left(p_{T} \ll M_{V}\right)
\end{aligned}
$$

- Resummation of single logarithms:

$$
\alpha_{s}^{n} \ln ^{n}\left(p_{T}^{2} / M_{V}^{2}\right)
$$

- Resummation of double logarithms:

$$
\alpha_{s}^{n} \ln ^{2 n}\left(M_{V}^{2} / p_{T}^{2}\right)
$$

Same discussions apply to production of Higgs, and other heavy particles

Total cross section - single hard scale

\square Partonic hard parts:

$$
\begin{gathered}
\hat{\sigma}\left(\alpha_{s}, \mu_{F}, \mu_{R}\right)=\left[\alpha_{s}\left(\mu_{R}\right)\right]^{n_{\alpha}}\left[\hat{\sigma}^{(0)}+\frac{\alpha_{s}}{2 \pi} \hat{\sigma}^{(1)}\left(\mu_{F}, \mu_{R}\right)+\left(\frac{\alpha_{s}}{2 \pi}\right)^{2} \hat{\sigma}^{(2)}\left(\mu_{F}, \mu_{R}\right)+\cdots\right] \\
\text { NO NLO }
\end{gathered}
$$

\square NNLO total x-section $\sigma(A B \rightarrow W, Z)$:

(Hamberg, van Neerven, Matsuura; Harlander, Kilgore 1991)

\diamond Scale dependence:
a few percent
\triangleleft NNLO K-factor is about 0.98 for LHC data, 1.04 for Tevatron data

Rapidity distribution - single hard scale

\square NNLO differential cross-section:

Anastasiou, Dixon, Melnikov, Petriello, 2003-05

Rapidity distribution - single hard scale

\square NNLO differential cross-section:
Anastasiou, Dixon, Melnikov, Petriello, 2003-05 $D \oslash, 0.4 \mathrm{fi}^{1}$

Determination of mass and width

\square W mass \& width:

W-Boson Mass [GeV]

Fernando Febres Cordero, CTEQ SS2012

W-Boson Width [GeV]

Charge asymmetry - single hard scale

\square Charged lepton asymmetry: $y \rightarrow y_{\text {max }}$

$$
A_{c h}\left(y_{e}\right)=\frac{d \sigma^{W^{+} / d y_{e}-d \sigma^{W^{-}} / d y_{e}}}{d \sigma^{W+} / d y_{e}+d \sigma^{W-} / d y_{e}} \longrightarrow \frac{d\left(x_{B}, M_{W}\right) / u\left(x_{B}, M_{W}\right)-d\left(x_{A}, M_{W}\right) / u\left(x_{A}, M_{W}\right)}{d\left(x_{B}, M_{W}\right) / u\left(x_{B}, M_{W}\right)+d\left(x_{A}, M_{W}\right) / u\left(x_{A}, M_{W}\right)}
$$

The $A_{c h}$ data distinguish between the PDF models, reduce the PDF uncertainty

Charge asymmetry - single hard scale

\square Charged lepton asymmetry: $y \rightarrow y_{\text {max }}$

$$
A_{c h}\left(y_{e}\right)=\frac{d \sigma^{W^{+}} / d y_{e}-d \sigma^{W^{-}} / d y_{e}}{d \sigma^{W^{+}} / d y_{e}+d \sigma^{W^{-}} / d y_{e}} \longrightarrow \frac{d\left(x_{B}, M_{W}\right) / u\left(x_{B}, M_{W}\right)-d\left(x_{A}, M_{W}\right) / u\left(x_{A}, M_{W}\right)}{d\left(x_{B}, M_{W}\right) / u\left(x_{B}, M_{W}\right)+d\left(x_{A}, M_{W}\right) / u\left(x_{A}, M_{W}\right)}
$$

Sensitive both to d / u at $x>0.1$ and u / d at $x \sim 0.01$

Flavor asymmetry - single hard scale

\square Flavor asymmetry of the sea:

$$
\sigma_{D Y}(p+d) / 2 \sigma_{D Y}(p+p) \simeq[1+\bar{d}(x) / \bar{u}(x)] / 2
$$

x
Could QCD allow ubar(x) > dbar(x)?

P_{T}-distribution $\left(P_{T} \gg M\right)$ - two hard scales

$\square \mathbf{P}_{\mathrm{T}}$-distribution - factorizable if $\mathbf{M} \gg \Lambda_{\mathbf{Q C D}}:$

$$
\frac{d \sigma_{A B}}{d y d p_{T}^{2} d Q^{2}}=\sum_{a, b} \int d x_{a} f_{a / A}\left(x_{a}\right) \int d x_{b} f_{b / B}\left(x_{b}\right) \frac{d \hat{\sigma}_{a b}}{d y d p_{T}^{2} d Q^{2}}\left(x_{a}, x_{b}, \alpha_{s}\right)
$$

P_{T}-distribution $\left(P_{T} \gg M\right)$ - two hard scales

$\square \mathbf{P}_{\mathrm{T}}$-distribution - factorizable if $\mathbf{M} \gg \Lambda_{\mathbf{Q C D}}:$

$$
\frac{d \sigma_{A B}}{d y d p_{T}^{2} d Q^{2}}=\sum_{a, b} \int d x_{a} f_{a / A}\left(x_{a}\right) \int d x_{b} f_{b / B}\left(x_{b}\right) \frac{d \hat{\sigma}_{a b}}{d y d p_{T}^{2} d Q^{2}}\left(x_{a}, x_{b}, \alpha_{s}\right)
$$

How big is the logarithmic contribution? $\quad \lesssim \frac{\alpha_{s}(Q)}{2 \pi} \ln \left(\frac{p_{T}^{2}}{Q^{2}}\right) \lesssim 10 \%$

P_{T}-distribution $\left(P_{T} \gg M\right)$ - two hard scales

$\square \mathbf{P}_{\mathrm{T}}$-distribution - factorizable if $\mathbf{M} \gg \Lambda_{\mathrm{QCD}}$:

$$
\begin{aligned}
& \frac{d \sigma_{A B}}{d y d p_{T}^{2} d Q^{2}}=\sum_{a, b} \int d x_{a} f_{a / A}\left(x_{a}\right) \int d x_{b} f_{b / B}\left(x_{b}\right) \frac{d \hat{\sigma}_{a b}}{d y d p_{T}^{2} d Q^{2}}\left(x_{a}, x_{b}, \alpha_{s}\right) \\
& \sim \frac{\alpha_{s}(\mu)}{2 \pi} \ln \left(\frac{p_{T}^{2}}{Q^{2}}\right)
\end{aligned}
$$

