Quantum Chromodynamics (QCD)

Jianwei Qiu Brookhaven National Laboratory Stony Brook University

Weihai High Energy Physics School (WHEPS) Shandong University – Weihai, Weihai, Shandong, China, August 1-11, 2015

The plan for my four lectures

The Goal:

To understand the strong interaction dynamics, and hadron structure, in terms of Quantum Chromo-dynamics (QCD)

□ The Plan (approximately):

Fundamentals of QCD, factorization, evolution, and elementary hard processes Two lectures

Role of QCD in high energy collider phenomenology One lecture

QCD and hadron structure and properties

One lecture

Summary of lecture three

- Many new techniques have been developed in recent years for NNLO or higher order calculations – not discussed here
- QCD resummation techniques have been well-developed, and have played a key role in improving the precision of theoretical predictions
- Heavy quarkonium production is still a very fascinating subject challenging our understanding of QCD bound states
- □ Theory had a lot advances in last decade in dealing with observables with multiple observed momentum scales:

Provide new probes to "see" the confined motion: the large scale to pin down the parton d.o.f. while the small scale to probe the nonperturbative structure as well as the motion

Proton spin provides another controllable "knob" to help isolate various physical effects

 $g \neq 2$

1933: Proton's magnetic moment

Otto Stern

Nobel Prize 1943

1933: Proton's magnetic moment

Otto Stern Nobel Prize 1943

1960: Elastic e-p scattering

Robert Hofstadter

Nobel Prize 1961

1933: Proton's magnetic moment

Otto Stern Nobel Prize 1943

1960: Elastic e-p scattering

Robert Hofstadter Nobel Prize 1961

1969: Deep inelastic e-p scattering

Jerome I. Friedman Henry W. Kendall Richard E. Taylor Nobel Prize 1990

Discovery of QCD

Elektron

1933: Proton's magnetic moment

Otto Stern Nobel Prize 1943

1960: Elastic e-p scattering

Robert Hofstadter Nobel Prize 1961

1969: Deep inelastic e-p scattering

Jerome I. Friedman Henry W. Kendall Richard E. Taylor Nobel Prize 1990

1974: QCD Asymptotic Freedom

David J. Gross H. David Politzer Frank Wilczek Nobel Prize 2004

Point-like partons

Discovery of QCD

Scaling violation

Perturbative QCD – theory tool Factorization - PDFs

Hadron properties

□ How does QCD generate energy for the proton's mass?

Quark mass $\sim 1\%$ proton's mass Higgs mechanism is not enough!!!

Generation of mass: *from QCD dynamics?*

- SE calculation results confirmed by lattice simulation
- Light-quark mass comes from a cloud of soft gluons

C.D. Roberts, <u>Prog. Part. Nucl. Phys. 61 (2008) 50</u> M. Bhagwat & P.C. Tandy, <u>AIP Conf.Proc. 842 (2006) 225-227</u>

Hadron properties

□ How does QCD generate energy for the proton's mass?

Quark mass $\sim 1\%$ proton's mass Higgs mechanism is not enough!!!

Generation of mass: *from QCD dynamics?*

- SE calculation results confirmed by lattice simulation
- Light-quark mass comes from a cloud of soft gluons
- ♦ Gluon is massless in UV, but "massive" in IR

C.D. Roberts, <u>Prog. Part. Nucl. Phys. 61 (2008) 50</u> M. Bhagwat & P.C. Tandy, <u>AIP Conf.Proc. 842 (2006) 225-227</u>

Qin et al., Phys. Rev. C 84 042202 (Rapid Comm.)

Hadron mass sum rule

QCD definition:

$$M = \frac{\langle P | \int d^3 x \, T_{\perp}^{00}(0, \mathbf{x}) | P \rangle}{\langle P | P \rangle} \equiv \langle T^{00} \rangle$$

Ji, 1994

QCD energy-momentum tensor:

$$T^{\mu\nu} = \frac{1}{2} \overline{\psi} i \vec{D}^{(\mu} \gamma^{\nu)} \psi + \frac{1}{4} g^{\mu\nu} F^2 - F^{\mu\alpha} F^{\nu}{}_{\alpha} \implies H_{\rm QCD} = \int d^3x \, T^{00}(0, \mathbf{x})$$

Decomposition:

$$H_{\rm QCD} = H_q + H_m + H_g + H_a$$

Mass type	H_i	M_i	$m_s \rightarrow 0 \; ({\rm MeV})$	$m_s \rightarrow \infty ({\rm MeV})$
Quark energy	$\psi^{\dagger}(-i\mathbf{D}\cdot\boldsymbol{\alpha})\psi$	3(a - b)/4	270	300
Quark mass	$\overline{\psi}m\psi$	b	160	110
Gluon energy	$\frac{1}{2}(\mathbf{E}^2 + \mathbf{B}^2)$	3(1 - a)/4	320	320
Trace anomaly	$\frac{9\tilde{\alpha}_s}{16\pi}$ ($\mathbf{E}^2 - \mathbf{B}^2$)	(1 - b)/4	190	210

$$a(\mu^2) = \sum_f \int_0^1 x[q_f(x,\mu^2) + \overline{q}_f(x,\mu^2)] dx$$
$$bM = \langle P | m_u \overline{u}u + m_d \overline{d}d | P \rangle + \langle P | m_s \overline{s}s | P \rangle$$

None of these terms is a "direct" physical measurable (e.g. cross section)! Can we "measure" them with controllable approximation? Can we "measure" them by lattice calculation, or other approaches?

Lattice QCD

□ Formulated in the discretized Euclidean space:

$$S^{f} = a^{4} \sum_{x} \left[\frac{1}{2a} \sum_{\mu} [\bar{\psi}(x)\gamma_{\mu}U_{\mu}(x)\psi(x+a\hat{\mu}) - \bar{\psi}(x+a\hat{\mu})\gamma_{\mu}U_{\mu}^{\dagger}(x)\psi(x)] + m\bar{\psi}(x)\psi(x) \right]$$
$$S^{g} = \frac{1}{g_{0}^{2}}a^{4} \sum_{x,\mu\nu} \left[N_{c} - \operatorname{ReTr}[U_{\mu}(x)U_{\nu}(x+a\hat{\mu})U_{\mu}^{\dagger}(x+a\hat{\nu})U_{\nu}^{\dagger}(x)] \right]$$
$$U_{\mu}(x) = e^{-igaT^{a}A_{\mu}^{a}(x+\frac{1}{2})}$$

□ Boundary condition is imposed on each field in finite volume:

Momentum space is restricted in finite Brillouin zone: $\left\{-\frac{\pi}{a}, \frac{\pi}{a}\right\}$ Lattice QCD is an Ultra-Violet (UV) finite theory

Lattice action is not unique, above action is the simplest one!

Many implementations were proposed to reduce the discretization error

□ Low-lying hadron mass spectrum:

S. Durr et al. Science 322, 1124 2008

Predictions with limited inputs

Predictions with limited inputs

□ Meson resonances:

Dudek et al, Phys.Rev. D88 (2013) 094505

□ Magnetic moments:

S.R. Beane et al., Phys.Rev.Lett. 113 (2014) 252001

Theory at m_{π} = 806 MeV vs. the nature!

