Quantum Chromodynamics (QCD)

Jianwei Qiu
Brookhaven National Laboratory Stony Brook University

Weihai High Energy Physics School (WHEPS)
Shandong University - Weihai, Weihai, Shandong, China, August 1-11, 2015

The plan for my four lectures

\square The Goal:
To understand the strong interaction dynamics, and hadron structure, in terms of Quantum Chromo-dynamics (QCD)
\square The Plan (approximately):
Fundamentals of QCD, factorization, evolution,
and elementary hard processes
Two lectures
Role of QCD in high energy collider phenomenology
One lecture

QCD and hadron structure and properties
One lecture

Summary of lecture three

Many new techniques have been developed in recent years for NNLO or higher order calculations - not discussed here
\square QCD resummation techniques have been well-developed, and have played a key role in improving the precision of theoretical predictions

- Heavy quarkonium production is still a very fascinating subject challenging our understanding of QCD bound states

Theory had a lot advances in last decade in dealing with observables with multiple observed momentum scales:
Provide new probes to "see" the confined motion: the large scale to pin down the parton d.o.f. while the small scale to probe the nonperturbative structure as well as the motion
\square Proton spin provides another controllable "knob" to help isolate various physical effects

Nucleon is not elementary!

1933: Proton's magnetic moment

$$
g \neq 2
$$

Otto Stern
Nobel Prize 1943

Nucleon is not elementary!

1933: Proton's magnetic moment

Otto Stern
Nobel Prize 1943

1960: Elastic e-p scattering

Robert Hofstadter
Nobel Prize 1961

Form factors
\longrightarrow Electric charge distribution

Nucleon is not elementary!

1933: Proton's magnetic moment

Otto Stern
Nobel Prize 1943

1960: Elastic e-p scattering

Robert Hofstadter
Nobel Prize 1961

1969: Deep inelastic e-p scattering
 Jerome I. Friedman Henry W. Kendall Richard E. Taylor Nobel Prize 1990

Form factors
\longrightarrow Electric charge distribution
Modern "Rutherford's experiment"

Point-like partons

Nucleon is not elementary!

1933: Proton's magnetic moment

Otto Stern
Nobel Prize 1943

1960: Elastic e-p scattering

Robert Hofstadter
Nobel Prize 1961

1969: Deep inelastic e-p scattering

Jerome I. Friedman
Henry W. Kendall
Richard E. Taylor
Nobel Prize 1990
1974: QCD Asymptotic Freedom

David J. Gross
H. David Politzer

Frank Wilczek
Nobel Prize 2004

\longrightarrow Electric charge distribution
Modern "Rutherford's experiment"

Point-like partons

Form factors

Nobel Prize 2004

Scaling violation
Perturbative QCD - theory tool Factorization - PDFs

Hadron properties

\square How does QCD generate energy for the proton's mass?

Quark mass $\sim 1 \%$ proton's mass
Higgs mechanism is not enough!!!
\square Generation of mass:
from QCD dynamics?
\diamond BSE calculation results confirmed by lattice simulation
\diamond Light-quark mass comes from a cloud of soft gluons

C.D. Roberts, Prog. Part. Nucl. Phys. 61 (2008) 50
M. Bhagwat \& P.C. Tandy, AIP Conf.Proc. 842 (2006) 225-227

Hadron properties

\square How does QCD generate energy for the proton's mass?

Quark mass $\sim 1 \%$ proton's mass
Higgs mechanism is not enough!!!
\square Generation of mass:
from QCD dynamics?
\diamond BSE calculation results confirmed by lattice simulation

২ Light-quark mass comes from a cloud of soft gluons
\diamond Gluon is massless in UV, but "massive" in IR

C.D. Roberts, Prog. Part. Nucl. Phys. 61 (2008) 50
M. Bhagwat \& P.C. Tandy, AIP Conf.Proc. 842 (2006) 225-227

Qin et al., Phys. Rev. C 84042202 (Rapid Comm.)

Hadron mass sum rule

\square QCD definition: $\quad M=\frac{\langle P| \int d^{3} x T^{00}(0, \mathbf{x})|P\rangle}{\langle P \mid P\rangle} \equiv\left\langle T^{00}\right\rangle$
QCD energy-momentum tensor:

$$
T^{\mu \nu}=\frac{1}{2} \bar{\psi} i \overleftrightarrow{D}^{(\mu} \gamma^{\nu)} \psi+\frac{1}{4} g^{\mu \nu} F^{2}-F^{\mu \alpha} F_{\alpha}^{\nu} \quad H_{\mathrm{QCD}}=\int d^{3} x T^{00}(0, \mathbf{x})
$$

\square Decomposition:

$$
H_{\mathrm{QCD}}=H_{q}+H_{m}+H_{g}+H_{a}
$$

Mass type	H_{i}	M_{i}	$m_{s} \rightarrow 0(\mathrm{MeV})$	$m_{s} \rightarrow \infty(\mathrm{MeV})$
Quark energy	$\psi^{\dagger}(-i \mathbf{i} \cdot \boldsymbol{\alpha}) \psi$	$3(a-b) / 4$	270	300
Quark mass	$\bar{\psi} m \psi$	b	160	110
Gluon energy	$\frac{1}{2}\left(\mathbf{E}^{2}+\mathbf{B}^{2}\right)$	$3(1-a) / 4$	320	320
Trace anomaly	$\frac{9 \alpha_{s}}{1 \sigma_{\pi}\left(\mathbf{E}^{2}-\mathbf{B}^{2}\right)}$	$(1-b) / 4$	190	210

$$
\begin{aligned}
a\left(\mu^{2}\right) & =\sum_{f} \int_{0}^{1} x\left[q_{f}\left(x, \mu^{2}\right)+\bar{q}_{f}\left(x, \mu^{2}\right)\right] d x \\
b M & =\langle P| m_{u} \bar{u} u+m_{d} \bar{d} d|P\rangle+\langle P| m_{s} \bar{s} s|P\rangle
\end{aligned}
$$

\diamond None of these terms is a "direct" physical measurable (e.g. cross section)! Can we "measure" them with controllable approximation?

Can we "measure" them by lattice calculation, or other approaches?

Lattice QCD

\square Formulated in the discretized Euclidean space:

$$
\begin{aligned}
& S^{f}= a^{4} \sum_{x}\left[\frac{1}{2 a} \sum_{\mu}\left[\bar{\psi}(x) \gamma_{\mu} U_{\mu}(x) \psi(x+a \hat{\mu})-\bar{\psi}(x+a \hat{\mu}) \gamma_{\mu} U_{\mu}^{\dagger}(x) \psi(x)\right]+m \bar{\psi}(x) \psi(x)\right] \\
& S^{g}=\frac{1}{g_{0}^{2}} a^{4} \sum_{x, \mu \nu}\left[N_{c}-\operatorname{Re} \operatorname{Tr}\left[U_{\mu}(x) U_{\nu}(x+a \hat{\mu}) U_{\mu}^{\dagger}(x+a \hat{\nu}) U_{\nu}^{\dagger}(x)\right]\right] \\
& U_{\mu}(x)=e^{-i g a T^{a} A_{\mu}^{a}\left(x+\frac{1}{2}\right)}
\end{aligned}
$$

\square Boundary condition is imposed on each field in finite volume:
Momentum space is restricted in finite Brillouin zone: $\left\{-\frac{\pi}{a}, \frac{\pi}{a}\right\}$
Lattice QCD is an Ultra-Violet (UV) finite theory
Lattice action is not unique, above action is the simplest one!
Many implementations were proposed to reduce the discretization error

Hadron properties from Lattice QCD

\square Low-lying hadron mass spectrum:
S. Durr et al. Science 322, 11242008

Predictions with limited inputs

Hadron properties from Lattice QCD

\square Low-lying hadron mass spectrum:
A. Kronfeld, 1209.3468

Hadron properties from Lattice QCD

\square Meson resonances:

Dudek et al, Phys.Rev. D88 (2013) 094505

Hadron properties from Lattice QCD

\square Magnetic moments:
S.R. Beane et al., Phys.Rev.Lett. 113 (2014) 252001

Theory at $\mathrm{m}_{\pi}=806 \mathrm{MeV}$ vs. the nature!

Nuclei are (nearly) collections of nucleons - shell model phenomenology!