How big is the logarithmic contribution? $\quad \lesssim \frac{\alpha_{s}(Q)}{2 \pi} \ln \left(\frac{p_{T}^{2}}{Q^{2}}\right) \lesssim 10 \%$
\square Improved factorization:

$$
\begin{aligned}
\frac{d \sigma_{A B \rightarrow V(Q) X}}{d p_{T}^{2} d y} & \equiv \frac{d \sigma_{A B \rightarrow V(Q) X}^{\mathrm{Dir}}}{d p_{T}^{2} d y}+\frac{d \sigma_{A B \rightarrow V(Q) X}^{\mathrm{Frag}}}{d p_{T}^{2} d y} \\
\frac{d \sigma_{A B \rightarrow V(Q) X}^{\mathrm{Frag}}}{d p_{T}^{2} d y} & =\sum_{a, b, c} \int d x_{1} f_{a}^{A}\left(x_{1}, \mu\right) \int d x_{2} f_{b}^{B}\left(x_{2}, \mu\right) \\
& \times \int \frac{d z}{z^{2}}\left[\frac{d \hat{\sigma}_{a b \rightarrow c X}^{\mathrm{Frag}}}{d p_{c_{T}}^{2} d y}\left(x_{1}, x_{2}, p_{c} ; \mu_{D}\right)\right] D_{c \rightarrow V}\left(z, \mu_{D}^{2} ; Q^{2}\right)
\end{aligned}
$$

P_{T}-distribution $\left(P_{T} \gg M\right)$ - two hard scales

- Fragmentation functions of elementary particles:

$$
{\underset{p}{p_{c}}}_{5_{5}^{2} / p_{p}}^{\substack{p_{c}}}
$$

$$
\begin{aligned}
& D_{g \rightarrow V}^{(0)}\left(z, \mu_{D}^{2} ; Q^{2}\right)=0 \\
& D_{q \rightarrow V}^{(0)}\left(z, \mu_{D}^{2} ; Q^{2}\right)=\frac{\left(\left|g_{L}^{V q}\right|^{2}+\left|g_{c}^{V q}\right|^{2}\right)}{2}\left(\frac{\alpha_{e m}}{2 \pi}\right)\left[\frac{1+(1-z)^{2}}{z} \ln \left(\frac{z \mu_{D}^{2}}{Q^{2}}\right)-z\left(1-\frac{Q^{2}}{z \mu_{D}^{2}}\right)\right]
\end{aligned}
$$

\square Evolution equations:

$$
\begin{aligned}
& \mu_{D}^{2} \frac{d}{d \mu_{D}^{2}} D_{c \rightarrow V}\left(z, \mu_{D}^{2} ; Q^{2}\right)=\left(\frac{\alpha_{\mathrm{em}}}{2 \pi}\right) \gamma_{c \rightarrow V}\left(z, \mu_{D}^{2}, \alpha_{s} ; Q^{2}\right)+\left(\frac{\alpha_{s}}{2 \pi}\right) \sum_{d} \int_{z}^{1} \frac{d z^{\prime}}{z^{\prime}} P_{c \rightarrow d}\left(\frac{z}{z^{\prime}}, \alpha_{s}\right) D_{d \rightarrow V}\left(z^{\prime}, \mu_{D}^{2} ; Q^{2}\right) \\
& D_{c \rightarrow V}\left(z, \mu_{D}^{2} \leq Q^{2} / z ; Q^{2}\right)=0
\end{aligned}
$$

\square Evolution kernels:

$$
\gamma_{q \rightarrow V}^{(0)}\left(z, k^{2} ; Q^{2}\right)=\frac{\left(\left|g_{L}^{V q}\right|^{2}+\left|g_{R}^{V q}\right|^{2}\right)}{2}\left[\frac{1+(1-z)^{2}}{z}-z\left(\frac{Q^{2}}{z k^{2}}\right)\right] \theta\left(k^{2}-\frac{Q^{2}}{z}\right)
$$

$$
\gamma_{g \rightarrow V}^{(0)}\left(z, k^{2} ; Q^{2}\right)=0
$$

If $Q \gg \Lambda_{\mathrm{QCD}}$, reorganization of perturbative expansion to remove all logarithms of hard parts

P_{T}-distribution ($P_{T} \gg M$) - two hard scales

$\sigma_{p_{T}>800 \mathrm{GeV}}$	VB	C-LO	C-NLO	NLO[modified]
$13 \mathrm{TeV}[\mathrm{fb}]$	Z	74.1	$117.4_{-11.5}^{+12.0}$	$120.5_{-10.4}^{+9.2}$
	W^{+}	126.2	$199.4_{-19.3}^{+20.1}$	$204.4_{-17.3}^{+15.4}$
	W^{-}	55.8	$90.2_{-9.2}^{+9.6}$	$92.7_{-8.2}^{+7.4}$
$100 \mathrm{TeV}[\mathrm{pb}]$	Z	11.48	$19.68_{-1.30}^{+1.53}$	$20.16_{-0.98}^{+1.00}$
	W^{+}	15.08	$26.23_{-1.79}^{+2.14}$	$26.86_{-1.35}^{+1.41}$
	W^{-}	10.50	$18.18_{-1.23}^{+1.47}$	$18.61_{-0.92}^{+0.96}$

Fragmentation logs are under control!

P_{T}-distribution ($P_{T} \gg M$) - two hard scales

P_{T}-distribution ($P_{T} \gg M$) - two hard scales

P_{T}-distribution $\left(P_{T} \ll M\right)$ - two scales

$\square Z^{0}-\mathrm{PT}$ distribution in pp collisions:

P_{T} as low as $[0,2.5] \mathrm{GeV}$ bin (or about 1.25 GeV)

P_{T}-distribution $\left(P_{T} \ll M\right)$ - two scales

\square Interesting region - where the most data are:

$$
P_{T} \ll M_{Z} \sim 91 \mathrm{GeV} \quad \text { Two observed, but, very different scales }
$$

\square Fixed order pQCD calculation is not stable!
 $\propto \frac{1}{q_{T}^{2}} \rightarrow \infty$
\square Large logarithmic contribution from gluon shower:

$\Longrightarrow\left[\alpha_{s} \ln ^{2}\left(\frac{M_{Z}^{2}}{q_{T}^{2}}\right)\right]^{n}$
Resummation is necessary!