Nuclei are (nearly) collections of nucleons – shell model phenomenology!

Proton spin

□ Proton is NOT elementary, but, a composite particle:

- Proton-spin = Proton's angular momentum when it is at rest
- ♦ Proton-spin = One number touches every part of the quantum world

from the quantum mechanics to the quantum field theory and QCD

Proton-spin = One number carries every secrets of QCD dynamics
 from the "unknown" confinement to the "well-known" asymptotic freedom

Proton spin

□ Proton is NOT elementary, but, a composite particle:

- Proton-spin = Proton's angular momentum when it is at rest
- Proton-spin = One number touches every part of the quantum world

from the quantum mechanics to the quantum field theory and QCD

Proton-spin = One number carries every secrets of QCD dynamics from the "unknown" confinement to the "well-known" asymptotic freedom
 Quark Model:

♦ Expectation: $S_{p} = \langle p \uparrow | S | p \uparrow \rangle = \frac{1}{2}, \quad S = \sum_{i} S_{i}$ ♦ Wave function: $|p \uparrow \rangle = \sqrt{\frac{1}{18}} \left[u \uparrow u \downarrow d \uparrow + u \downarrow u \uparrow d \uparrow -2u \uparrow u \uparrow d \downarrow + \text{perm.} \right]$

Skyrmion Model, MIT Bag Model, Chiral Bag Model, ...

Proton spin in QCD

Complexity of the proton in QCD:

$$S(\mu) = \sum_{f} \langle P, S | \hat{J}_{f}^{z}(\mu) | P, S \rangle = \frac{1}{2} \equiv J_{q}(\mu) + J_{g}(\mu)$$

From QCD, But, unknown
$$\vec{J_{q}} = \int d^{3}x \left[\psi_{q}^{\dagger} \vec{\gamma} \gamma_{5} \psi_{q} + \psi_{q}^{\dagger} (\vec{x} \times (-i\vec{D})) \psi_{q} \right] \qquad \vec{J_{g}} = \int d^{3}x \left[\vec{x} \times (\vec{E} \times \vec{B}) \right]$$

Ji, 2005

□ Asymptotic limit:

$$J_q(\mu \to \infty) \Rightarrow \frac{1}{2} \frac{3N_f}{16 + 3N_f} \sim \frac{1}{4} \qquad \qquad J_g(\mu \to \infty) \Rightarrow \frac{1}{2} \frac{16}{16 + 3N_f} \sim \frac{1}{4}$$

Proton spin in QCD

□ Complexity of the proton in QCD:

$$S(\mu) = \sum_{f} \langle P, S | \hat{J}_{f}^{z}(\mu) | P, S \rangle = \frac{1}{2} \equiv J_{q}(\mu) + J_{g}(\mu)$$

$$from QCD, But, unknown$$

$$\vec{J}_{q} = \int d^{3}x \left[\psi_{q}^{\dagger} \vec{\gamma} \gamma_{5} \psi_{q} + \psi_{q}^{\dagger} (\vec{x} \times (-i\vec{D})) \psi_{q} \right] \qquad \vec{J}_{g} = \int d^{3}x \left[\vec{x} \times (\vec{E} \times \vec{B}) \right]$$

□ Asymptotic limit:

$$J_q(\mu \to \infty) \Rightarrow \frac{1}{2} \frac{3N_f}{16 + 3N_f} \sim \frac{1}{4} \qquad \qquad J_g(\mu \to \infty) \Rightarrow \frac{1}{2} \frac{16}{16 + 3N_f} \sim \frac{1}{4}$$

Intrinsic parton's spin: dynamical parton motion: $\Sigma(Q^2) = \sum_{q} \left[\Delta q(Q^2) + \Delta \bar{q}(Q^2) \right], \quad \Delta G(Q^2)$ $L_q(Q^2), \quad L_g(Q^2)$

Ji, 2005

Matrix elements of quark and gluon fields are NOT physical observables!

0.

Infinite possibilities of decompositions – connection to observables?

Parton helicity distributions

Quark helicity distribution:

$$\begin{split} \Delta q(x) &= \int \frac{dy^{-}}{2\pi} e^{ixp^{+}y^{-}} \frac{1}{2} \left[\langle p, s_{\parallel} | \overline{\psi}_{q}(0) \gamma^{+} \frac{1+\gamma^{5}}{2} \psi_{q}(y^{-}) | p, s_{\parallel} \rangle \\ &- \langle p, -s_{\parallel} | \overline{\psi}_{q}(0) \gamma^{+} \frac{1-\gamma^{5}}{2} \psi_{q}(y^{-}) | p, -s_{\parallel} \rangle \right] \\ \hline \mathbf{P} + \mathbf{T} \qquad \Delta q(x) &= \int \frac{dy^{-}}{2\pi} e^{ixp^{+}y^{-}} \langle p, s_{\parallel} | \left[\overline{\psi}_{q}(0) \frac{\gamma^{+}\gamma^{5}}{2} \psi_{q}(y^{-}) \right] | p, s_{\parallel} \rangle \\ \diamond \text{ Fourier Transform of light-cone matrix element: } \langle p, s_{\parallel} | \mathcal{O}_{q}(y^{-}) | p, s_{\parallel} \rangle \\ \mathcal{O}_{q}(y^{-}) &= \overline{\psi}_{q}(0) \frac{\gamma^{+}\gamma^{5}}{2} \psi(y^{-}) \end{split}$$

The γ^5 flips the quark helicity at the cut-vertex

♦ Necessary condition for nonvanish asymmetries – P + T:

$$\langle p, s_{\parallel} | \mathcal{O}_q(y^-) | p, s_{\parallel} \rangle \Longleftrightarrow - \langle p, -s_{\parallel} | \mathcal{O}_q(y^-) | p, -s_{\parallel} \rangle$$

Gluon helicity distribution:

$$\mathcal{O}_g(y^-) = \frac{1}{xp^+} F^{+\alpha}(0) \left[-i\varepsilon_{\alpha\beta}\right] F^{+\beta}(y^-)$$

The $i\epsilon_{\alpha\beta}$ flips gluon helicity at the cut-vertex

Proton "spin crisis" – excited the field

EMC (European Muon Collaboration '87) – "the Plot":

 \diamond Very little of the proton spin is carried by quarks

Inclusive DIS data – over 20 years

Recent helicity PDF fits @ NLO

Sea quark polarization – RHIC W program

Gluon helicity contribution – RHIC data

□ RHIC 2009 data:

Jet/pion production at RHIC – gluon helicity:

Global QCD analysis of helicity PDFs

D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, PRL 113 (2014) 012001

results featured in Sci. Am., Phys. World, ...