Proton spin

\square Proton is NOT elementary, but, a composite particle:
\diamond Proton-spin $=$ Proton's angular momentum when it is at rest
\triangleleft Proton-spin $=$ One number touches every part of the quantum world from the quantum mechanics to the quantum field theory and QCD

\diamond Proton-spin = One number carries every secrets of QCD dynamics
from the "unknown" confinement to the "well-known" asymptotic freedom

Proton spin

\square Proton is NOT elementary, but, a composite particle:
\diamond Proton-spin $=$ Proton's angular momentum when it is at rest
\triangleleft Proton-spin = One number touches every part of the quantum world from the quantum mechanics to the quantum field theory and QCD

\triangleleft Proton-spin = One number carries every secrets of QCD dynamics
from the "unknown" confinement to the "well-known" asymptotic freedom
\square Quark Model:
\diamond Expectation: $\quad S_{p} \equiv\langle p \uparrow| S|p \uparrow\rangle=\frac{1}{2}, \quad S=\sum_{i} S_{i}$
\triangleleft Wave function: $\quad|p \uparrow\rangle=\sqrt{\frac{1}{18}}[u \uparrow u \downarrow d \uparrow+u \downarrow u \uparrow d \uparrow-2 u \uparrow u \uparrow d \downarrow$ +perm. $]$
Skyrmion Model, MIT Bag Model, Chiral Bag Model, ...

Proton spin in QCD

\square Complexity of the proton in QCD:

$$
\begin{gathered}
\sqrt{\sqrt{2}} \text { Known from QCD } \\
S(\mu)=\sum_{f}\langle P, S| \hat{J}_{f}^{z}(\mu)|P, S\rangle=\frac{1}{2} \equiv J_{q}(\mu)+J_{g}(\mu) \\
\vec{J}_{q}=\int d^{3} x\left[\psi_{q}^{\dagger} \vec{\gamma} \gamma_{5} \psi_{q}+\psi_{q}^{\dagger}(\vec{x} \times(-i \vec{D})) \psi_{q}\right] \quad \text { Brom, unknown }
\end{gathered}
$$

\square Asymptotic limit:

$$
J_{q}(\mu \rightarrow \infty) \Rightarrow \frac{1}{2} \frac{3 N_{f}}{16+3 N_{f}} \sim \frac{1}{4} \quad J_{g}(\mu \rightarrow \infty) \Rightarrow \frac{1}{2} \frac{16}{16+3 N_{f}} \sim \frac{1}{4}
$$

Proton spin in QCD

\square Complexity of the proton in QCD:

$$
\begin{gathered}
\sqrt{\text { K }} \text { Known from QCD } \\
S(\mu)=\sum_{f}\langle P, S| \hat{J}_{f}^{z}(\mu)|P, S\rangle=\frac{1}{2} \equiv J_{q}(\mu)+J_{g}(\mu) \\
\vec{J}_{q}=\int d^{3} x\left[\psi_{q}^{\dagger} \vec{\gamma} \gamma_{5} \psi_{q}+\psi_{q}^{\dagger}(\vec{x} \times(-i \vec{D})) \psi_{q}\right] \quad \text { From QCD, But, unknown }
\end{gathered}
$$

\square Asymptotic limit:
Ji, 2005

$$
J_{q}(\mu \rightarrow \infty) \Rightarrow \frac{1}{2} \frac{3 N_{f}}{16+3 N_{f}} \sim \frac{1}{4} \quad J_{g}(\mu \rightarrow \infty) \Rightarrow \frac{1}{2} \frac{16}{16+3 N_{f}} \sim \frac{1}{4}
$$

\square Spin sum rule - not unique!

$$
S(\mu)=\frac{1}{2} \Sigma(\mu)+L_{q}(\mu)+\Delta G(\mu)+\left[J_{g}(\mu)-\Delta G(\mu)\right]
$$

Intrinsic parton's spin: dynamical parton motion:

$$
\begin{aligned}
& \Sigma\left(Q^{2}\right)=\sum_{q}\left[\Delta q\left(Q^{2}\right)+\Delta \bar{q}\left(Q^{2}\right)\right], \quad \Delta G\left(Q^{2}\right) \\
& L_{q}\left(Q^{2}\right), \quad L_{g}\left(Q^{2}\right)
\end{aligned}
$$

- Matrix elements of quark and gluon fields are NOT physical observables!
- Infinite possibilities of decompositions - connection to observables?

Parton helicity distributions

\square Quark helicity distribution:

$$
\begin{aligned}
\Delta q(x)=\int \frac{d y^{-}}{2 \pi} e^{i x p^{+} y^{-}} \frac{1}{2}[& \left\langle p, s_{\|}\right| \bar{\psi}_{q}(0) \gamma^{+} \frac{1+\gamma^{5}}{2} \psi_{q}\left(y^{-}\right)\left|p, s_{\|}\right\rangle \\
& \left.-\left\langle p,-s_{\|}\right| \bar{\psi}_{q}(0) \gamma^{+} \frac{1-\gamma^{5}}{2} \psi_{q}\left(y^{-}\right)\left|p,-s_{\|}\right\rangle\right] \\
\mathbf{P + \mathbf { T }} \Delta \Delta q(x)=\int & \frac{d y^{-}}{2 \pi} e^{i x p^{+} y^{-}}\left\langle p, s_{\|}\right|\left[\bar{\psi}_{q}(0) \frac{\gamma^{+} \gamma^{5}}{2} \psi_{q}\left(y^{-}\right)\right]\left|p, s_{\|}\right\rangle
\end{aligned}
$$

\triangleleft Fourier Transform of light-cone matrix element: $\left\langle p, s_{\|}\right| \mathcal{O}_{q}\left(y^{-}\right)\left|p, s_{\|}\right\rangle$

$$
\mathcal{O}_{q}\left(y^{-}\right)=\bar{\psi}_{q}(0) \frac{\gamma^{+} \gamma^{5}}{2} \psi\left(y^{-}\right)
$$

The γ^{5} flips the quark helicity at the cut-vertex
\triangleleft Necessary condition for nonvanish asymmetries - $\mathbf{P}+\mathrm{T}$:

$$
\left\langle p, s_{\|}\right| \mathcal{O}_{q}\left(y^{-}\right)\left|p, s_{\|}\right\rangle \Longleftrightarrow-\left\langle p,-s_{\|}\right| \mathcal{O}_{q}\left(y^{-}\right)\left|p,-s_{\|}\right\rangle
$$

\square Gluon helicity distribution:

$$
\mathcal{O}_{g}\left(y^{-}\right)=\frac{1}{x p^{+}} F^{+\alpha}(0)\left[-i \varepsilon_{\alpha \beta}\right] F^{+\beta}\left(y^{-}\right)
$$

The $i \varepsilon_{\alpha \beta}$ flips gluon helicity at the cut-vertex

Proton "spin crisis" - excited the field

\square EMC (European Muon Collaboration '87) - "the Plot":

$$
\begin{aligned}
g_{1}(x)= & \frac{1}{2} \sum_{q} e_{q}^{2}[\Delta q(x)+\Delta \bar{q}(x)] \\
& +\mathcal{O}\left(\alpha_{s}\right)+\mathcal{O}(1 / Q)
\end{aligned}
$$

\diamond Combined with earlier SLAC data:

$$
\int_{0}^{1} g_{1}^{p}(x) d x=0.126 \pm 0.018
$$

\diamond Combined with: $\quad g_{A}^{3}=\Delta u-\Delta d \quad$ and $\quad g_{A}^{8}=\Delta u+\Delta d-2 \Delta s$ from low energy neutron \& hyperon β decay

$$
\Delta \Sigma=\sum[\Delta q+\Delta \bar{q}]=0.12 \pm 0.17
$$

\square "Spin crisis" or puzzle:
\diamond Strange sea polarization is sizable \& negative
\diamond Very little of the proton spin is carried by quarks

New era of spin physics

Inclusive DIS data - over 20 years

The "Plot" is greatly improved:

JLab/CLAS
 arXiv:1404.6231

Recent helicity PDF fits @ NLO

Sea quark polarization - RHIC W program

\square Single longitudinal spin asymmetries:

$$
A_{L}=\frac{[\sigma(+)-\sigma(-)]}{[\sigma(+)+\sigma(-)]} \text { for } \sigma(s)
$$

Parity violating weak interaction

unpol.

\square From 2013 RHIC data:

W-production at RHIC

Gluon helicity contribution - RHIC data

\square RHIC 2009 data:
Jet/pion production at RHIC - gluon helicity:

Global QCD analysis of helicity PDFs

D. de Florian, R. Sassot, M. Stratmann, W. Vogelsang, PRL 113 (2014) 012001
results featured in Sci. Am., Phys. World, ...
\square Impact on gluon helicity:

\triangleleft Red line is the new fit
\triangleleft Dotted lines $=$ other fits with 90\% C.L.