Cross section with two scales - resummation

$$
Q_{1}^{2} \gg Q_{2}^{2} \gg \Lambda_{\mathrm{QCD}}^{2}, \quad Q_{1}^{2} \gg Q_{2}^{2} \gtrsim \Lambda_{\mathrm{QCD}}^{2}
$$

\square Large perturbative logarithms:
$\alpha_{s}\left(\mu^{2}=Q_{1}^{2}\right)$ is small, But, $\alpha_{s}\left(Q_{1}^{2}\right) \ln \left(Q_{1}^{2} / Q_{2}^{2}\right)$ is not necessary small!
\square Massless theory:
Two powers of large logs for each order in perturbation theory $\alpha_{s}\left(Q_{1}^{2}\right) \ln ^{2}\left(Q_{1}^{2} / Q_{2}^{2}\right) \quad$ due to overlap of IR and CO regions
\square Example - EM form factor:

$$
\begin{aligned}
\Gamma_{\mu}\left(q^{2}, \epsilon\right) & =-i e \mu^{\epsilon} \bar{u}\left(p_{1}\right) \gamma_{\mu} v\left(p_{2}\right) \rho\left(q^{2}, \epsilon\right) \\
\rho\left(q^{2}, \epsilon\right) & =-\frac{\alpha_{s}}{2 \pi} C_{F}\left(\frac{4 \pi \mu^{2}}{-q^{2}-i \epsilon}\right)^{\epsilon} \frac{\Gamma^{2}(1-\epsilon) \Gamma(1+\epsilon)}{\Gamma(1-2 \epsilon)}\left\{\frac{1}{(-\epsilon)^{2}}-\frac{3}{2(-\epsilon)}+4\right\} \\
& =1-\frac{\alpha_{s}}{4 \pi} C_{F} \ln ^{2}\left(q^{2} / \mu^{2}\right)+\ldots \text { Sudakov double logarithms }
\end{aligned}
$$

 Common to all massless theories

"Drell-Yan" - leading double log contribution

\square LO Differential Q_{T}-distribution as $\mathbf{Q}_{\mathrm{T}} \rightarrow 0$:

$$
\begin{aligned}
\frac{d \sigma}{d y d Q_{T}^{2} \text { Lo }} & \approx\left(\frac{d \sigma}{d y}\right)_{\text {Born }} \times 2 C_{F}\left(\frac{\alpha_{s}}{\pi}\right) \frac{\ln \left(Q^{2} / Q_{T}^{2}\right)}{Q_{T}^{2}} \Rightarrow \infty \\
\longrightarrow & \int_{0}^{Q^{2}} \frac{d \sigma}{d y d Q_{T}^{2}} \quad d Q_{T}^{2} \approx\left(\frac{d \sigma}{d y}\right)_{\text {Boal +virutal }}+O\left(\alpha_{s}\right) \quad \text { with } Q^{2} \approx M_{Z}^{2}
\end{aligned}
$$

\square Integrated Q_{T}-distribution:

$$
\begin{aligned}
& \int_{0}^{Q_{T}^{2}} \frac{d \sigma}{d y d p_{T}^{2}} \quad d p_{T}^{2} \equiv\left[\int_{0}^{Q^{2}}-\int_{Q_{T}^{2}}^{Q^{2}}\right] \frac{d \sigma}{d y d p_{T}^{2}} d p_{\text {reallvirutual }}^{2} d p_{T}^{2} \\
& \text { Effect of gluon } \\
& \text { emission } \\
& \approx\left(\frac{d \sigma}{d y}\right)_{\text {Bom }} \times\left[1-\int_{Q_{T}^{2}}^{Q^{2}} 2 C_{F} \frac{\alpha_{s}}{\pi} \frac{\ln \left(Q^{2} / p_{T}^{2}\right)}{p_{T}^{2}} d p_{T}^{2}\right]=\left(\frac{d \sigma}{d y}\right)_{\text {Borm }} \times\left[1-C_{F} \frac{\alpha_{s}}{\pi} 1 n^{2}\left(Q^{2} / Q_{T}^{2}\right)\right] \\
& \approx\left(\frac{d \sigma}{d y}\right)_{\text {Borm }} \times \exp \left[-C_{F} \frac{\alpha_{s}}{\pi} \ln \left(n^{2} / Q_{T}^{2}\right)\right]
\end{aligned}
$$

Resummed $\mathbf{Q}_{\mathbf{T}}$ distribution

\square Differentiate the integrated Q_{T}-distribution:

$$
\begin{aligned}
\frac{d \sigma}{d y d Q_{T}^{2}} \approx\left(\frac{d \sigma}{d y}\right)_{\text {Born }} \times 2 C_{F}\left(\frac{\alpha_{s}}{\pi}\right) \frac{\ln \left(Q^{2} / Q_{T}^{2}\right)}{Q_{T}^{2}} \times \exp \left[-C_{F}\left(\frac{\alpha_{s}}{\pi}\right) \ln n^{2}\left(Q^{2} / Q_{T}^{2}\right)\right] & \Rightarrow 0 \\
& \text { as } \mathbf{Q}_{\mathbf{T}} \rightarrow 0
\end{aligned}
$$

Resummed $\mathbf{Q}_{\mathbf{T}}$ distribution

\square Differentiate the integrated Q_{T}-distribution:

$$
\frac{d \sigma}{d y d Q_{T}^{2}} \approx\left(\frac{d \sigma}{d y}\right)_{\text {Born }} \times 2 C_{F}\left(\frac{\alpha_{s}}{\pi}\right) \frac{\ln \left(Q^{2} / Q_{T}^{2}\right)}{Q_{T}^{2}} \times \exp \left[-C_{F}\left(\frac{\alpha_{s}}{\pi}\right) \ln n^{2}\left(Q^{2} / Q_{T}^{2}\right)\right] \Rightarrow 0
$$