□ Impact on gluon helicity:

- ♦ Red line is the new fit
 ♦ Dotted lines = other fits with 90% C.L.
- ♦ 90% C.L. areas
 ♦ Leads △ G to a positive #

Current understanding for Proton Spin

The sum rule: $S(\mu) = \sum_{f} \langle P, S | \hat{J}_{f}^{z}(\mu) | P, S \rangle = \frac{1}{2} \equiv J_{q}(\mu) + J_{g}(\mu)$

- Infinite possibilities of decompositions connection to observables?
- Intrinsic properties + dynamical motion and interactions

An incomplete story:

Gluon radius?

Unified view of nucleon structure

Unified view of nucleon structure

Unified view of nucleon structure

□ 3D imaging of sea and gluons:

- **TMDs** confined motion in a nucleon (semi-inclusive DIS)
- ♦ GPDs Spatial imaging of quarks and gluons (exclusive DIS)

Polarization and spin asymmetry

Explore new QCD dynamics – vary the spin orientation:

Scattering amplitude square – Probability – Positive definite

$$\sigma_{AB}(Q,\vec{s}) \approx \sigma_{AB}^{(2)}(Q,\vec{s}) + \frac{Q_s}{Q} \sigma_{AB}^{(3)}(Q,\vec{s}) + \frac{Q_s^2}{Q^2} \sigma_{AB}^{(4)}(Q,\vec{s}) + \cdots$$

□ Spin-averaged cross section:

$$\sigma = \frac{1}{2} \left[\sigma(\vec{s}) + \sigma(-\vec{s}) \right]$$
 – Positive definite

□ Asymmetries or difference of cross sections:

• both beams polarized A_{LL}, A_{TT}, A_{LT}

$$A_{LL} = \frac{[\sigma(+,+) - \sigma(+,-)] - [\sigma(-,+) - \sigma(-,-)]}{[\sigma(+,+) + \sigma(+,-)] + [\sigma(-,+) + \sigma(-,-)]} \quad \text{for } \sigma(s_1,s_2)$$

• one beam polarized A_L, A_N – Not necessary positive!

$$A_L = \frac{[\sigma(+) - \sigma(-)]}{[\sigma(+) + \sigma(-)]} \quad \text{for } \sigma(s) \qquad A_N = \frac{\sigma(Q, \vec{s}_T) - \sigma(Q, -\vec{s}_T)}{\sigma(Q, \vec{s}_T) + \sigma(Q, -\vec{s}_T)}$$

Chance to see quantum interference directly
Transverse single-spin asymmetry (SSAs)

Do we understand it?

What do we need?

 $A_N \propto i \vec{s}_p \cdot (\vec{p}_h \times \vec{p}_T) \Rightarrow i \epsilon^{\mu\nu\alpha\beta} p_{h\mu} s_\nu p_\alpha p'_{h\beta}$

Need a phase, a spin flip, enough vectors

□ Vanish without parton's transverse motion:

A direct probe for parton's transverse motion, Spin-orbital correlation, QCD quantum interference

Current understanding of SSAs

 \Box Two scales observables – $Q_1 >> Q_2 \sim \Lambda_{QCD}$:

 $\overline{S_T}$

SIDIS: $Q >> P_T$

TMD factorization **TMD** distributions

Direct information on parton k_{τ}

DY: $Q \sim Q_T$

Jet, Particle: P_T

Collinear factorization Twist-3 distributions

Information on moments of parton k_{τ}

□ Symmetry plays important role:

Inclusive DIS Single scale

Factorized Drell-Yan cross section – Lec. 2

lacksquare TMD factorization ($q_\perp \ll Q$):

 $\frac{d\sigma_{AB}}{d^4q} = \sigma_0 \int d^2 k_{a\perp} d^2 k_{b\perp} d^2 k_{s\perp} \delta^2 (q_\perp - k_{a\perp} - k_{b\perp} - k_{s\perp}) \mathcal{F}_{a/A}(x_A, k_{a\perp}) \mathcal{F}_{b/B}(x_B, k_{b\perp}) \mathcal{S}(k_{s\perp})$ $+ \mathcal{O}(q_\perp/Q) \qquad x_A = \frac{Q}{\sqrt{s}} e^y \qquad x_B = \frac{Q}{\sqrt{s}} e^{-y}$

The soft factor, $\ {\cal S} \$, is universal, could be absorbed into the definition of TMD parton distribution

 \Box Collinear factorization ($q_{\perp} \sim Q$):

 $\frac{d\sigma_{AB}}{d^4q} = \int dx_a f_{a/A}(x_a,\mu) \int dx_b f_{b/B}(x_b,\mu) \frac{d\hat{\sigma}_{ab}}{d^4q}(x_a,x_b,\alpha_s(\mu),\mu) + \mathcal{O}(1/Q)$

□ Spin dependence:

The factorization arguments are independent of the spin states of the colliding hadrons

same formula with polarized PDFs for $\gamma^*, W/Z, H^0...$

Semi-inclusive DIS (SIDIS)

Process:

$$e(k) + N(p) \longrightarrow e'(k') + h(P_h) + X$$

Natural event structure:

In the photon-hadron frame: $P_{h_T} \approx 0$

Semi-Inclusive DIS is a natural observable with TWO very different scales $Q \gg P_{h_T} \gtrsim \Lambda_{\rm QCD}$ Localized probe sensitive to parton's transverse motion

\Box Collinear QCD factorization holds if P_{hT} integrated:

Total c.m. energy": $s_{\gamma^* p} = (p+q)^2 \approx Q^2 \left[\frac{1-x_B}{x_B} \right] \approx \frac{Q^2}{x_B}$

Single hadron production at low p_T

□ Unique kinematics - unique event structure:

Briet frame: Large Q² virtual photon acts like a "wall"

High energy low p_T jet (or hadron) - ideal probe for parton's transverse motion!

 \Box Need for TMDs, if we observe $p_T \sim 1/fm$:

$$\int d^{4}k_{a} \ \mathcal{H}(Q, p_{T}, k_{a}, k_{b}) \left(\frac{1}{k_{a}^{2} + i\varepsilon}\right) \left(\frac{1}{k_{a}^{2} - i\varepsilon}\right) \mathcal{T}(k_{a}, 1/r_{0})$$

$$\approx \int \frac{dx}{x} d^{2}k_{a\perp} \ \mathcal{H}(Q, p_{T}, k_{a}^{2} = 0, k_{b}) \left[\int dk_{a}^{2} \left(\frac{1}{k_{a}^{2} + i\varepsilon}\right) \left(\frac{1}{k_{a}^{2} - i\varepsilon}\right) \mathcal{T}(k_{a}, 1/r_{0})\right]$$

$$\uparrow$$
Can't set k_T ~ 0, since k_T ~ p_T

$$\mathsf{TMD \ distribution}$$

QCD factorization for SIDIS

Low P_{hT} – TMD factorization:

$$\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \hat{H}(Q) \otimes \Phi_f \otimes \mathcal{D}_{f \to h} \otimes \mathcal{S} + \mathcal{O}\left(\frac{P_{h\perp}}{Q}\right)$$

\Box High P_{hT} – Collinear factorization:

$$\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \hat{H}(Q, P_{h\perp}, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + \mathcal{O}\left(\frac{1}{P_{h\perp}}, \frac{1}{Q}\right)$$

 \Box P_{hT} Integrated - Collinear factorization:

$$\sigma_{\text{SIDIS}}(Q, x_B, z_h) = \tilde{H}(Q, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + \mathcal{O}\left(\frac{1}{Q}\right)$$

TMD parton distributions (TMDs)

□ Power of spin – many more correlations:

SIDIS is the best for probing TMDs

□ Separation of TMDs:

Hard, if not impossible, to separate TMDs in hadronic collisions

Using a combination of different observables (not the same observable): jet, identified hadron, photon, ...