$\triangleleft 90 \%$ C.L. areas
\diamond Leads Δ G to a positive \#

Current understanding for Proton Spin

\square The sum rule: $\quad S(\mu)=\sum_{f}\langle P, S| \hat{J}_{f}^{z}(\mu)|P, S\rangle=\frac{1}{2} \equiv J_{q}(\mu)+J_{g}(\mu)$

- Infinite possibilities of decompositions - connection to observables?
- Intrinsic properties + dynamical motion and interactions
\square An incomplete story:

Hadron structures

\square What does the proton look like?
Gluon radius?

Static:
Hard probe:

Hadron structures

\square What does the proton look like? Static:

Hard probe:

Gluon radius?

Hadron structures

\square What does the proton look like? Static:

Hard probe:

Hadron structures

\square What does the proton look like?
Static:
Hard probe:

Gluon radius?

\square How is proton's spin correlated with the motion of quarks/gluons? $\mathrm{xf}_{1}\left(\mathrm{x}, \mathrm{k}_{\mathrm{T}}, \mathrm{S}_{\mathrm{T}}\right)$

Deformation of parton's confined motion when hadron is polarized? TMDs!

Hadron structures

\square What does the proton look like?
Gluon radius? Static:

Hard probe:

\square How is proton's spin correlated with the motion of quarks/gluons?
$\mathrm{xf}_{1}\left(\mathrm{x}, \mathrm{k}_{\mathrm{T}}, \mathrm{S}_{\mathrm{T}}\right)$

Deformation of parton's confined motion when hadron is polarized? TMDs!
\square How does proton's spin influence the spatial distribution of partons?

Unified view of nucleon structure

Wigner distributions:

5D

$$
\begin{aligned}
& W\left(x, b_{T}, k_{T}\right) \\
& \text { Wigner Distributions }
\end{aligned}
$$

$$
\int d^{2} b_{T}
$$

3D

$$
f\left(x, k_{T}\right)
$$

transverse momentum
distributions (TMDs)
semi-inclusive processes
$\int d^{2} k_{T}$

$$
f\left(x, b_{T}\right)
$$

impact parameter distributions
Fourier trf.

$$
b_{T} \leftrightarrow \Delta
$$

$$
\xi=0
$$

$$
H(x, 0, t)
$$

$$
t=-\Delta^{2}
$$

generalized parton distributions (GPDs) exclusive processes
parton densities
inclusive and semi-inclusive processes

[^0]
Unified view of nucleon structure

Wigner distributions:

Unified view of nucleon structure

Wigner distributions:

5D | $W\left(x, b_{T}, k_{T}\right)$ |
| :---: |
| Wigner Distributions |

\square 3D imaging of sea and gluons:
\diamond TMDs - confined motion in a nucleon (semi-inclusive DIS)
\diamond GPDs - Spatial imaging of quarks and gluons (exclusive DIS)

Polarization and spin asymmetry

Explore new QCD dynamics - vary the spin orientation:
\square Cross section:
Scattering amplitude square - Probability - Positive definite

$$
\sigma_{A B}(Q, \vec{s}) \approx \sigma_{A B}^{(2)}(Q, \vec{s})+\frac{Q_{s}}{Q} \sigma_{A B}^{(3)}(Q, \vec{s})+\frac{Q_{s}^{2}}{Q^{2}} \sigma_{A B}^{(4)}(Q, \vec{s})+\cdots
$$

\square Spin-averaged cross section:

$$
\sigma=\frac{1}{2}[\sigma(\vec{s})+\sigma(-\vec{s})] \quad-\text { Positive definite }
$$

\square Asymmetries or difference of cross sections:

- both beams polarized $\quad A_{L L}, A_{T T}, A_{L T}$

$$
A_{L L}=\frac{[\sigma(+,+)-\sigma(+,-)]-[\sigma(-,+)-\sigma(-,-)]}{[\sigma(+,+)+\sigma(+,-)]+[\sigma(-,+)+\sigma(-,-)]} \text { for } \sigma\left(s_{1}, s_{2}\right)
$$

- one beam polarized A_{L}, A_{N} - Not necessary positive!

$$
A_{L}=\frac{[\sigma(+)-\sigma(-)]}{[\sigma(+)+\sigma(-)]} \quad \text { for } \sigma(s) \quad A_{N}=\frac{\sigma\left(Q, \vec{s}_{T}\right)-\sigma\left(Q,-\vec{s}_{T}\right)}{\sigma\left(Q, \vec{s}_{T}\right)+\sigma\left(Q,-\vec{s}_{T}\right)}
$$

Chance to see quantum interference directly

Transverse single-spin asymmetry (SSAs)

$\square A_{N}$ - consistently observed for over 35 years!

ANL - 4.9 GeV

\square Definition:

$$
A_{N} \equiv \frac{\Delta \sigma(\ell, \vec{s})}{\sigma(\ell)}=\frac{\sigma(\ell, \vec{s})-\sigma(\ell,-\vec{s})}{\sigma(\ell, \vec{s})+\sigma(\ell,-\vec{s})}
$$

Vanish if active parton has no kT!!!

FNAL - 20 GeV

BNL-200 GeV

Do we understand it?

\square Early attempt:
Cross section: $\quad \sigma_{A B}\left(p_{T}, \vec{s}\right) \propto$

Asymmetry: $\quad \sigma_{A B}\left(p_{T}, \vec{s}\right)-\sigma_{A B}\left(p_{T},-\vec{s}\right)=$

$\propto \alpha_{s} \frac{m_{q}}{p_{T}}$
Too small to explain available data!
\square What do we need?

$$
A_{N} \propto i \vec{s}_{p} \cdot\left(\vec{p}_{h} \times \vec{p}_{T}\right) \Rightarrow i \epsilon^{\mu \nu \alpha \beta} p_{h \mu} s_{\nu} p_{\alpha} p_{h \beta}^{\prime}
$$

Need a phase, a spin flip, enough vectors
\square Vanish without parton's transverse motion:
A direct probe for parton's transverse motion,
Spin-orbital correlation, QCD quantum interference

Current understanding of SSAs

\square Two scales observables $-Q_{1} \gg Q_{2} \sim \Lambda_{Q C D}$:

SIDIS: Q>>P P_{T}

DY: Q>>Q

TMD factorization TMD distributions

Direct information on parton \boldsymbol{k}_{T}
\square One scale observables $-Q \gg \Lambda_{Q C D}$:

DY: $Q \sim Q_{T}$

Jet, Particle: P_{T}

Collinear factorization Twist-3 distributions

Information on moments of parton \boldsymbol{k}_{T}
\square Symmetry plays important role:

Inclusive DIS
Single scale Q

Parity
Time-reversal

$$
\Longrightarrow A_{N}=0
$$

Factorized Drell-Yan cross section - Lec. 2

\square TMD factorization ($q_{\perp} \ll Q$):

$$
\begin{aligned}
\frac{d \sigma_{A B}}{d^{4} q} & =\sigma_{0} \int d^{2} k_{a \perp} d^{2} k_{b \perp} d^{2} k_{s \perp} \delta^{2}\left(q_{\perp}-k_{a \perp}-k_{b \perp}-k_{s \perp}\right) \mathcal{F}_{a / A}\left(x_{A}, k_{a \perp}\right) \mathcal{F}_{b / B}\left(x_{B}, k_{b \perp}\right) \mathcal{S}\left(k_{s \perp}\right) \\
& +\mathcal{O}\left(q_{\perp} / Q\right) \quad x_{A}=\frac{Q}{\sqrt{s}} e^{y} \quad x_{B}=\frac{Q}{\sqrt{s}} e^{-y}
\end{aligned}
$$

The soft factor, \mathcal{S}, is universal, could be absorbed into the definition of TMD parton distribution
\square Collinear factorization ($q_{\perp} \sim Q$):

$$
\frac{d \sigma_{A B}}{d^{4} q}=\int d x_{a} f_{a / A}\left(x_{a}, \mu\right) \int d x_{b} f_{b / B}\left(x_{b}, \mu\right) \frac{d \hat{\sigma}_{a b}}{d^{4} q}\left(x_{a}, x_{b}, \alpha_{s}(\mu), \mu\right)+\mathcal{O}(1 / Q)
$$

\square Spin dependence:
The factorization arguments are independent of the spin states of the colliding hadrons
same formula with polarized PDFs for $\gamma^{*}, W / Z, H^{0} \ldots$

Semi-inclusive DIS (SIDIS)

\square Process:

$$
e(k)+N(p) \longrightarrow e^{\prime}\left(k^{\prime}\right)+h\left(P_{h}\right)+X
$$