\square Compare to the explicit LO calculation:

$$
\frac{d \sigma}{d y d Q_{T ~ L o ~}^{2}} \approx\left(\frac{d \sigma}{d y}\right)_{\text {Bom }} \times 2 C_{F}\left(\frac{\alpha_{s}}{\pi}\right) \frac{\ln \left(Q^{2} / Q_{T}^{2}\right)}{Q_{T}^{2}} \Rightarrow \infty \quad \begin{gathered}
\left.\mathbf{Q}_{\boldsymbol{T}} \text {-spectrum (as } \mathbf{Q}_{\boldsymbol{T}} \rightarrow \mathbf{0}\right) \text { is } \\
\text { completely changed! }
\end{gathered}
$$

Resummed $\mathbf{Q}_{\mathbf{T}}$ distribution

\square Differentiate the integrated Q_{T}-distribution:

$$
\begin{aligned}
& \frac{d \sigma}{d y d Q_{T}^{2}} \approx\left(\frac{d \sigma}{d y}\right)_{\text {Born }} \times 2 C_{F}\left(\frac{\alpha_{s}}{\pi}\right) \frac{\ln \left(Q^{2} / Q_{T}^{2}\right)}{Q_{T}^{2}} \times \exp \left[-C_{F}\left(\frac{\alpha_{s}}{\pi}\right) \ln n^{2}\left(Q^{2} / Q_{T}^{2}\right)\right] \Rightarrow 0 \\
& \text { as } \mathbf{Q}_{\mathbf{T}} \rightarrow 0
\end{aligned}
$$

\square Compare to the explicit LO calculation:

$$
\frac{d \sigma}{d y d Q_{T \text { LO }}^{2}} \approx\left(\frac{d \sigma}{d y}\right)_{\text {Bom }} \times 2 C_{F}\left(\frac{\alpha_{s}}{\pi}\right) \frac{\ln \left(Q^{2} / Q_{T}^{2}\right)}{Q_{T}^{2}} \Rightarrow \infty \quad \begin{gathered}
\left.\mathbf{Q}_{\mathbf{T}} \text {-spectrum (as } \mathbf{Q}_{\boldsymbol{T}} \rightarrow \mathbf{0}\right) \text { is } \\
\text { completely changed! }
\end{gathered}
$$

\square We just resummed (exponentiated) an infinite series of soft gluon emissions - double logarithms

$$
e^{-\alpha_{s} L^{2}} \approx 1-\alpha_{s} L^{2}+\frac{\left(\alpha_{s} L^{2}\right)^{2}}{2!}-\frac{\left(\alpha_{s} L^{2}\right)^{3}}{3!}+\ldots \quad L \propto \ln \left(Q^{2} / Q_{T}^{2}\right)
$$

Soft gluon emission treated as uncorrelated

Still a wrong Q_{T}-distribution

\square Experimental fact:

$$
\left.\frac{d \sigma}{d y d Q_{T}^{2}} \Rightarrow \text { finite [neither } \infty \text { nor } 0!\right] \text { as } Q_{T} \rightarrow 0
$$

\square Double Leading Logarithmic Approximation (DLLA):
\diamond Radiated gluons are both soft and collinear with strong ordering in their transverse momenta
\diamond Ignores the overall vector momentum conservation
\diamond Double logs \sim random work \sim zero probability to be $Q_{T}=0$
DLLA over suppress small Q_{T} region
Resummation of uncorrelated soft gluon emission leads to a too strong suppression at $Q_{T}=0$!

Still a wrong \mathbf{Q}_{T}-distribution

\square Why?
Particle can receive many finite k_{T} kicks via soft gluon radiation yet still have $Q_{T}=0$

- Need a vector sum!

\square Subleading logarithms are equally important at $Q_{T}=0$
\square Solution:
To impose the 4-momentum conservation at each step of soft gluon resummation

CSS b-space resummation formalism

\square TMD-factorized cross section:
Collins, Soper, Sterman, 1985

$$
\begin{aligned}
& \frac{d \sigma_{A B}}{d Q^{2} d Q_{T}^{2}}=\sum_{f} \int d \xi_{a} d \xi_{b} \int \frac{d^{2} k_{A_{T}} d^{2} k_{B_{T}} d^{2} k_{s, T}}{(2 \pi)^{6}} \\
& \times P_{f / A}\left(\xi_{a}, k_{A_{T}}\right) P_{\bar{f} / B}\left(\xi_{b}, k_{B_{T}}\right) H_{\bar{f}}\left(Q^{2}\right) S\left(k_{s, T}\right) \\
& \times \delta^{2}\left(\vec{Q}_{T}-\vec{k}_{A_{T}}-\vec{k}_{B_{T}}-\vec{k}_{s, T}\right)
\end{aligned}
$$

CSS b-space resummation formalism

\square TMD-factorized cross section:
Collins, Soper, Sterman, 1985

CSS b-space resummation formalism

\square TMD-factorized cross section:
Collins, Soper, Sterman, 1985

$$
\begin{aligned}
& \frac{d \sigma_{A B}}{d Q^{2} d Q_{T}^{2}}=\sum_{f} \int d \xi_{a} d \xi_{b} \int \frac{d^{2} k_{A_{T}} d^{2} k_{B_{T}} d^{2} k_{s_{s, T}}}{(2 \pi)^{6}} \\
& \times P_{f / A}\left(\xi_{a}, k_{A_{T}}\right) P_{\bar{f} / B}\left(\xi_{b}, k_{B_{T}}\right) H_{\bar{f}}\left(Q^{2}\right) S\left(k_{s, T}\right) \\
& \times \delta^{2}\left(\vec{Q}_{T}-\vec{k}_{A_{T}}-\vec{k}_{B_{T}}-\vec{k}_{s, T}\right) \\
& \delta^{2}\left(\vec{Q}_{T}-\prod_{i} \vec{k}_{i, T}\right)=\frac{1}{(2 \pi)^{2}} \int d^{2} b \mathrm{e}^{i \vec{b} \cdot \bar{T}_{T}} \prod_{i} \mathrm{e}^{-i \vec{b} \vec{k}_{i, T}}
\end{aligned}
$$

\square Factorized cross section in "impact parameter b-space":

$$
\frac{d \sigma_{A B}(Q, b)}{d Q^{2}}=\sum_{f} \int d \xi_{a} d \xi_{b} \bar{P}_{f / A}\left(\xi_{a}, b, n\right) \bar{P}_{\bar{f} / B}\left(\xi_{b}, b, n\right) H_{\bar{f}}\left(Q^{2}\right) U(b, n)
$$