Broken universality for TMDs

Definition:

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) = \int \frac{dy^{-}d^{2}y_{\perp}}{(2\pi)^{3}} e^{ixp^{+}y^{-}-i\,\mathbf{k}_{\perp}\cdot\mathbf{y}_{\perp}} \langle p,\vec{S}|\overline{\psi}(0^{-},\mathbf{0}_{\perp}) \boxed{\text{Gauge link}} \frac{\gamma^{+}}{2} \psi(y^{-},\mathbf{y}_{\perp})|p,\vec{S}\rangle$$

Gauge links:

□ Process dependence:

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) \neq f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},\vec{S})$$

Collinear factorized PDFs are process independent

Modified universality

□ Parity – Time reversal invariance:

$$f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,\mathbf{k}_{\perp},\vec{S}) = f_{q/h^{\uparrow}}^{\text{DY}}(x,\mathbf{k}_{\perp},-\vec{S})$$

Definition of Sivers function:

$$f_{q/h^{\uparrow}}(x,\mathbf{k}_{\perp},\vec{S}) \equiv f_{q/h}(x,k_{\perp}) + \frac{1}{2}\Delta^{N}f_{q/h^{\uparrow}}(x,k_{\perp})\vec{S}\cdot\hat{p}\times\hat{\mathbf{k}}_{\perp}$$

□ Modified universality:

$$\Delta^N f_{q/h^{\uparrow}}^{\text{SIDIS}}(x,k_{\perp}) = -\Delta^N f_{q/h^{\uparrow}}^{\text{DY}}(x,k_{\perp})$$

Same function, but, opposite sign!

□ The sign change = Critical test of TMD factorization!

Same applies to TMD gluon distribution Spin-averaged TMD is process independent

Sivers asymmetries from SIDIS

□ From SIDIS (HERMES and COMPASS) – low Q:

Non-zero Sivers effects Observed in SIDIS!

Visible Q² dependence

Major theory development in last few years

Drell-Yan A_N: COMPASS, RHIC run 17th, Fermilab Drell-Yan, ...

Evolution equations for TMDs

□ Collins-Soper equation:

– b-space quark TMD with γ^{+}

Boer, 2001, 2009, JI, Ma, Yuan, 2004 Idilbi, et al, 2004, Kang, Xiao, Yuan, 2011 Aybat, Collins, Qiu, Rogers, 2011 Aybat, Prokudin, Rogers, 2012 Idilbi, et al, 2012, Sun, Yuan 2013, ...

$$\frac{\partial F_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu; \zeta_F)}{\partial \ln \sqrt{\zeta_F}} = \tilde{K}(b_T; \mu) \tilde{F}_{f/P^{\uparrow}}(x, \mathbf{b}_{\mathrm{T}}, S; \mu; \zeta_F) \qquad \tilde{K}(b_T; \mu) = \frac{1}{2} \frac{\partial}{\partial y_s} \ln \left(\frac{\tilde{S}(b_T; y_s, -\infty)}{\tilde{S}(b_T; +\infty, y_s)} \right)$$

RG equations:

$$\frac{d\tilde{K}(b_T;\mu)}{d\ln\mu} = -\gamma_K(g(\mu)) \qquad \frac{d\tilde{F}_{f/P^{\uparrow}}(x,\mathbf{b}_{\mathrm{T}},S;\mu;\zeta_F)}{d\ln\mu} = \gamma_F(g(\mu);\zeta_F/\mu^2)\tilde{F}_{f/P^{\uparrow}}(x,\mathbf{b}_{\mathrm{T}},S;\mu;\zeta_F).$$

Evolution equations for Sivers function:

Scale dependence of Sivers function

Aybat, Collins, Qiu, Rogers, 2011

Up quark Sivers function:

Very significant growth in the width of transverse momentum

Nonperturbative input to Sivers function

Aybat, Prokudin, Rogers, 2012:

No disagreement on evolution equations!

Issues: Extrapolation to non-perturbative large b-region Choice of the Q-dependent "form factor"

"Predictions" for A_N of W-production at RHIC?

□ Sivers Effect:

- Quantum correlation between the spin direction of colliding hadron and the preference of motion direction of its confined partons
- QCD Prediction: Sign change of Sivers function from SIDIS and DY

□ Current "prediction" and uncertainty of QCD evolution:

TMD collaboration proposal: Lattice, theory & Phenomenology RHIC is the excellent and unique facility to test this (W/Z – DY)!

Drell-Yan (or SIDIS) from low p_T to high p_T

Covers both double-scale and single-scale cases:

No probability interpretation! New opportunities!

How collinear factorization generates SSA?

□ Collinear factorization beyond leading power:

❑ Single transverse spin asymmetry:

Efremov, Teryaev, 82; Qiu, Sterman, 91, etc.

 $\Delta\sigma(s_T) \propto T^{(3)}(x,x) \otimes \hat{\sigma}_T \otimes D(z) + \delta q(x) \otimes \hat{\sigma}_D \otimes D^{(3)}(z,z) + \dots$

Inclusive single hadron production

□ One large scale: $A(p_A, S_\perp) + B(p_B) \rightarrow h(p) + X$ with $p_T >> \Lambda_{QCD}$

Three identified hadrons: $A(p_A, S_{\perp}), B(p_B), h(p)$

QCD collinear factorization:

 $A_N \propto \sigma(p_T, S_\perp) - \sigma(p_T, -S_\perp)$

Qiu, Sterman, 1991, 1998, ...

 $= T_{a/A}^{(3)}(x, x, S_{\perp}) \otimes \phi_{b/B}(x') \otimes \hat{\sigma}_{ab \to c}^{T} \otimes D_{h/c}(z)$ $+ \delta q_{a/A}(x, S_{\perp}) \otimes T_{b/B}^{(3\sigma)}(x', x') \otimes \hat{\sigma}_{ab \to c}^{\phi} \otimes D_{h/c}(z)$ $+ \delta q_{a/A}(x, S_{\perp}) \otimes \phi_{b/B}(x', x') \otimes \hat{\sigma}_{ab \to c}^{D} \otimes D_{h/c}^{(3)}(z, z)$

Leading power contribution to cross section cancels! Only one twist-3 distribution at each term!