\square Natural event structure:
In the photon-hadron frame: $\quad P_{h_{T}} \approx 0$
Semi-Inclusive DIS is a natural observable with TWO very different scales
$Q \gg P_{h_{T}} \gtrsim \Lambda_{\mathrm{QCD}} \quad$ Localized probe sensitive to parton's transverse motion
\square Collinear QCD factorization holds if $P_{h T}$ integrated:

$$
\begin{aligned}
d \sigma_{\gamma^{*} h \rightarrow h^{\prime}} & \propto \phi_{f / h} \otimes d \hat{\sigma}_{\gamma^{*} f \rightarrow f^{\prime}} \otimes D_{f^{\prime} \rightarrow h^{\prime}}(z) \\
z & =\frac{P_{h} \cdot p}{q \cdot p} \quad y=\frac{q \cdot p}{k \cdot p}
\end{aligned}
$$

- "Total c.m. energy":

$$
s_{\gamma^{*} p}=(p+q)^{2} \approx Q^{2}\left[\frac{1-x_{B}}{x_{B}}\right] \approx \frac{Q^{2}}{x_{B}}
$$

Single hadron production at low p_{T}

\square Unique kinematics - unique event structure:
Briet frame: Large Q^{2} virtual photon acts like a "wall"

vs

High energy low p_{T} jet (or hadron) - ideal probe for parton's transverse motion!
\square Need for TMDs, if we observe $p_{T} \sim 1 / f m$:

$$
\begin{aligned}
& \int d^{4} k_{a} \mathcal{H}\left(Q, p_{T}, k_{a}, k_{b}\right)\left(\frac{1}{k_{a}^{2}+i \varepsilon}\right)\left(\frac{1}{k_{a}^{2}-i \varepsilon}\right) \mathcal{T}\left(k_{a}, 1 / r_{0}\right) \\
\approx & \int \frac{d x}{x} d^{2} k_{a \perp} \mathcal{H}\left(Q, p_{T}, k_{a}^{2}=0, k_{b}\right)\left[\int d k_{a}^{2}\left(\frac{1}{k_{a}^{2}+i \varepsilon}\right)\left(\frac{1}{k_{a}^{2}-i \varepsilon}\right) \mathcal{T}\left(k_{a}, 1 / r_{0}\right)\right] \\
& \text { Can't set } \mathbf{k}_{\mathbf{T}} \sim \mathbf{0}, \text { since } \mathbf{k}_{\mathbf{T}} \sim \mathbf{p}_{\mathbf{T}}
\end{aligned}
$$

QCD factorization for SIDIS

\square Factorization:

\square Low $\mathrm{P}_{\mathrm{hT}}-$ TMD factorization:

$$
\sigma_{\mathrm{SIDIS}}\left(Q, P_{h \perp}, x_{B}, z_{h}\right)=\hat{H}(Q) \otimes \Phi_{f} \otimes \mathcal{D}_{f \rightarrow h} \otimes \mathcal{S}+\mathcal{O}\left(\frac{P_{h \perp}}{Q}\right)
$$

\square High P_{hT} - Collinear factorization:

$$
\sigma_{\mathrm{SIDIS}}\left(Q, P_{h \perp}, x_{B}, z_{h}\right)=\hat{H}\left(Q, P_{h \perp}, \alpha_{s}\right) \otimes \phi_{f} \otimes D_{f \rightarrow h}+\mathcal{O}\left(\frac{1}{P_{h \perp}}, \frac{1}{Q}\right)
$$

$\square P_{h T}$ Integrated - Collinear factorization:

$$
\sigma_{\mathrm{SIDIS}}\left(Q, x_{B}, z_{h}\right)=\tilde{H}\left(Q, \alpha_{s}\right) \otimes \phi_{f} \otimes D_{f \rightarrow h}+\mathcal{O}\left(\frac{1}{Q}\right)
$$

TMD parton distributions (TMDs)

\square Power of spin - many more correlations:

\longrightarrow Nucleon Spin
© auarkspin similar for gluons

Require two Physical scales

More than one TMD contribute to the same observable!
$\square A_{N}$ - single hadron production:

Di-jet, photon-jet not exactly back to back

Collins-type

SIDIS is the best for probing TMDs

- Naturally, two planes:

$$
\begin{aligned}
& A_{U T}\left(\varphi_{h}^{l}, \varphi_{S}^{l}\right)=\frac{1}{P} \frac{N^{\uparrow}-N^{\downarrow}}{N^{\uparrow}+N^{\downarrow}} \\
& =A_{U T}^{\text {Colins }} \sin \left(\phi_{h}+\phi_{S}\right)+A_{U T}^{\text {Sivers }} \sin \left(\phi_{h}-\phi_{S}\right) \\
& +A_{U T}^{\text {Pretzelosity }} \sin \left(3 \phi_{h}-\phi_{S}\right)
\end{aligned}
$$

\square Separation of TMDs:
$A_{U T}^{\text {Colins }} \propto\left\langle\sin \left(\phi_{h}+\phi_{S}\right)\right\rangle_{U T} \propto h_{1} \otimes H_{1}^{\perp}$
$A_{U T}^{\text {Sivers }} \propto\left\langle\sin \left(\phi_{h}-\phi_{S}\right)\right\rangle_{U T} \propto f_{1 T}^{\perp} \otimes D_{1}$
$A_{U T}^{\text {Pretzelosity }} \propto\left\langle\sin \left(3 \phi_{h}-\phi_{S}\right)\right\rangle_{U T} \propto h_{1 T}^{\perp} \otimes H_{1}^{\perp}$

Collins frag. Func. from $\mathrm{e}^{+}{ }^{-}$collisions

Hard, if not impossible, to separate TMDs in hadronic collisions
Using a combination of different observables (not the same observable): jet, identified hadron, photon, ...

Broken universality for TMDs

\square Definition:

$$
f_{q / h \uparrow}\left(x, \mathbf{k}_{\perp}, \vec{S}\right)=\int \frac{d y^{-} d^{2} y_{\perp}}{(2 \pi)^{3}} e^{i x p^{+} y^{-}-i \mathbf{k}_{\perp} \cdot \mathbf{y}_{\perp}}\langle p, \vec{S}| \bar{\psi}\left(0^{-}, \mathbf{0}_{\perp}\right) \text { Gauge link } \frac{\gamma^{+}}{2} \psi\left(y^{-}, \mathbf{y}_{\perp}\right)|p, \vec{S}\rangle
$$

\square Gauge links:

DY:

\square Process dependence:

$$
f_{q / h \uparrow}^{\mathrm{SIDIS}}\left(x, \mathbf{k}_{\perp}, \vec{S}\right) \neq f_{q / h \uparrow}^{\mathrm{DY}}\left(x, \mathbf{k}_{\perp}, \vec{S}\right)
$$

Collinear factorized PDFs are process independent

Modified universality

\square Parity - Time reversal invariance:

$$
f_{q / h^{\uparrow}}^{\mathrm{SIIIS}^{\prime}}\left(x, \mathbf{k}_{\perp}, \vec{S}\right)=f_{q / h}^{\mathrm{DY}}\left(x, \mathbf{k}_{\perp},-\vec{S}\right)
$$

\square Definition of Sivers function:

$$
f_{q / h \uparrow}\left(x, \mathbf{k}_{\perp}, \vec{S}\right) \equiv f_{q / h}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / h \uparrow}\left(x, k_{\perp}\right) \vec{S} \cdot \hat{p} \times \hat{\mathbf{k}}_{\perp}
$$

\square Modified universality:

$$
\Delta^{N} f_{q / h^{\dagger}}^{\mathrm{SIDIS}}\left(x, k_{\perp}\right)=-\Delta^{N} f_{q / h \uparrow}^{\mathrm{DY}}\left(x, k_{\perp}\right)
$$

Same function, but, opposite sign!
\square The sign change $=$ Critical test of TMD factorization!
Same applies to TMD gluon distribution Spin-averaged TMD is process independent

Sivers asymmetries from SIDIS

\square From SIDIS (HERMES and COMPASS) - low Q:

Non-zero Sivers effects Observed in SIDIS!

Visible Q 2 dependence

Major theory development in last few years

Drell-Yan $A_{N}: \quad$ COMPASS, RHIC run $17^{\text {th }}$, Fermilab Drell-Yan, ...