CSS b-space resummation formalism

\square TMD-factorized cross section:
Collins, Soper, Sterman, 1985

\square Factorized cross section in "impact parameter b-space":

$$
\frac{d \sigma_{A B}(Q, b)}{d Q^{2}}=\sum_{f} \int d \xi_{a} d \xi_{b} \bar{P}_{f / A}\left(\xi_{a}, b, n\right) \bar{P}_{\bar{f} / B}\left(\xi_{b}, b, n\right) H_{\overline{f f}}\left(Q^{2}\right) U(b, n)
$$

Resummation: Two equations, resummation of two log's

$$
\mu_{\mathrm{ren}} \frac{d \sigma}{d \mu_{\mathrm{ren}}}=0 \quad n^{v} \frac{d \sigma}{d n^{v}}=0
$$

CSS b-space resummation formalism

\square Solve those two equations and transform back to Q_{T} :

$$
\begin{aligned}
\frac{d \sigma_{A B}}{d Q^{2} d Q_{T}^{2}} & \equiv \frac{1}{(2 \pi)^{2}} \int d^{2} b \mathrm{e}^{i b \cdot Q_{T}} \tilde{W}_{A B}(b, Q)+Y_{A B}\left(Q_{T}^{2}, Q^{2}\right) \text { No large log's } \\
& =\frac{1}{(2 \pi)} \int_{0}^{\infty} d b J_{0}\left(b Q_{T}\right) b \tilde{W}_{A B}(b, Q)+\left[\frac{d \sigma_{A B}^{(\text {Pert })}}{d Q^{2} d Q_{T}^{2}}-\frac{d \sigma_{A B}^{(\text {Asym })}}{d Q^{2} d Q_{T}^{2}}\right]
\end{aligned}
$$

transverse momentum \mathbf{q}_{T}

CSS b-space resummation formalism

\square b-space distribution:

$$
W_{A B}(b, Q)=\sum_{i j} W_{i j}(b, Q) \hat{\sigma}_{i j}(Q)
$$

\square Collins-Soper equation:

$$
\begin{equation*}
\frac{\partial}{\partial \ln Q^{2}} \tilde{W}_{i j}(b, Q)=\left[K\left(b \mu, \alpha_{s}\right)+G\left(Q / \mu, \alpha_{s}\right)\right] \tilde{W}_{i j}(b, Q) \tag{1}
\end{equation*}
$$

\square Evolution kernels satisfy RG equation:

$$
\begin{align*}
\frac{\partial}{\partial \ln \mu^{2}} K\left(b \mu, \alpha_{s}\right) & =-\frac{1}{2} \gamma_{K}\left(\alpha_{s}(\mu)\right) \tag{2}\\
\frac{\partial}{\partial \ln \mu^{2}} G\left(Q / \mu, \alpha_{s}\right) & =\frac{1}{2} \gamma_{K}\left(\alpha_{s}(\mu)\right) \tag{3}
\end{align*}
$$

\square Solution - resummation:

$$
W_{i j}(b, Q)=W_{i j}(b, 1 / b) \mathrm{e}^{-S_{i j}(b, Q)} \quad \text { All large logs }
$$

Boundary condition - perturbative if b is small!

CSS b-space resummation formalism

\square Boundary condition - collinear factorization:

$$
W_{i j}(b, Q)=\sum_{a, b} \sigma_{i j \rightarrow Z}\left[\phi_{a / A} \otimes C_{a \rightarrow i}\right] \otimes\left[\phi_{b / B} \otimes C_{b \rightarrow j}\right]
$$

\square Perturbative solution:

$$
\begin{array}{ll}
\quad W_{A B}^{\mathrm{pert}}(b, Q)=\sum_{a, b, i, j} \sigma_{i j \rightarrow Z}\left[\phi_{a / A} \otimes C_{a \rightarrow i}\right] \otimes\left[\phi_{b / B} \otimes C_{b \rightarrow j}\right] \times \mathrm{e}^{-S_{i j}(b, Q)} \\
\square \text { Extrapolation to large-b? } & \text { Only valid when } \mathrm{b} \ll 1 / \wedge_{Q C D}
\end{array}
$$

\diamond Non-perturbative
\diamond Predictive power?

$$
\sigma^{\text {Resum }} \propto \int_{0}^{\infty} d b J_{0}\left(q_{T} b\right) b W(b, Q)
$$

Phenomenology - predictive power

\square Resummed cross section:

$$
\begin{aligned}
& \frac{d \sigma_{A B \rightarrow Z}^{\mathrm{resum}}}{d q_{T}^{2}} \propto \int_{0}^{\infty} d b J_{0}\left(q_{T} b\right) b W(b, Q) \\
& W(b, Q)=\left\{\begin{array}{l}
W^{\mathrm{pert}}(b, Q) \\
?
\end{array}\right.
\end{aligned}
$$

Phenomenology - predictive power

\square Resummed cross section:

$$
\begin{aligned}
& \frac{d \sigma_{A B \rightarrow Z}^{\mathrm{resum}}}{d q_{T}^{2}} \propto \int_{0}^{\infty} d b J_{0}\left(q_{T} b\right) b W(b, Q) \\
& W(b, Q)= \begin{cases}W^{\mathrm{pert}}(b, Q) & b \leq b_{\max } \\
? & b>b_{\max }\end{cases}
\end{aligned}
$$

\square CSS b*-prescription:

$$
W(b, Q) \equiv W^{\text {pert }}\left(b^{*}, Q\right) F^{\mathrm{NP}}(b, Q)
$$

$$
b^{*} \equiv \frac{b}{\sqrt{1+\left(b / b_{\max }\right)^{2}}} \rightarrow b \quad \begin{aligned}
& \text { when } b \rightarrow 0 \\
& \rightarrow b_{\max }
\end{aligned} \text { when } b \rightarrow \infty
$$

$$
F^{\mathrm{NP}} \equiv \exp \left\{-\left[g_{1}+g_{2} \ln \left(Q / 2 Q_{0}\right)+g_{1} g_{3} \ln \left(100 x_{1} x_{2}\right)\right] b_{T}^{2}\right\}
$$