Three-type contributions:

Spin-flip: Twist-3 correlation functions, transversity distributions

Phase: Interference between the real part and imaginary part of the scattering amplitude

Twist-3 correlation functions

□ Twist-3 fragmentation functions:

Kang, Yuan, Zhou, 2010

Moment of Collins function?

All these correlation functions have No probability interpretation! Quantum interference between a single and a composite state

SSAs generated by twist-3 PDFs

□ First non-vanish contribution – interference:

□ Dominated by the derivative term – forward region:

$$E \frac{d\Delta\sigma}{d^{3}\ell} \propto \epsilon^{\ell_{T}s_{T}n\bar{n}} D_{c\rightarrow\pi}(z) \otimes \left[-x\frac{\partial}{\partial x}T_{F}(x,x)\right] \qquad \text{Qiu, Sterman, 1998, ...}$$

$$\otimes \frac{1}{-\hat{u}} \left[G(x') \otimes \Delta\hat{\sigma}_{qg\rightarrow c} + \sum_{q'} q'(x') \otimes \Delta\hat{\sigma}_{qq'\rightarrow c}\right]$$

$$A_{N} \propto \left(\frac{\ell_{\perp}}{-\hat{u}}\right) \frac{n}{1-x} \quad \text{if } T_{F}(x,x) \propto q(x) \propto (1-x)^{n}$$

$$A_{N} \propto \left(\frac{\ell_{\perp}}{-\hat{u}}\right) \frac{n}{1-x} \quad \text{if } T_{F}(x,x) \propto q(x) \propto (1-x)^{n}$$

$$E_{\ell} \frac{d^{3}\Delta\sigma(\tilde{s}_{T})}{d^{3}\ell} = \frac{\alpha_{s}^{2}}{S} \sum_{a,b,c} \int_{z_{\min}}^{1} \frac{dz}{z^{2}} D_{c\rightarrow h}(z) \int_{x'_{\min}}^{1} \frac{dx'}{x'} \frac{1}{x'S + T/z} \phi_{b/B}(x) \sqrt{4\pi\alpha_{s}} \left(\frac{\epsilon^{\ell_{s}rn\bar{n}}}{z\hat{u}}\right)$$

$$\times \frac{1}{x} \left[T_{a,F}(x,x) - x\left(\frac{d}{dx}T_{a,F}(x,x)\right)\right] H_{ab\rightarrow c}(\hat{s},\hat{t},\hat{u})$$

Twist-3 distributions relevant to A_N

$\Box \text{ Two-sets Twist-3 correlation functions:}$ No probability interpretation! $\widetilde{T}_{q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+y_1^-} e^{ix_2P^+y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+}{2} \left[\epsilon^{s_T \sigma n \overline{n}} F_{\sigma}^+(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle$ Kang, Qiu, 2009 $\widetilde{T}_{G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+y_1^-} e^{ix_2P^+y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[\epsilon^{s_T \sigma n \overline{n}} F_{\sigma}^+(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle (-g_{\rho\lambda})$ $\widetilde{T}_{\Delta q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+y_1^-} e^{ix_2P^+y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \left[i s_T^{\sigma} F_{\sigma}^+(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle$ $\widetilde{T}_{\Delta q,F} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+y_1^-} e^{ix_2P^+y_2^-} \langle P, s_T | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \left[i s_T^{\sigma} F_{\sigma}^+(y_2^-) \right] \psi_q(y_1^-) | P, s_T \rangle$

$$\widetilde{\mathcal{T}}_{\Delta G,F}^{(f,d)} = \int \frac{dy_1^- dy_2^-}{(2\pi)^2} e^{ixP^+ y_1^-} e^{ix_2P^+ y_2^-} \frac{1}{P^+} \langle P, s_T | F^{+\rho}(0) \left[i \, s_T^{\sigma} \, F_{\sigma}^+(y_2^-) \right] F^{+\lambda}(y_1^-) | P, s_T \rangle \left(i \epsilon_{\perp \rho \lambda} \right)$$

Twist-2 distributions:

- Unpolarized PDFs:
- Polarized PDFs:

Role of color magnetic force!

$$\begin{split} q(x) &\propto \langle P | \overline{\psi}_q(0) \frac{\gamma^+}{2} \psi_q(y) | P \rangle \\ G(x) &\propto \langle P | F^{+\mu}(0) F^{+\nu}(y) | P \rangle (-g_{\mu\nu}) \\ \Delta q(x) &\propto \langle P, S_{\parallel} | \overline{\psi}_q(0) \frac{\gamma^+ \gamma^5}{2} \psi_q(y) | P, S_{\parallel} \rangle \\ \Delta G(x) &\propto \langle P, S_{\parallel} | F^{+\mu}(0) F^{+\nu}(y) | P, S_{\parallel} \rangle (i\epsilon_{\perp \mu\nu}) \end{split}$$

Twist-3 fragmentation functions:

See Kang, Yuan, Zhou, 2010, Kang 2010

Test QCD evolution at twist-3 level

Kang, Qiu, 2009; Yuan, Zhou, 2009 Scaling violation – "DGLAP" evolution: Vogelsang, Yuan, 2009, Braun et al, 2009

$$\mu_{F}^{2} \frac{\partial}{\partial \mu_{F}^{2}} \begin{pmatrix} \tilde{T}_{q,F} \\ \tilde{T}_{\Delta q,F} \\ \tilde{T}_{G,F} \\ \tilde{T}_{G,F} \\ \tilde{T}_{G,F} \\ \tilde{T}_{G,F} \\ \tilde{T}_{\Delta G,F} \\ \tilde{T}_{\Delta G,F} \end{pmatrix} = \begin{pmatrix} K_{qq} & K_{q\Delta q} & K_{qG}^{(f)} & K_{qG}^{(d)} & K_{q\Delta G}^{(f)} & K_{q\Delta G}^{(d)} \\ K_{\Delta qq} & K_{\Delta q\Delta q} & K_{\Delta q\Delta G}^{(f)} & K_{\Delta qAG}^{(f)} & K_{\Delta q\Delta G}^{(d)} & K_{\Delta qAG}^{(d)} \\ K_{\Delta qq} & K_{\Delta q\Delta q} & K_{GG}^{(f)} & K_{GG}^{(f)} & K_{G\Delta G}^{(f)} & K_{\Delta q\Delta G}^{(f)} \\ K_{Gq}^{(f)} & K_{G\Delta q}^{(f)} & K_{GG}^{(f)} & K_{GG}^{(f)} & K_{G\Delta G}^{(f)} & K_{G\Delta G}^{(d)} \\ K_{\Delta Gq}^{(f)} & K_{\Delta G\Delta q}^{(f)} & K_{\Delta GG}^{(f)} & K_{\Delta GG\Delta G}^{(f)} & K_{\Delta G\Delta G}^{(d)} \\ K_{\Delta Gq}^{(f)} & K_{\Delta G\Delta q}^{(f)} & K_{\Delta GG}^{(f)} & K_{\Delta GG\Delta G}^{(f)} & K_{\Delta G\Delta G}^{(f)} & K_{\Delta G\Delta G}^{(f)} \\ K_{\Delta Gq}^{(f)} & K_{\Delta GGA q}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta G\Delta G}^{(d)} \\ K_{\Delta Gq}^{(f)} & K_{\Delta GGA q}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta G\Delta G}^{(d)} \\ K_{\Delta Gq}^{(f)} & K_{\Delta GGA q}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GGA}^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta Gq}^{(f)} & K_{\Delta GGA q}^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GGA }^{(d)} & K_{\Delta GAA}^{(d)} \\ K_{\Delta Gq}^{(f)} & K_{\Delta GGA q}^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GAA }^{(f)} \\ K_{\Delta Gq}^{(f)} & K_{\Delta GGA q}^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GAA }^{(f)} \\ K_{\Delta Gq}^{(f)} & K_{\Delta GGA q}^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GAA }^{(f)} & K_{\Delta GAA }^{(f)} \\ K_{\Delta Gq}^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GAA }^{(f)} & K_{\Delta GAA }^{(f)} \\ K_{\Delta GG q}^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GAA }^{(f)} & K_{\Delta GAA }^{(f)} \\ K_{\Delta GG A }^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GGA }^{(f)} & K_{\Delta GAA }^{(f)} & K_{\Delta GAA }^{(f)} \\ K_{\Delta GA }^{(f)} & K_{\Delta GA }^{(f)} & K_{A GGA }^{(f)} & K_{A GA }^{(f)}$$