Evolution equations for TMDs

\square Collins-Soper equation:

- b-space quark TMD with γ^{+}

$$
\frac{\partial \tilde{F}_{f / P \dagger}\left(x, \mathbf{b}_{\mathrm{T}}, S ; \mu ; \zeta_{F}\right)}{\partial \ln \sqrt{\zeta_{F}}}=\tilde{K}\left(b_{T} ; \mu\right) \tilde{F}_{f / P \dagger}\left(x, \mathbf{b}_{\mathrm{T}}, S ; \mu ; \zeta_{F}\right)
$$

Boer, 2001, 2009, JI, Ma, Yuan, 2004
Idilbi, et al, 2004, Kang, Xiao, Yuan, 2011
Aybat, Collins, Qiu, Rogers, 2011
Aybat, Prokudin, Rogers, 2012
Idilbi, et al, 2012, Sun, Yuan 2013, ...
$\tilde{K}\left(b_{T} ; \mu\right)=\frac{1}{2} \frac{\partial}{\partial y_{s}} \ln \left(\frac{\tilde{S}\left(b_{T} ; y_{s},-\infty\right)}{\tilde{S}\left(b_{T} ;+\infty, y_{s}\right)}\right)$
\square RG equations:

$$
\frac{d \tilde{K}\left(b_{T} ; \mu\right)}{d \ln \mu}=-\gamma_{K}(g(\mu)) \quad \frac{d \tilde{F}_{f / P^{\dagger}}\left(x, \mathbf{b}_{\mathrm{T}}, S ; \mu ; \zeta_{F}\right)}{d \ln \mu}=\gamma_{F}\left(g(\mu) ; \zeta_{F} / \mu^{2}\right) \tilde{F}_{f / P^{\uparrow}}\left(x, \mathbf{b}_{\mathrm{T}}, S ; \mu ; \zeta_{F}\right) .
$$

\square Evolution equations for Sivers function:

$$
F_{f / P \uparrow}\left(x, k_{T} \cdot S: \mu, \zeta_{F}\right)=F_{f / P}\left(x, k_{T} ; \mu, \zeta_{F}\right)-F_{1 T}^{\perp f}\left(x, k_{T} ; \mu, \zeta_{F}\right) \frac{\epsilon_{i j} k_{T}^{i} S^{j}}{M_{p}}
$$

CS: $\quad \frac{\partial \ln \tilde{F}_{1 T}^{\prime \perp f}\left(x, b_{T} ; \mu, \zeta_{F}\right.}{\partial \ln \sqrt{\zeta_{F}}}=\tilde{K}\left(b_{T} ; \mu\right) \quad \tilde{F}_{1 T}^{\prime \perp f}\left(x, b_{T} ; \mu, \zeta_{F}\right) \equiv \frac{\partial \tilde{F}_{1 T}^{\perp f}\left(x, b_{T} ; \mu, \zeta_{F}\right)}{\partial b_{T}}$
RGs: $\frac{d \tilde{F}_{1 T}^{\prime \perp f}\left(x, b_{T} ; \mu, \zeta_{F}\right)}{d \ln \mu}=\gamma_{F}\left(g(\mu) ; \zeta_{F} / \mu^{2}\right) \tilde{F}_{1 T}^{\prime \perp f}\left(x, b_{T} ; \mu, \zeta_{F}\right)$

$$
\frac{d \tilde{K}\left(b_{T} ; \mu\right)}{d \ln \mu}=-\gamma_{K}(g(\mu)) \quad \Longleftrightarrow \quad \frac{\partial \gamma_{F}\left(g(\mu) ; \zeta_{F} / \mu^{2}\right)}{\partial \ln \sqrt{\zeta_{F}}}=-\gamma_{K}(g(\mu)),
$$

Scale dependence of Sivers function

Aybat, Collins, Qiu, Rogers, 2011
\square Up quark Sivers function:

Very significant growth in the width of transverse momentum

Nonperturbative input to Sivers function

\square Aybat, Prokudin, Rogers, 2012:

\square Sun, Yuan, 2013:

No disagreement on evolution equations!
Issues: Extrapolation to non-perturbative large b-region Choice of the Q-dependent "form factor"

"Predictions" for A_{N} of W-production at RHIC?

\square Sivers Effect:
\triangleleft Quantum correlation between the spin direction of colliding hadron and the preference of motion direction of its confined partons
\diamond QCD Prediction: Sign change of Sivers function from SIDIS and DY
\square Current "prediction" and uncertainty of QCD evolution:

TMD collaboration proposal: Lattice, theory \& Phenomenology RHIC is the excellent and unique facility to test this (WIZ - DY)!

Drell-Yan (or SIDIS) from low p_{T} to high p_{T}

\square Covers both double-scale and single-scale cases:

TMD
Collinear Factorization
\square TMD factorization to collinear factorization:
Two factorizations are consistent in the overlap region: $\quad \Lambda_{\mathrm{QCD}} \ll p_{T} \ll Q$
A_{N} finite - requires correlation of multiple collinear partons No probability interpretation! New opportunities!

How collinear factorization generates SSA?

\square Collinear factorization beyond leading power:

\square Single transverse spin asymmetry:
Efremov, Teryaev, 82;
Qiu, Sterman, 91, etc.

$$
\Delta \sigma\left(s_{T}\right) \propto T^{(3)}(x, x) \otimes \hat{\sigma}_{T} \otimes D(z)+\delta q(x) \otimes \hat{\sigma}_{D} \otimes D^{(3)}(z, z)+\ldots
$$

Qiu, Sterman, 1991, ...

Kang, Yuan, Zhou, 2010

Kanazawa, Koike, 2000

Integrated information on parton's transverse motion!
Quantum interference between a single and a composite state

Inclusive single hadron production

\square One large scale: $A\left(p_{A}, S_{\perp}\right)+B\left(p_{B}\right) \rightarrow h(p)+X$ with $\mathbf{p}_{\mathbf{T}} \gg \Lambda_{\mathbf{Q C D}}$
Three identified hadrons: $\quad A\left(p_{A}, S_{\perp}\right), B\left(p_{B}\right), h(p)$
\square QCD collinear factorization:
Qiu, Sterman, 1991, 1998, ...

$$
\begin{aligned}
A_{N} & \propto \sigma\left(p_{T}, S_{\perp}\right)-\sigma\left(p_{T},-S_{\perp}\right) \\
& =T_{a / A}^{(3)}\left(x, x, S_{\perp}\right) \otimes \phi_{b / B}\left(x^{\prime}\right) \otimes \hat{\sigma}_{a b \rightarrow c}^{T} \otimes D_{h / c}(z) \\
& +\delta q_{a / A}\left(x, S_{\perp}\right) \otimes T_{b / B}^{(3 \sigma)}\left(x^{\prime}, x^{\prime}\right) \otimes \hat{\sigma}_{a b \rightarrow c}^{\phi} \otimes D_{h / c}(z) \\
& +\delta q_{a / A}\left(x, S_{\perp}\right) \otimes \phi_{b / B}\left(x^{\prime}, x^{\prime}\right) \otimes \hat{\sigma}_{a b \rightarrow c}^{D} \otimes D_{h / c}^{(3)}(z, z)
\end{aligned}
$$

Leading power contribution to cross section cancels! Only one twist-3 distribution at each term!
\square Three-type contributions:
Spin-flip: Twist-3 correlation functions, transversity distributions
Phase: Interference between the real part and imaginary part of the scattering amplitude

Twist-3 correlation functions

\square Twist-3 polarized correlation functions:
Efremov, Teryaev, 1982, ... Qiu, Sterman, 1991, ...
$T^{(3)}\left(x, x, S_{\perp}\right) \propto$

Moment of Sivers function
\square Twist-3 unpolarized correlation functions:

\square Twist-3 fragmentation functions:

Moment of Collins function?