Phenomenology - predictive power

\square Resummed cross section:

$$
\begin{aligned}
& \frac{d \sigma_{A B \rightarrow Z}^{\mathrm{resum}}}{d q_{T}^{2}} \propto \int_{0}^{\infty} d b J_{0}\left(q_{T} b\right) b W(b, Q) \\
& W(b, Q)= \begin{cases}W^{\mathrm{pert}}(b, Q) & b \leq b_{\max } \\
? & b>b_{\max }\end{cases}
\end{aligned}
$$

\square CSS b*-prescription:

$$
W(b, Q) \equiv W^{\text {pert }}\left(b^{*}, Q\right) F^{\mathrm{NP}}(b, Q)
$$

$$
b^{*} \equiv \frac{b}{\sqrt{1+\left(b / b_{\text {max }}\right)^{2}}} \rightarrow b \quad b_{\text {max }} \text { when } b \rightarrow \infty
$$

$$
d \sigma^{\text {Resum }} \text { Area under the curve! }
$$

$$
F^{\mathrm{NP}} \equiv \exp \left\{-\left[g_{1}+g_{2} \ln \left(Q / 2 Q_{0}\right)+g_{1} g_{3} \ln \left(100 x_{1} x_{2}\right)\right] b_{T}^{2}\right\}
$$

\square Extrapolation with power corrections:

$$
W(b, Q)= \begin{cases}W^{\text {pert }}(b, Q) & b \leq b_{\max } \\ W^{\text {pert }}\left(b_{\max }, Q\right) F_{Q Z}^{N P}\left(b, Q, b_{\max }\right) & b>b_{\max }\end{cases}
$$

$$
F_{Q Z}^{N P}\left(b, Q ; b_{\max }\right)=\exp \left\{-\ln \left(\frac{Q^{2} b_{\max }^{2}}{c^{2}}\right)\left[g_{1}\left(\left(b^{2}\right)^{\alpha}-\left(b_{\max }^{2}\right)^{\alpha}\right) \longleftarrow \quad \begin{array}{c}
\text { Resummed } \\
\text { leading power }
\end{array}\right.\right.
$$

Phenomenology

\square Compare with the LHC data:

ResBos: CSS b*-prescription - fitting $g_{1}, g_{2}, g_{3}, Q_{0}$

Phenomenology

\square Compare with the Tevatron data:

No free fitting parameter!

Phenomenology - Higgs

\square Prediction for Higgs spectrum:

Effectively NO non-perturbative uncertainty - Shower dominates!

Phenomenology

\square Prediction for $\mathbf{Z}^{0} @$ LHC:
Kang, Qiu, 2012

Effectively no non-perturbative uncertainty!

Phenomenology

\square Upsilon production (low Q, large phase space):

Gluon-gluon dominate the production
Dominated by perturbative contribution even $M_{Y} \sim 10 \mathrm{GeV}$

Phenomenology

\square Prediction vs Tevatron data:

Parton k_{T} at the hard collision

\square Sources of parton k_{T} at the hard collision:

\square Large k_{T} generated by the shower (caused by the collision):
$\triangleleft Q^{2}$-dependence - linear evolution equation of TMDs in b-space
\diamond The evolution kernels are perturbative at small b, but, not large b
The nonperturbative inputs at large b could impact TMDs at all Q^{2}
\square Challenge: to extract the "true" parton's confined motion:
\diamond Separation of perturbative shower contribution from nonperturbative hadron structure - not as simple as PDFs!

Di-photon production

\square Principle background to Higgs production channel $H^{0} \rightarrow \gamma \gamma$:
Although the background is subtracted with a fitting procedure, it is also important to have some control of this process ab initio
\square Experimentally,
Significant contamination from the production of jets, or photon +jet, where jets are mis-identified as photons

Jet production rate is so much higher photon, care is needed even with mis-identification rate as small as 10^{-4} !
\square Theoretically,

$+$

Implementation of isolation cut with two photons
Back-to-back kinematics - angular distribution - TMD factorization?

Di-photon production

\square High order corrections:
\triangleleft NLO corrections included in DIPHOX and MCFM
\triangleleft A particular class of NNLO contributions is separately gaugeinvariant, and, numerically important at the LHC - more gluons

Contribute at $\mathcal{O}\left(\alpha_{s}^{2}\right)$ to the x -section NO tree-level $g g \rightarrow \gamma \gamma$
N^{3} LO correction with NLO technology
\triangleleft Contributes approximately 15-25\% of the NLO total, depending on exact choice of photon cuts, scale choice, etc.
\diamond TMD factorization vs collinear factorization?

$$
\frac{d \sigma}{d^{4} q_{\gamma \gamma} d \Omega_{\gamma \gamma}} \quad \text { When } q_{T \gamma \gamma} \ll \sqrt{q_{\gamma \gamma}^{2}} \text {, or imposing photon } \mathrm{pT} \text { cut }
$$ Linear polarized gluon impacts $\Omega_{\gamma \gamma}$ distribution

NNLO results

\square Full NNLO calculation performed in the "Frixione" scheme, i.e. no need for fragmentation contributions

Catani et al (2012)
\square Better description of kinematic regions that are poorly described or inaccessible at NLO, e.g., azimuthal angle between photons
\square Even better description would require either higher orders or inclusion in parton shower
\rightarrow not yet feasible.

Photon + jet angular distribution

\square QCD Compton and annihilation subprocess:

$$
\frac{d \sigma}{d \hat{t}} \sim\left(1-\cos \left(\theta^{*}\right)\right)^{-1} \quad \text { as } \quad \cos \left(\theta^{*}\right) \rightarrow 1
$$

\square Other QCD subprocess, $q q \rightarrow q q, q g \rightarrow q g, g g \rightarrow g g$, etc. more relevant to jet+jet angular distribution:

$$
\begin{aligned}
\frac{d \sigma}{d \hat{t}} \sim & \left(1-\cos \left(\theta^{*}\right)\right)^{-2} \\
& \text { as } \cos \left(\theta^{*}\right) \rightarrow 1
\end{aligned}
$$

\square Prediction:
Photon-jet angular distribution
should be flatter than that
observed in jet-jet final states

$$
\cos \left(\theta^{*}\right)=\tanh \left(\frac{\eta_{\gamma}-\eta_{j e t}}{2}\right)
$$

Photon + jet angular distribution

\square QCD Compton and annihilation subprocess:

$$
\frac{d \sigma}{d \hat{t}} \sim\left(1-\cos \left(\theta^{*}\right)\right)^{-1} \quad \text { as } \quad \cos \left(\theta^{*}\right) \rightarrow 1
$$