□ Evolution equation – consequence of factorization:

Factorization: $\Delta \sigma(Q, s_T) = (1/Q)H_1(Q/\mu_F, \alpha_s) \otimes f_2(\mu_F) \otimes f_3(\mu_F)$

DGLAP for f₂:

Evolution for f₃:

$$\frac{\partial}{\partial \ln(\mu_F)} f_2(\mu_F) = P_2 \otimes f_2(\mu_F)$$
$$\frac{\partial}{\partial \ln(\mu_F)} f_3 = \left(\frac{\partial}{\partial \ln(\mu_F)} H_1^{(1)} - P_2^{(1)}\right) \otimes f_3$$

Scaling violation of twist-3 correlations?

♦ Large deviation at low x (stronger correlation)

Kang, Qiu, PRD, 2009

Twist-3 fragmentation contribution

Metz, Pitonyak, PLB723 (2013)

Leading order results:

$$\begin{split} \frac{P_h^0 d\sigma_{pol}}{d^3 \vec{P}_h} &= -\frac{2\alpha_s^2 M_h}{S} \, \epsilon_{\perp \mu \nu} \, S_{\perp}^{\mu} P_{h\perp}^{\nu} \sum_i \sum_{a,b,c} \int_{z_{min}}^1 \frac{dz}{z^3} \int_{x'_{min}}^1 \frac{dx'}{x'} \frac{1}{x'S + T/z} \frac{1}{-x\hat{u} - x'\hat{t}} \\ &\times \frac{1}{x} \, h_1^a(x) \, f_1^b(x') \left\{ \left(\hat{H}^{C/c}(z) - z \frac{d\hat{H}^{C/c}(z)}{dz} \right) S_{\hat{H}}^i + \frac{1}{z} \, H^{C/c}(z) \, S_H^i \right. \\ &+ 2z^2 \int \frac{dz_1}{z_1^2} \, PV \frac{1}{\frac{1}{z} - \frac{1}{z_1}} \, \hat{H}_{FU}^{C/c,\Im}(z, z_1) \, \frac{1}{\xi} \, S_{\hat{H}_{FU}}^i \right\} \end{split}$$

□ New fitting results:

Kanazawa, Koike, Metz, Pitonyak, PRC89, 2014

Spatial imaging of quarks and gluons

□ NO exclusive color form factor:

 $\frac{1}{2}$

p

- ♦ Exchange of a colorless "object"
- ♦ "Localized" probe
- Control of exchanging momentum

Spatial imaging of quarks and gluons

□ NO exclusive color form factor:

- ♦ Exchange of a colorless "object"
- ♦ "Localized" probe
- ♦ Control of exchanging momentum

□ Exclusive processes – DVCS:

 $\frac{d\sigma}{dx_B dQ^2 dt}$

$$t = (p' - p)^2$$

 $\xi = (P' - P) \cdot n/2$

- F.T. of t-dep
 - **Spatial distributions**

GPDs

 $\implies H_q(x,\xi,t,Q), E_q(x,\xi,t,Q), \dots$

 $\delta z_1 \sim 1/Q$

q

p

EIC: Sea quarks

JLab 12: Valence quarks

Spatial imaging of quarks and gluons

□ NO exclusive color form factor:

- ♦ Exchange of a colorless "object"
- ♦ "Localized" probe
- ♦ Control of exchanging momentum

Exclusive processes – DVCS:

JLab 12: Valence quarks

 $\frac{d\sigma}{dx_B dQ^2 dt}$

$$t = (p'-p)^2$$

 $\xi = (P' - P) \cdot n/2$

F.T. of t-dep

Spatial distributions

GPDs

 \blacksquare $H_q(x,\xi,t,Q), E_q(x,\xi,t,Q), \dots$

 $\delta z_1 \sim 1/Q$

q

EIC: Sea quarks

Exclusive meson production:

Exclusive DIS – measureable

The future: Electron-Ion Collider (EIC)

□ A giant "Microscope" – "see" quarks and gluons by breaking the hadron

The future: Electron-Ion Collider (EIC)

□ A giant "Microscope" – "see" quarks and gluons by breaking the hadron

A sharpest "CT" (better than 1/10 fm resolution)

- "imagine (cat-scan)" nucleon and nuclei without breaking them

The future: Electron-Ion Collider (EIC)

□ A giant "Microscope" – "see" quarks and gluons by breaking the hadron

□ A sharpest "CT" (better than 1/10 fm resolution)

- "imagine (cat-scan)" nucleon and nuclei without breaking them

□ Why now?

Exp – advances in luminosity, energy reach, detection capability, ...

Thy – breakthrough in factorization – "see" confined quarks and gluons, ...