All these correlation functions have No probability interpretation! Quantum interference between a single and a composite state

SSAs generated by twist-3 PDFs

- First non-vanish contribution - interference:

\square Dominated by the derivative term - forward region:

$$
\begin{aligned}
& E \frac{d \Delta \sigma}{d^{3} \ell} \propto \epsilon^{\ell_{T} s_{T} T^{n \bar{n}}} D_{c \rightarrow \pi}(z) \otimes\left[-x \frac{\partial}{\partial x} T_{F}(x, x)\right] \\
& \otimes \frac{1}{-\hat{u}}\left[G\left(x^{\prime}\right) \otimes \Delta \hat{\sigma}_{q g \rightarrow c}+\sum_{q^{\prime}} q^{\prime}\left(x^{\prime}\right) \otimes \Delta \hat{\sigma}_{q q^{\prime} \rightarrow c}\right] \\
& A_{N} \propto\left(\frac{\ell_{\perp}}{-\hat{u}}\right) \frac{n}{1-x} \text { if } T_{F}(x, x) \propto q(x) \propto(1-x)^{n}
\end{aligned}
$$

\square Complete leading order contribution:

$$
\begin{aligned}
E_{\ell} \frac{d^{3} \Delta \sigma\left(\vec{s}_{T}\right)}{d^{3} \ell} & =\frac{\alpha_{s}^{2}}{S} \sum_{a, b, c} \int_{z_{\min }}^{1} \frac{d z}{z^{2}} D_{c \rightarrow h}(z) \int_{x_{\min }^{\prime}}^{1} \frac{d x^{\prime}}{x^{\prime}} \frac{1}{x^{\prime} S+T / z} \phi_{b / B}(x) \sqrt{4 \pi \alpha_{s}}\left(\frac{\epsilon^{\ell s_{T} n \bar{n}}}{z \hat{u}}\right) \\
& \times \frac{1}{x}\left[T_{a, F}(x, x)-x\left(\frac{d}{d x} T_{a, F}(x, x)\right)\right] H_{a b \rightarrow c}(\hat{s}, \hat{t}, \hat{u})
\end{aligned}
$$

Twist-3 distributions relevant to A_{N}

\square Two-sets Twist-3 correlation functions:
No probability interpretation!

$$
\widetilde{\mathcal{T}}_{q, F}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}}\left\langle P, s_{T}\right| \bar{\psi}_{q}(0) \frac{\gamma^{+}}{2}\left[\epsilon^{s T^{\sigma} \sigma \bar{n}} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] \psi_{q}\left(y_{1}^{-}\right)\left|P, s_{T}\right\rangle
$$

$\widetilde{\mathcal{T}}_{G, F}^{(f, d)}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}} \frac{1}{P^{+}}\left\langle P, s_{T}\right| F^{+\rho}(0)\left[\epsilon^{s_{T} \sigma n \bar{n}} F_{\sigma}{ }^{+}\left(y_{2}^{-}\right)\right] F^{+\lambda}\left(y_{1}^{-}\right)\left|P, s_{T}\right\rangle\left(-g_{\rho \lambda}\right)$
$\widetilde{\mathcal{T}}_{\Delta q, F}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}}\left\langle P, s_{T}\right| \bar{\psi}_{q}(0) \frac{\gamma^{+} \gamma^{5}}{2}\left[i s_{T}^{\sigma} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] \psi_{q}\left(y_{1}^{-}\right)\left|P, s_{T}\right\rangle$
$\widetilde{\mathcal{T}}_{\Delta G, F}^{(f, d)}=\int \frac{d y_{1}^{-} d y_{2}^{-}}{(2 \pi)^{2}} e^{i x P^{+} y_{1}^{-}} e^{i x_{2} P^{+} y_{2}^{-}} \frac{1}{P^{+}}\left\langle P, s_{T}\right| F^{+\rho}(0)\left[i s_{T}^{\sigma} F_{\sigma}^{+}\left(y_{2}^{-}\right)\right] F^{+\lambda}\left(y_{1}^{-}\right)\left|P, s_{T}\right\rangle\left(i \epsilon_{\perp \rho \lambda}\right)$
Twist-2 distributions:
Role of color magnetic force!

- Unpolarized PDFs:
- Polarized PDFs:

$$
\begin{aligned}
& q(x) \propto\langle P| \bar{\psi}_{q}(0) \frac{\gamma^{+}}{2} \psi_{q}(y)|P\rangle \\
& G(x) \propto\langle P| F^{+\mu}(0) F^{+\nu}(y)|P\rangle\left(-g_{\mu \nu}\right) \\
& \Delta q(x) \propto\left\langle P, S_{\|}\right| \bar{\psi}_{q}(0) \frac{\gamma^{+} \gamma^{5}}{2} \psi_{q}(y)\left|P, S_{\|}\right\rangle \\
& \Delta G(x) \propto\left\langle P, S_{\|}\right| F^{+\mu}(0) F^{+\nu}(y)\left|P, S_{\|}\right\rangle\left(i \epsilon_{\perp \mu \nu}\right)
\end{aligned}
$$

\square Twist-3 fragmentation functions:

Test QCD evolution at twist-3 level

\square Scaling violation - "DGLAP" evolution: Vogelsang, Yuan, 2009, Braun et al, 2009

\square Evolution equation - consequence of factorization:
Factorization: $\quad \Delta \sigma\left(Q, s_{T}\right)=(1 / Q) H_{1}\left(Q / \mu_{F}, \alpha_{s}\right) \otimes f_{2}\left(\mu_{F}\right) \otimes f_{3}\left(\mu_{F}\right)$
DGLAP for $\mathrm{f}_{2}: \quad \frac{\partial}{\partial \ln \left(\mu_{F}\right)} f_{2}\left(\mu_{F}\right)=P_{2} \otimes f_{2}\left(\mu_{F}\right)$
Evolution for $\mathrm{f}_{3}: \quad \frac{\partial}{\partial \ln \left(\mu_{F}\right)} f_{3}=\left(\frac{\partial}{\partial \ln \left(\mu_{F}\right)} H_{1}^{(1)}-P_{2}^{(1)}\right) \otimes f_{3}$

Scaling violation of twist-3 correlations?

\diamond Follow DGLAP at large x
\diamond Large deviation at low x (stronger correlation)

Twist-3 fragmentation contribution

\square Leading order results:

$$
\begin{aligned}
& \frac{P_{h}^{0} d \sigma_{p o l}}{d^{3} \vec{P}_{h}}=-\frac{2 \alpha_{s}^{2} M_{h}}{S} \epsilon_{\perp \mu \nu} S_{\perp}^{\mu} P_{h \perp}^{\nu} \sum_{i} \sum_{a, b, c} \int_{z_{\min }}^{1} \frac{d z}{z^{3}} \int_{x_{m i n}^{\prime}}^{1} \frac{d x^{\prime}}{x^{\prime}} \frac{1}{x^{\prime} S+T / z} \frac{1}{-x \hat{u}-x^{\prime} \hat{t}} \\
& \times \frac{1}{x} h_{1}^{a}(x) f_{1}^{b}\left(x^{\prime}\right)\left\{\left(\hat{H}^{C / c}(z)-z \frac{d \hat{H}^{C / c}(z)}{d z}\right) S_{\hat{H}}^{i}+\frac{1}{z} H^{C / c}(z) S_{H}^{i}\right. \\
&\left.+2 z^{2} \int \frac{d z_{1}}{z_{1}^{2}} P V \frac{1}{\frac{1}{z}-\frac{1}{z_{1}}} \hat{H}_{F U}^{C / c, \Im}\left(z, z_{1}\right) \frac{1}{\xi} S_{\hat{H}_{F U}}^{i}\right\}
\end{aligned}
$$

\square New fitting results:
Kanazawa, Koike, Metz, Pitonyak, PRC89, 2014

Without FF contribution

Spatial imaging of quarks and gluons

\square NO exclusive color form factor:

\diamond Exchange of a colorless "object"
« "Localized" probe
\triangleleft Control of exchanging momentum

Spatial imaging of quarks and gluons

\square NO exclusive color form factor:

\triangleleft Exchange of a colorless "object"
४ "Localized" probe
\triangleleft Control of exchanging momentum
\square Exclusive processes - DVCS:

JLab 12: Valence quarks

$$
\begin{aligned}
& \frac{d \sigma}{d x_{B} d Q^{2} d t} \\
& t=\left(p^{\prime}-p\right)^{2}
\end{aligned}
$$

$$
\uparrow \text { t-dep } \quad p^{\prime} \quad \xi=\left(P^{\prime}-P\right) \cdot n / 2
$$

GPDs
$\longrightarrow H_{q}(x, \xi, t, Q), E_{q}(x, \xi, t, Q), \ldots$
F.T. of t-dep
\longrightarrow Spatial distributions

Spatial imaging of quarks and gluons

\square NO exclusive color form factor:

\triangleleft Exchange of a colorless "object"
« "Localized" probe
\triangleleft Control of exchanging momentum
\square Exclusive processes - DVCS:

JLab 12: Valence quarks

$$
\begin{aligned}
& \frac{d \sigma}{d x_{B} d Q^{2} d t} \\
& t=\left(p^{\prime}-p\right)^{2} \\
& \xi=\left(P^{\prime}-P\right) \cdot n / 2
\end{aligned}
$$

GPDs $\Rightarrow H_{q}(x, \xi, t, Q), E_{q}(x, \xi, t, Q)$,
\square Exclusive meson production:

Exclusive DIS - measureable

ϕ [rad]

The future: Electron-Ion Collider (EIC)

\square A giant "Microscope" - "see" quarks and gluons by breaking the hadron

The future: Electron-Ion Collider (EIC)

A giant "Microscope" - "see" quarks and gluons by breaking the hadron

- "imagine (cat-scan)" nucleon and nuclei without breaking them

The future: Electron-Ion Collider (EIC)

\square A giant "Microscope" - "see" quarks and gluons by breaking the hadron

- "imagine (cat-scan)" nucleon and nuclei without breaking them
\square Why now?
Exp - advances in luminosity, energy reach, detection capability, ...
Thy - breakthrough in factorization - "see" confined quarks and gluons, ...