\square Other QCD subprocess, $q q \rightarrow q q, q g \rightarrow q g, g g \rightarrow g g$, etc. more relevant to jet+jet angular distribution:

$$
\begin{array}{r}
\frac{d \sigma}{d \hat{t}} \sim\left(1-\cos \left(\theta^{*}\right)\right)^{-2} \\
\quad \text { as } \cos \left(\theta^{*}\right) \rightarrow 1
\end{array}
$$

\square Prediction:
Photon-jet angular distribution should be flatter than that observed in jet-jet final states

$$
\cos \left(\theta^{*}\right)=\tanh \left(\frac{\eta_{\gamma}-\eta_{j e t}}{2}\right)
$$

W-boson + jets

Di-boson hadronic production

Triple gauge boson interaction:
\diamond Triple gauge coupling present for all processes except $\mathrm{Z} \gamma$
\diamond Processes involving photons dependent on photon pT (and rapidity) cut, strongly
\triangleleft NLO corrections known analytically, included in MCFM, VBFNLO (also POWHEG NLO MC)

Two bosons with single-resonant

- Two Z's:

"double"-resonant

$$
q \bar{q} \rightarrow Z Z \rightarrow e^{+} e^{-} e^{+} e^{-}
$$

Plus diagrams with Z replaced by photon

Vector bosons: experimental summary

Good consistency with theory expectations of NNLO (W/Z), and NLO (di-bosons) for all processes in both experiments

Vector bosons: experimental summary

Good consistency with theory expectations of NNLO (W/Z), and NLO (di-bosons) for all processes in both experiments

Improvement from resummation

\square Beyond the Born term (lowest order), partonic hard-parts are NOT unique, due to the PDFs' scheme dependence
\square Same parton-level PDFs should be used for calculations of partonic parts of all observables
\square All partonic hard parts have: $\quad P_{q q}(x) \ln \left(\frac{Q^{2}}{\mu_{F}^{2}}\right)$
Suggests to choose the scale: $\mu_{F}^{2} \sim Q^{2}$
\square Hard parts have potentially large logarithms:

$$
\ln (x), \quad \frac{1}{(1-x)_{+}}, \quad\left(\frac{\ln (1-x)}{1-x}\right)_{+}
$$

Resummation of the large logarithms

QCD power corrections

- QCD factorization:

Parton-distribution Structure

Power corrections Approximation

\square QCD power corrections:

Heavy quarkonium production

Lederman's Shoulder

Phys. Rev. Lett. 25, 1523 (1970)

Heavy quarkonium production

Lederman's Shoulder

Phys. Rev. Lett. 25, 1523 (1970)

Production of muon pairs at AGS, BNL

$$
p(29 \mathrm{GeV})+U \Longrightarrow \mu^{+} \mu^{-}\left(M_{\mu \mu}\right)+X
$$

Discovery of the J/ ψ - November, 1974

(SLAC)

Heavy quarkonium production

\square One of the simplest QCD bound states:
Localized color charges (heavy mass), non-relativistic relative motion
Charmonium: $v^{2} \approx 0.3 \quad$ Bottomonium: $v^{2} \approx 0.1$
\square Well-separated momentum scales - effective theory:

Hard - Production of $Q \bar{Q} \quad$ [pQCD]
Soft - Relative Momentum [NRQCD]
$\Leftarrow \Lambda_{\mathrm{QCD}}$
Ultrasoft — Binding Energy [pNRQCD]
\square Cross sections and observed mass scales:

$$
\frac{d \sigma_{A B \rightarrow H(P) X}}{d y d P_{T}^{2}} \quad \sqrt{S}, \quad P_{T}, \quad M_{H},
$$

PQCD is "expected" to work for the production of heavy quarks
Difficulty: Emergence of a quarkonium from a heavy quark pair?

Basic production mechanism

\square QCD factorization is likely to be valid for producing the pairs:
\triangleleft Momentum exchange is much larger than $1 / \mathrm{fm}$
\triangleleft Spectators from colliding beams are "frozen" during the hard collision

\square Approximation: on-shell pair + hadronization

$$
\sigma_{A B \rightarrow J / \psi}\left(P_{J / \psi}\right) \approx \sum_{n} \int d q^{2}\left[\sigma_{A B \rightarrow[Q \bar{Q}](n)}\left(q^{2}\right)\right] F_{[Q \bar{Q}(n)] \rightarrow J / \psi}\left(P_{J / \psi}, q^{2}\right)
$$

Models \& Debates
\Leftrightarrow Different assumptions/treatments on $F_{[Q \bar{Q}(n)] \rightarrow J / \psi}\left(P_{J / \psi}, q^{2}\right)$ how the heavy quark pair becomes a quarkonium?

A long history for the production

\square Color singlet model: 1975 -
Only the pair with right quantum numbers Effectively No free parameter!
\square Color evaporation model: 1977 -
All pairs with mass less than open flavor heavy meson threshold
One parameter per quarkonium state
\square NRQCD model: 1986 -
All pairs with various probabilities - NRQCD matrix elements Infinite parameters - organized in powers of v and α_{s}

Nayak, Qiu, Sterman (2005), ...
Kang, Qiu, Sterman (2010), ...
Kang, Ma, Qiu, Sterman (2014)
$\mathbf{P}_{\mathrm{T}} \gg \mathbf{M}_{\boldsymbol{H}}: \mathbf{M}_{\mathrm{H}} / \mathbf{P}_{\mathrm{T}}$ power expansion $+\alpha_{\mathrm{s}}$ - expansion
Unknown, but universal, fragmentation functions - evolution
\square Soft-Collinear Effective Theory + NRQCD: 2012 -
Fleming, Leibovich, Mehen, ...

NRQCD - most successful so far

\square NRQCD factorization:

$$
d \sigma_{A+B \rightarrow H+X}=\sum_{n} d \sigma_{A+B \rightarrow Q \bar{Q}(n)+X}\left\langle\mathcal{O}^{H}(n)\right\rangle
$$

\square Phenomenology:

Butenschoen and Kniehl, arXiv: 1105.0820
$\diamond 4$ leading channels in \mathbf{v}

$$
{ }^{3} S_{1}^{[1]},{ }^{1} S_{0}^{[8]},{ }^{3} S_{1}^{[8]},{ }^{3} P_{J}^{[8]}
$$

\triangleleft Full NLO in α_{s}

\square Why is NLO so large? Polarization puzzle?