US EIC – Science & Machine designs

US EIC: Microscope with superfine control

- $Q^2 \rightarrow Measure of resolution$
- $\mathbf{y} \rightarrow \mathbf{M}$ easure of inelasticity
- $X \rightarrow$ Measure of momentum fraction of the struck quark in a proton

 $\mathbf{Q}^2 = \mathbf{S} \times \mathbf{y}$

Inclusive events: $e+p/A \rightarrow e'+X$ Detect only the scattered lepton in the detector

Semi-Inclusive events: $e+p/A \rightarrow e'+h(\pi,K,p,jet)+X$ Detect the scattered lepton in coincidence with identified hadrons/jets in the detector

Exclusive events: $e+p/A \rightarrow e'+p'/A'+h(\pi,K,p,jet)$

Detect every things including scattered proton/nucleus (or its fragments)

US EIC – Kinematic reach & properties

For e-N collisions at the EIC:

- ✓ Polarized beams: e, p, d/³He
- ✓ Variable center of mass energy
- ✓ Wide Q^2 range → evolution
- ✓ Wide x range → spanning from valence to low-x physics
- ✓ 100-1K times of HERA Luminosity

US EIC – Kinematic reach & properties

For e-A collisions at the EIC:

- ✓ Wide range in nuclei
- ✓ Variable center of mass energy
- ✓ Wide Q² range (evolution)
- ✓ Wide x region (high gluon densities)

For e-N collisions at the EIC:

- ✓ Polarized beams: e, p, d/³He
- ✓ Variable center of mass energy
- ✓ Wide Q^2 range → evolution
- ✓ Wide x range → spanning from valence to low-x physics
- ✓ 100-1K times of HERA Luminosity

US EIC – Kinematic reach & properties

For e-A collisions at the EIC:

- ✓ Wide range in nuclei
- ✓ Variable center of mass energy
- ✓ Wide Q² range (evolution)
- ✓ Wide x region (high gluon densities)

EIC explores the "sea" and the "glue", the "valence" with a huge level arm

For e-N collisions at the EIC:

- ✓ Polarized beams: e, p, d/³He
- ✓ Variable center of mass energy
- ✓ Wide Q^2 range → evolution
- ✓ Wide x range → spanning from valence to low-x physics
- ✓ 100-1K times of HERA Luminosity

US EIC – Physics vs. Luminosity & Energies

US EIC – Physics vs. Luminosity & Energies

US EIC – Physics vs. Luminosity & Energies

Our Understanding of Nucleon Spin

EIC@US – the decisive measurement (1st year of running):

(Low x and wide x range at EIC)

Precision in $\Delta \Sigma$ and $\Delta g \rightarrow A$ clear idea of the magnitude of L_Q+L_G

No other machine in the world can achieve this!

 $W(x,b_T,k_T)$

Spin-dependent 3D momentum space images from semi-inclusive scattering

Spin-dependent 3D momentum space images from semi-inclusive scattering

Spin-dependent 2D (transverse spatial) + 1D (longitudinal momentum) coordinate space images from exclusive scattering

Position $\Gamma \times$ Momentum $\rho \rightarrow$ Orbital Motion of Partons

Emergence of hadrons from partons

Nucleus as a Femtometer sized filter

Unprecedented \vee range at EIC:

precision & control

Control of v by selecting kinematics; Also under control the nuclear size.

Colored quark emerges as color neutral hadron → What is nature telling us about confinement?

Emergence of hadrons from partons

Control of v by selecting kinematics;

Also under control the nuclear size.

Colored quark emerges as color neutral hadron

→ What is nature telling us about confinement?

Identify π vs. D⁰ (charm) mesons in e-A collisions: Understand energy loss of light vs. heavy quarks traversing the cold nuclear matter:

0.2

0.4

0.30

0.0

x > 0.1

0.6

Fraction of virtual photons energy

carried by hadron, z

Ldt = 10 fb

 $25 \text{ GeV}^2 < Q^2 < 45 \text{ GeV}^2$ 40 GeV < v < 150 GeV

0.8

1.0

Connect to energy loss in Hot QCD

Need the collider energy of EIC and its control on parton kinematics

Hadron structure at large x

 \Box Testing ground for hadron structure at $x \rightarrow 1$:

Hadron structure at large x

 \Box Testing ground for hadron structure at $x \rightarrow 1$:

 $\diamond d/u \rightarrow 1/2$

SU(6) Spin-flavor symmetry

 $\diamond d/u \rightarrow 0$

Scalar diquark dominance

 $\diamond \Delta u/u \rightarrow 2/3$ $\Delta d/d \rightarrow -1/3$

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow -1/3$

 $\diamond d/u \rightarrow 1/5$

pQCD power counting

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow 1$

 $\Rightarrow \ d/u \rightarrow \frac{4\mu_n^2/\mu_p^2 - 1}{4 - \mu_n^2/\mu_n^2} \ \ {\rm Local \ quark-hadron}$

duality

 $\diamond \Delta u/u \rightarrow 1$ $\Delta d/d \rightarrow 1$

 ≈ 0.42

Can lattice QCD help?

Upcoming experiments – JLab12

□ NSAC milestone HP14 (2018):

Plus many more JLab experiments:

E12-06-110 (Hall C on ³He), E12-06-122 (Hall A on ³He), E12-06-109 (CLAS on NH₃, ND₃), ... and Fermilab E906, ... Plus complementary Lattic

Plus complementary Lattice QCD effort

Lattice calculations of hadron structure

Lattice QCD

X-dep distributions

Ji. et al.,

arXiv:1305.1539

1404.6680

□ New ideas – from quasi-PDFs (lattice calculable) to PDFs:

 \diamond High *P*_z effective field theory approach:

$$\tilde{q}(x,\mu^2,P_z) = \int_x^1 \frac{dy}{y} Z\left(\frac{x}{y},\frac{\mu}{P_z}\right) q(y,\mu^2) + \mathcal{O}\left(\frac{\Lambda^2}{P_z^2},\frac{M^2}{P_z^2}\right)$$

QCD colline \diamond

 $\tilde{q}(x,\mu^2,P_z)$

like \sqrt{s}

D collinear factorization approach:
$$x, \mu^2, P_z) = \sum_f \int_0^1 \frac{dy}{y} C_f\left(\frac{x}{y}, \frac{\mu^2}{\bar{\mu}^2}, P_z\right) f(y, \bar{\mu}^2) + O\left(\frac{1}{\mu^2}\right)$$
Ma and Qiu,
arXiv:1404.6860
1412.2688
Ishikawa, Qiu, Yoshida,ParameterFactorizationHigh twist

Power corrections

Unmatched potential: PDFs of proton, neutron, pion, ..., and TMDs and GPDs, ...

scale

Summary

- □ Since the "spin crisis" in the 80th, we have learned a lot about proton spin there is a need for orbital contribution
- Single transverse-spin asymmetry in real, and is a unique probe for hadron's internal dynamics – Sivers, Collins, twist-3, ... effects
- □ Lattice QCD has made a lot of progress, and is ready to make real impact on hadron properties and structure
- QCD has been extremely successful in interpreting and predicting high energy experimental data!
- But, we still do not know much about hadron structure – a lot of work to do!

Thank you!