US EIC - Science \& Machine designs

US EIC: Microscope with superfine control

$Q^{2} \rightarrow$ Measure of resolution
$y \rightarrow$ Measure of inelasticity
$X \rightarrow$ Measure of momentum fraction of the struck quark in a proton
$Q^{2}=S \times y$

Inclusive events: $e+p / A \rightarrow e^{\prime}+X$
Detect only the scattered lepton in the detector
Semi-Inclusive events: $e+p / A \rightarrow e '+h(\pi, K, p, j e t)+X$
Detect the scattered lepton in coincidence with identified hadrons/jets in the detector

Exclusive events:_e+p/A $\rightarrow e^{\prime}+p^{\prime} / A^{\prime}+h(\pi, K, p, j e t)$
Detect every things including scattered proton/nucleus (or its fragments)

US EIC - Kinematic reach \& properties

For e-N collisions at the EIC: \checkmark Polarized beams: e, $\mathrm{p}, \mathrm{d} /{ }^{3} \mathrm{He}$
\checkmark Variable center of mass energy
\checkmark Wide Q^{2} range \rightarrow evolution
\checkmark Wide x range \rightarrow spanning from valence to low-x physics
\checkmark 100-1K times of HERA Luminosity

US EIC - Kinematic reach \& properties

For e-A collisions at the EIC:
\checkmark Wide range in nuclei
\checkmark Variable center of mass energy
\checkmark Wide Q^{2} range (evolution)
\checkmark Wide \times region (high gluon densities)

For e-N collisions at the EIC: \checkmark Polarized beams: e, p, d/3 ${ }^{3} \mathrm{He}$ \checkmark Variable center of mass energy \checkmark Wide Q^{2} range \rightarrow evolution \checkmark Wide x range \rightarrow spanning from valence to low-x physics
\checkmark 100-1K times of HERA Luminosity

US EIC - Kinematic reach \& properties

For e-A collisions at the EIC:
\checkmark Wide range in nuclei
\checkmark Variable center of mass energy
\checkmark Wide Q^{2} range (evolution)
\checkmark Wide \times region (high gluon densities)
EIC explores the "sea" and the "glue", the "valence" with a huge level arm

For e-N collisions at the EIC:
\checkmark Polarized beams: e, p, d/3 ${ }^{3} \mathrm{He}$
\checkmark Variable center of mass energy
\checkmark Wide Q^{2} range \rightarrow evolution
\checkmark Wide \times range \rightarrow spanning from valence to low-x physics
\checkmark 100-1K times of HERA Luminosity

US EIC - Physics vs. Luminosity \& Energies

US EIC - Physics vs. Luminosity \& Energies

US EIC - Physics vs. Luminosity \& Energies

Our Understanding of Nucleon Spin

\square EIC@US - the decisive measurement (1 ${ }^{\text {st }}$ year of running):
(Low x and wide x range at EIC)

Precision in $\Delta \Sigma$ and $\Delta \mathrm{g} \rightarrow$ A clear idea of the magnitude of $L_{Q}+L_{G}$
No other machine in the world can achieve this!

3-Dimensional Imaging Quarks and Gluons

3-Dimensional Imaging Quarks and Gluons

Spin-dependent 3D momentum space images from semi-inclusive scattering

3-Dimensional Imaging Quarks and Gluons

Spin-dependent 3D momentum space images from semi-inclusive scattering

Spin-dependent 2D (transverse spatial) + 1D (longitudinal momentum) coordinate space images from exclusive scattering

3-Dimensional Imaging Quarks and Gluons

3-Dimensional Imaging Quarks and Gluons

Position $r \times$ Momentum $\rho \rightarrow$ Orbital Motion of Partons

Emergence of hadrons from partons

Nucleus as a Femtometer sized filter

\square Unprecedented v range at EIC:
precision \& control

$$
\nu=\frac{Q^{2}}{2 m x}
$$

Control of v by selecting kinematics;
Also under control the nuclear size.
Colored quark emerges as color neutral hadron
\rightarrow What is nature telling us about confinement?

Emergence of hadrons from partons

Nucleus as a Femtometer sized filter

\square Unprecedented v range at EIC: precision \& control

Control of v by selecting kinematics;
Also under control the nuclear size.
Control of v by selecting kinematics;
Also under control the nuclear size.
Colored quark emerges as color neutral hadron
\rightarrow What is nature telling us about confinement?

$$
\nu=\frac{Q^{2}}{2 m x}
$$

\square Energy loss by light vs. heavy quarks:

carried by hadron, z

Identify π vs. D^{0} (charm) mesons in e-A collisions: Understand energy loss of light vs. heavy quarks traversing the cold nuclear matter:
Connect to energy loss in Hot QCD

Need the collider energy of EIC and its control on parton kinematics

Hadron structure at large x

\square Testing ground for hadron structure at $x \rightarrow 1$:
$\triangleleft d / u \rightarrow 1 / 2$
$\diamond d / u \rightarrow 0$
$\triangleleft d / u \rightarrow 1 / 5$
$\diamond d / u \rightarrow \frac{4 \mu_{n}^{2} / \mu_{p}^{2}-1}{4-\mu_{n}^{2} / \mu_{p}^{2}}$
≈ 0.42

pQCD power counting

Local quark-hadrc duality

Hadron structure at large x

Testing ground for hadron structure at $x \rightarrow 1$:
$\diamond d / u \rightarrow 1 / 2$
SU(6) Spin-flavor symmetry
$\diamond \Delta u / u \rightarrow 2 / 3$
$\Delta d / d \rightarrow-1 / 3$
$\diamond d / u \rightarrow 0$
Scalar diquark dominance
$\& \Delta u / u \rightarrow 1$
$\Delta d / d \rightarrow-1 / 3$
$\diamond d / u \rightarrow 1 / 5$
pQCD power counting
$\diamond \Delta u / u \rightarrow 1$
$\Delta d / d \rightarrow 1$
$\diamond d / u \rightarrow \frac{4 \mu_{n}^{2} / \mu_{p}^{2}-1}{4-\mu_{n}^{2} / \mu_{p}^{2}} \quad \begin{gathered}\text { Local quark-hadron } \\ \text { duality }\end{gathered}$

$$
\begin{aligned}
\diamond \Delta u / u & \rightarrow 1 \\
\Delta d / d & \rightarrow 1
\end{aligned}
$$

Can lattice QCD help?

Upcoming experiments - JLab12

\square NSAC milestone HP14 (2018):

Plus many more JLab experiments:
E12-06-110 (Hall C on ${ }^{3} \mathrm{He}$), E12-06-122 (Hall A on ${ }^{3} \mathrm{He}$),
E12-06-109 (CLAS on $\mathrm{NH}_{3}, \mathrm{ND}_{3}$), ...
and Fermilab E906, ...
Plus complementary Lattice QCD effort

Lattice calculations of hadron structure

Lattice QCD

\square New ideas - from quasi-PDFs (lattice calculable) to PDFs:
\diamond High P_{z} effective field theory approach:

$$
\tilde{q}\left(x, \mu^{2}, P_{z}\right)=\int_{x}^{1} \frac{d y}{y} Z\left(\frac{x}{y}, \frac{\mu}{P_{z}}\right) q\left(y, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda^{2}}{P_{z}^{2}}, \frac{M^{2}}{P_{z}^{2}}\right)
$$

\diamond QCD collinear factorization approach:

$$
\underset{\uparrow}{\tilde{q}\left(x, \mu^{2}, P_{z}\right)}=\sum_{f} \int_{0}^{1} \frac{d y}{y} \mathcal{C}_{f}\left(\frac{x}{y}, \frac{\mu^{2}}{\overline{\mu^{2}}}, P_{z}\right) f\left(y, \bar{\mu}^{2}\right)+\mathcal{O}\left(\frac{1}{\mu_{\uparrow}^{2}}\right)
$$

Ji, et al.,
arXiv:1305.1539
1404.6680

Ma and Qiu,
arXiv:1404.6860
1412.2688

Ishikawa, Qiu, Yoshida,

High twist Power corrections

Unmatched potential: PDFs of proton, neutron, pion, ..., and TMDs and GPDs, .