Production (NRQCD) - Butenschoen et al.

(a)

Production (NRQCD) - Gong et al.

(e)

Production (NRQCD) - Chao et al.

Why high orders in NRQCD are so large?

\square Consider J/ ψ production in CSM:

Kang, Qiu and Sterman, 2011
See also talk by H. Zhang

LP: $\quad \propto \alpha_{s}^{5} \frac{1}{p_{T}^{4}}$
\diamond High-order correction receive power enhancement
\diamond Expect no further power enhancement beyond NNLO
$\diamond\left[\alpha_{s} \ln \left(p_{T}^{2} / m_{Q}^{2}\right)\right]^{n}$ ruins the perturbation series at sufficiently large $\boldsymbol{p}_{\boldsymbol{T}}$
Leading order in α_{s}-expansion =|= leading power in 1/p $p_{T^{-}}$expansion! At high p_{T}, fragmentation contribution dominant

QCD factorization - Kang et al.

$$
\frac{d \sigma_{A B \rightarrow H+X}}{d y d p_{T}^{2}}=
$$

Kang, Ma, Qiu and Sterman, 2014
\square Channel-by-channel comparison with NLO NRQCD:

independent of NRQCD matrix elements

LO QCD analytical results reproduce NLO NRQCD calculations (numerical)

QCD factorization - Kang et al.

$$
\text { P Power Expansion: } \frac{d \sigma_{A B \rightarrow H+X}}{d y d p_{T}^{2}}=
$$

Kang, Ma, Qiu and Sterman, 2014
\square Channel-by-channel, LP vs. NLP (both LO):

LP dominated
${ }^{3} S_{1}^{[8]}$ and ${ }^{3} P_{J}^{[8]}$
NLP dominated
${ }^{1} S_{0}^{[8]}$
for wide P_{T}
P_{T} distribution is consistent with distribution of

$$
p_{T}(\mathrm{GeV})
$$

LO QCD factorization vs NLO NRQCD

\square Color singlet as an example:
Kang, Ma, Qiu and Sterman, 2014

$$
\begin{aligned}
\sigma_{\mathrm{NRQCD}}^{(\mathrm{NLO})} \propto & {\left[d \hat{\sigma}_{a b \rightarrow[Q \bar{Q}(v 8)]}^{A(\mathrm{LO})} \otimes \mathcal{D}_{[Q \bar{Q}(v 8)] \rightarrow J / \psi}^{(\mathrm{LO})}\right.} \\
& +d \hat{\sigma}_{a b \rightarrow[Q \bar{Q}(a 8)]}^{S(\mathrm{LO})} \otimes \mathcal{D}_{[Q \bar{Q}(a 8)] \rightarrow J / \psi]}^{(\mathrm{LO})}
\end{aligned}
$$

LO pQCD: reproduces NLO CSM rate for $p_{T}>10 \mathrm{GeV}$!
NLO pQCD can be done, while NNLO NRQCD is impossible!
QCD Factorization = better controlled HO corrections!

Matching from high p_{T} to low p_{T}

\square Matching if both factorizable:

$$
\begin{aligned}
E_{P} \frac{d \sigma_{A+B \rightarrow H+X}}{d^{3} P}\left(P, m_{Q}\right) & \equiv E_{P} \frac{d \sigma_{A+B \rightarrow H+X}^{\mathrm{QCD}}}{d^{3} P}\left(P, m_{Q}=0\right) \\
& +E_{P} \frac{d \sigma_{A+B \rightarrow H+X}^{\mathrm{NRQCD}}}{d^{3} P}\left(P, m_{Q} \neq 0\right)-E_{P} \frac{d \sigma_{A+B \rightarrow H+X}^{\mathrm{QCD}-\mathrm{Asm}}}{d^{3} P}\left(P, m_{Q}=0\right)
\end{aligned}
$$

Mass effect $+\mathbf{P}_{\mathbf{T}}$ region $\left(P_{T} \gtrsim m_{Q}\right)$
\square Fragmentation functions - nonperturbative!
Responsible for "polarization", relative size of production channe
\square Model of FFs:
\diamond NRQCD factorization of FFs
\triangleleft Express all FFs in terms of a few NRQCD LDMEs
$\mathcal{D}^{\left[n_{1}, n_{2}\right]}(z) \equiv \int_{-1}^{1} \frac{d \zeta_{1} d \zeta_{2}}{4} \zeta_{1}^{n_{1}} \zeta_{2}^{n_{2}} \mathcal{D}\left(z, \zeta_{1}, \zeta_{2}\right)$

QCD factorization approach is ready to compare with Data

Matching between QCD and NRQCD

\square Expectation:

$$
\begin{aligned}
E_{P} \frac{d \sigma_{A+B \rightarrow H+X}}{d^{3} P}\left(P, m_{Q}\right) & \equiv E_{P} \frac{d \sigma_{A+B \rightarrow H+X}^{\mathrm{QCD}}}{d^{3} P}\left(P, m_{Q}=0\right) \\
& +E_{P} \frac{d \sigma_{A+B \rightarrow H+X}^{\mathrm{NRQCD}}}{d^{3} P}\left(P, m_{Q} \neq 0\right)-E_{P} \frac{d \sigma_{A+B \rightarrow H+X}^{\mathrm{QCD}-\mathrm{Asym}}}{d^{3} P}\left(P, m_{Q}=0\right)
\end{aligned}
$$

Mass effect + expanded $\mathbf{P}_{\mathbf{T}}$ region $\left(P_{T} \gtrsim m_{Q}\right)$

Summary of lecture three

Many new techniques have been developed in recent years for NNLO or higher order calculations - not discussed here
\square QCD resummation techniques have been well-developed, and have played a key role in improving the precision of theoretical predictions

- Heavy quarkonium production is still a very fascinating subject challenging our understanding of QCD bound states

Theory had a lot advances in last decade in dealing with observables with multiple observed momentum scales:
Provide new probes to "see" the confined motion: the large scale to pin down the parton d.o.f. while the small scale to probe the nonperturbative structure as well as the motion
\square Proton spin provides another controllable "knob" to help isolate various physical effects

Backup slides