Backup slides

Basics for spin observables

□ Factorized cross section:

 $\sigma_{h(p)}(Q,s) \propto \langle p, \vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, \vec{s} \rangle$ e.g. $\mathcal{O}(\psi, A^{\mu}) = \overline{\psi}(0) \,\hat{\Gamma} \,\psi(y^{-})$ with $\hat{\Gamma} = I, \gamma_5, \gamma^{\mu}, \gamma_5 \gamma^{\mu}, \sigma^{\mu\nu}$ Parity and Time-reversal invariance: $\langle p, \vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, \vec{s} \rangle = \langle p, -\vec{s} | \mathcal{PTO}^{\dagger}(\psi, A^{\mu}) \mathcal{T}^{-1} \mathcal{P}^{-1} | p, -\vec{s} \rangle$ **DIF:** $\langle p, -\vec{s} | \mathcal{PTO}^{\dagger}(\psi, A^{\mu}) \mathcal{T}^{-1} \mathcal{P}^{-1} | p, -\vec{s} \rangle = \pm \langle p, -\vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, -\vec{s} \rangle$ or $\langle p, \vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, \vec{s} \rangle = \pm \langle p, -\vec{s} | \mathcal{O}(\psi, A^{\mu}) | p, -\vec{s} \rangle$ **Operators lead to the "+" sign spin-averaged cross sections Operators lead to the "-" sign spin asymmetries Example:** $\mathcal{O}(\psi, A^{\mu}) = \psi(0) \gamma^+ \psi(y^-) \Rightarrow q(x)$ $\mathcal{O}(\psi, A^{\mu}) = \overline{\psi}(0) \gamma^+ \gamma_{\Xi} \psi(\eta^-) \Rightarrow \Delta q(x)$

$$\mathcal{O}(\psi, A^{\mu}) = \overline{\psi}(0) \gamma^{+} \gamma^{\perp} \gamma_{5} \psi(y^{-}) \Rightarrow \delta q(x) \to h(x)$$

$$\mathcal{O}(\psi, A^{\mu}) = \frac{1}{xp^{+}} F^{+\alpha}(0) [-i\varepsilon_{\alpha\beta}] F^{+\beta}(y^{-}) \Rightarrow \Delta g(x)$$

Spin decomposition

□ The "big" question:

If there are infinite possibilities, why bother and what do we learn?

□ The "origin" of the difficulty/confusion:

QCD is a gauge theory: a pure quark field in one gauge is a superposition of quarks and gluons in another gauge

□ The fact:

None of the items in all spin decompositions are direct physical observables, unlike cross sections, asymmetries, ...

□ Ambiguity in interpretation – two old examples:

♦ Factorization scheme:

 $F_2(x,Q^2) = \sum_{q,\bar{q}} C_q^{\text{DIS}}(x,Q^2/\mu^2) \otimes q^{\text{DIS}}(x,\mu^2)$ No glue contribution to F_2 ?

♦ Anomaly contribution to longitudinal polarization:

$$g_1(x,Q^2) = \sum_{q,\bar{q}} \widetilde{C}_q^{ANO} \otimes \Delta q^{ANO} + \widetilde{C}_g^{ANO} \otimes \Delta G^{ANO}$$
$$\Delta \Sigma \longrightarrow \Delta \Sigma^{ANO} - \frac{n_f \alpha_s}{2\pi} \Delta G^{ANO} \quad Larger \ quark \ helicity?$$

Spin decomposition

□ Key for a good decomposition – sum rule:

Every term can be related to a physical observable with controllable approximation – "independently measurable"

DIS scheme is ok for F2, but, less effective for other observables Additional symmetry constraints, leading to "better" decomposition?

- Atural physical interpretation for each term "hadron structure"
- Hopefully, calculable in lattice QCD "numbers w/o distributions"
- The most important task is,

Finding the connection to physical observables!

QCD factorization for SIDIS

Collinear gluons:

Collinear longitudinally polarized gluons do not change the collinear collision kinematics

□ Soft interaction:

If the interaction between two jet functions can resolve the "details" of the jet functions, the jet functions could be altered before hard collision – break of the factorization

Most notable TMD parton distributions (TMDs)

□ Sivers function – transverse polarized hadron:

$$\begin{aligned} f_{q/p,S}(x, \boldsymbol{k}_{\perp}) &= f_{q/p}(x, \boldsymbol{k}_{\perp}) + \frac{1}{2} \Delta^{N} f_{q/p^{\uparrow}}(x, \boldsymbol{k}_{\perp}) \, \boldsymbol{S} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}) \\ &= f_{q/p}(x, \boldsymbol{k}_{\perp}) - \frac{k_{\perp}}{M} f_{1T}^{\perp q}(x, \boldsymbol{k}_{\perp}) \, \boldsymbol{S} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}) \end{aligned}$$

□ Boer-Mulder function – transverse polarized quark:

$$f_{q,s_q/p}(x,\boldsymbol{k}_{\perp}) = \frac{1}{2} f_{q/p}(x,\boldsymbol{k}_{\perp}) + \frac{1}{2} \Delta^{N} f_{q^{\uparrow}/p}(x,\boldsymbol{k}_{\perp}) \boldsymbol{s}_{q} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp})$$
$$= \frac{1}{2} f_{q/p}(x,\boldsymbol{k}_{\perp}) - \frac{1}{2} \frac{\boldsymbol{k}_{\perp}}{M} h_{1}^{\perp q}(x,\boldsymbol{k}_{\perp}) \boldsymbol{s}_{q} \cdot (\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp})$$

Boer-Mulder function

Affect angular distribution of Drell-Yan lepton pair

Most notable TMD fragmentation functions (FFs)

□ Collins function – FF of a transversely polarized parton:

$$D_{h/q,s_q}(z, \boldsymbol{p}_{\perp}) = D_{h/q}(z, p_{\perp}) + \frac{1}{2} \Delta^N D_{h/q^{\uparrow}}(z, p_{\perp}) s_q \cdot (\hat{\boldsymbol{p}}_q \times \hat{\boldsymbol{p}}_{\perp})$$
$$= D_{h/q}(z, p_{\perp}) + \frac{p_{\perp}}{z M_h} H_1^{\perp q}(z, p_{\perp}) s_q \cdot (\hat{\boldsymbol{p}}_q \times \hat{\boldsymbol{p}}_{\perp})$$
Collins function

□ Fragmentation function to a polarized hadron:

$$D_{\Lambda, S_{\Lambda}/q}(z, \boldsymbol{p}_{\perp}) = \frac{1}{2} D_{h/q}(z, p_{\perp}) + \frac{1}{2} \Delta^{N} D_{\Lambda^{\dagger}/q}(z, p_{\perp}) \boldsymbol{S}_{\Lambda} \cdot (\boldsymbol{\hat{p}}_{q} \times \boldsymbol{\hat{p}}_{\perp})$$
$$= \frac{1}{2} D_{h/q}(z, p_{\perp}) + \frac{p_{\perp}}{z M_{\Lambda}} D_{1T}^{\perp q}(z, p_{\perp}) \boldsymbol{S}_{\Lambda} \cdot (\boldsymbol{\hat{p}}_{q} \times \boldsymbol{\hat{p}}_{\perp})$$

Unpolarized parton fragments into a polarized hadron - Λ

Importance of the evolution - II

Q-dependence of the "form factor" :

Konychev, Nadolsky, 2006

At Q ~ 1 GeV, $ln(Q/Q_0)$ term may not be the dominant one!

 $\mathcal{F}^{\text{NP}} \approx b^2 (a_1 + a_2 \ln(Q/Q_0) + a_3 \ln(x_A x_B) + \dots) + \dots$

Power correction? $(Q_0/Q)^n$ -term?

Better fits for HERMES data?