Summary

\square Since the "spin crisis" in the $80^{\text {th }}$, we have learned a lot about proton spin - there is a need for orbital contribution
\square Single transverse-spin asymmetry in real, and is a unique probe for hadron's internal dynamics - Sivers, Collins, twist-3, ... effects
\square Lattice QCD has made a lot of progress, and is ready to make real impact on hadron properties and structure
\square QCD has been extremely successful in interpreting and predicting high energy experimental data!
\square But, we still do not know much about hadron structure - a lot of work to do!

Thank you!

Backup slides

Basics for spin observables

\square Factorized cross section:

$$
\begin{gathered}
\sigma_{h(p)}(Q, s) \propto\langle p, \vec{s}| \mathcal{O}\left(\psi, A^{\mu}\right)|p, \vec{s}\rangle \\
\text { e.g. } \mathcal{O}\left(\psi, A^{\mu}\right)=\bar{\psi}(0) \hat{\Gamma} \psi\left(y^{-}\right) \quad \text { with } \hat{\Gamma}=I, \gamma_{5}, \gamma^{\mu}, \gamma_{5} \gamma^{\mu}, \sigma^{\mu \nu}
\end{gathered}
$$

\square Parity and Time-reversal invariance:

$$
\langle p, \vec{s}| \mathcal{O}\left(\psi, A^{\mu}\right)|p, \vec{s}\rangle=\langle p,-\vec{s}| \mathcal{P} \mathcal{T} \mathcal{O}^{\dagger}\left(\psi, A^{\mu}\right) \mathcal{T}^{-1} \mathcal{P}^{-1}|p,-\vec{s}\rangle
$$

\square IF: $\langle p,-\vec{s}| \mathcal{P} \mathcal{T} \mathcal{O}^{\dagger}\left(\psi, A^{\mu}\right) \mathcal{T}^{-1} \mathcal{P}^{-1}|p,-\vec{s}\rangle= \pm\langle p,-\vec{s}| \mathcal{O}\left(\psi, A^{\mu}\right)|p,-\vec{s}\rangle$

$$
\text { or }\langle p, \vec{s}| \mathcal{O}\left(\psi, A^{\mu}\right)|p, \vec{s}\rangle= \pm\langle p,-\vec{s}| \mathcal{O}\left(\psi, A^{\mu}\right)|p,-\vec{s}\rangle
$$

Operators lead to the " + " sign spin-averaged cross sections

Operators lead to the "-" sign spin asymmetries
\square Example:

$$
\begin{aligned}
& \mathcal{O}\left(\psi, A^{\mu}\right)=\bar{\psi}(0) \gamma^{+} \psi\left(y^{-}\right) \Rightarrow q(x) \\
& \mathcal{O}\left(\psi, A^{\mu}\right)=\bar{\psi}(0) \gamma^{+} \gamma_{5} \psi\left(y^{-}\right) \Rightarrow \Delta q(x) \\
& \mathcal{O}\left(\psi, A^{\mu}\right)=\bar{\psi}(0) \gamma^{+} \gamma^{\perp} \gamma_{5} \psi\left(y^{-}\right) \Rightarrow \delta q(x) \rightarrow h(x) \\
& \mathcal{O}\left(\psi, A^{\mu}\right)=\frac{1}{x p^{+}} F^{+\alpha}(0)\left[-i \varepsilon_{\alpha \beta}\right] F^{+\beta}\left(y^{-}\right) \Rightarrow \Delta g(x)
\end{aligned}
$$

Spin decomposition

\square The "big" question:
If there are infinite possibilities, why bother and what do we learn?
\square The "origin" of the difficulty/confusion:
QCD is a gauge theory: a pure quark field in one gauge is a superposition of quarks and gluons in another gauge
\square The fact:
None of the items in all spin decompositions are direct physical observables, unlike cross sections, asymmetries, ...
\square Ambiguity in interpretation - two old examples:
\diamond Factorization scheme:

$$
F_{2}\left(x, Q^{2}\right)=\sum_{q, \bar{q}} C_{q}^{\mathrm{DIS}}\left(x, Q^{2} / \mu^{2}\right) \otimes q^{\mathrm{DIS}}\left(x, \mu^{2}\right) \quad \text { No glue contribution to } \mathcal{F}_{2} ?
$$

\diamond Anomaly contribution to longitudinal polarization:

$$
\begin{aligned}
g_{1}\left(x, Q^{2}\right)= & \sum_{q, \bar{q}} \widetilde{C}_{q}^{\mathrm{ANO}} \otimes \Delta q^{\mathrm{ANO}}+\widetilde{C}_{g}^{\mathrm{ANO}} \otimes \Delta G^{\mathrm{ANO}} \\
& \Delta \Sigma \longrightarrow \Delta \Sigma^{\mathrm{ANO}}-\frac{n_{f} \alpha_{s}}{2 \pi} \Delta G^{\mathrm{ANO}} \quad \text { Larger quark helicity? }
\end{aligned}
$$

Spin decomposition

\square Key for a good decomposition - sum rule:
\checkmark Every term can be related to a physical observable with controllable approximation - "independently measurable"

DIS scheme is ok for F2, but, less effective for other observables
Additional symmetry constraints, leading to "better" decomposition?
\diamond Natural physical interpretation for each term - "hadron structure"
\triangleleft Hopefully, calculable in lattice QCD - "numbers w/o distributions"
The most important task is,
Finding the connection to physical observables!

QCD factorization for SIDIS

\square Collinear gluons:

Collinear longitudinally polarized gluons do not change the collinear collision kinematics
\square Soft interaction:

If the interaction between two jet functions can resolve the "details" of the jet functions, the jet functions could be altered before hard collision - break of the factorization

Most notable TMD parton distributions (TMDs)

\square Sivers function - transverse polarized hadron:

$$
\begin{aligned}
f_{q / p, \boldsymbol{S}}\left(x, \boldsymbol{k}_{\perp}\right) & =f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right) \\
& =f_{q / p}\left(x, k_{\perp}\right)-\frac{k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
\end{aligned}
$$

\square Boer-Mulder function - transverse polarized quark:

$$
\begin{aligned}
f_{q, s_{q} / p}\left(x, \boldsymbol{k}_{\perp}\right) & =\frac{1}{2} f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q^{\uparrow} / p}\left(x, k_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right) \\
& =\frac{1}{2} f_{q / p}\left(x, k_{\perp}\right)-\frac{1}{2} \frac{k_{\perp}}{M} h_{1}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
\end{aligned}
$$

Affect angular distribution of Drell-Yan lepton pair

Most notable TMD fragmentation functions (FFs)

- Collins function - FF of a transversely polarized parton:

$$
\begin{aligned}
D_{h / q, s_{q}}\left(z, \boldsymbol{p}_{\perp}\right) & =D_{h / q}\left(z, p_{\perp}\right)+\frac{1}{2} \Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right) \\
& =D_{h / q}\left(z, p_{\perp}\right)+\frac{p_{\perp}}{z M_{h}} H_{1}^{\perp q}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)
\end{aligned}
$$

Collins function
\square Fragmentation function to a polarized hadron:

$$
\begin{aligned}
D_{\Lambda, S_{\Lambda} / q}\left(z, \boldsymbol{p}_{\perp}\right) & =\frac{1}{2} D_{h / q}\left(z, p_{\perp}\right)+\frac{1}{2} \Delta^{N} D_{\Lambda^{\prime} / q}\left(z, p_{\perp}\right) \boldsymbol{S}_{\Lambda} \cdot\left(\widehat{\boldsymbol{p}}_{q} \times \widehat{\boldsymbol{p}}_{\perp}\right) \\
& =\frac{1}{2} D_{h / q}\left(z, p_{\perp}\right)+\frac{p_{\perp}}{z M_{\Lambda}} D_{1 T}^{\perp q}\left(z, p_{\perp}\right) \boldsymbol{S}_{\Lambda} \cdot\left(\widehat{\boldsymbol{p}}_{q} \times \widehat{\boldsymbol{p}}_{\perp}\right)
\end{aligned}
$$

Unpolarized parton fragments into a polarized hadron - Λ

Importance of the evolution - II

\square Q-dependence of the "form factor":
Konychev, Nadolsky, 2006

At $Q \sim 1 \mathrm{GeV}, \ln \left(Q / Q_{0}\right)$ term may not be the dominant one!

$$
\mathcal{F}^{\mathrm{NP}} \approx b^{2}\left(a_{1}+a_{2} \ln \left(Q / Q_{0}\right)+a_{3} \ln \left(x_{A} x_{B}\right)+\ldots\right)+\ldots
$$

[^0]: OCesses

