The observation of $Z_c(4025)$

Landiao Liu (刘兰雕)

PKU (北京大学) UCAS (中国科学院大学) BESIII Collaboration

Outline

- Introduction
- The observation of Zc(4025)^{+/-}
- The observation of Zc(4025)⁰
- Summary

PART 1

Introduction

Constitution of hadrons in QCD

Quark Model

Mesons Color-anticolor pairs

Baryons Red-blue-green triplets

Exotic states predicted by QCD

Tetraquark

Tightly bound diquark&anti-diquark

Molecule

Loosely bound meson&anti-meson

Pentaquark

S=+1

Six-quark state

Tightly bound 6 quarks

Hybird

More than 2 quarks and gluon

Charmonium Spectroscopy

Below open charm threshold

Good agreement between discovery and theoretical prediction.

Above open charm threshold

Many expected states are not observed Many unexpected states are observed: XYZ states

Data samples for XYZ states at BESIII

• Luminosity~5 fb⁻¹

• Large data samples around Ψ(4040), Y(4260), Y(4360), Ψ(4415) and Y(4660)

Z_c states at BESIII

- $Z_c(3900)^{+/-}$ in $e^+e^- \rightarrow \pi^+ \pi^- J/\Psi$ PRL 110,252001 (2013)
- $Z_c(3900)^0$ in $e^+e^- \rightarrow \pi^0 \pi^0 J/\Psi$ arXiv:1506.06018
- $Z_c(3885)^{+/-}$ in $e^+e^- \rightarrow \pi^+$ ($D\overline{D}^*$)⁻ PRL 112, 022001 (2014)
- $Z_c(3885)^0$ in $e^+e^- \rightarrow \pi^0 (D\overline{D}^*)^0$ Preliminary
- $Z_c(4020)^{+/-}$ in $e^+e^- \rightarrow \pi^+ \pi^- h_c$ PRL 111.242001 (2013)
- $Z_c(4020)^0$ in $e^+e^- \rightarrow \pi^0 \pi^0 h_c$ PRL 113,212002 (2014)
- $Z_c(4025)^{+/-}$ in $e^+e^- \rightarrow \pi^+ (D^*\overline{D}^*)^-$ PRL 112,132001 (2013)
- $Z_c(4025)^0$ in $e^+e^- \rightarrow \pi^0 (D^*\overline{D}^*)^0$ arXiv:1507.02404

$e^+e^- \rightarrow \pi Z_c(3900)^{+/-/0} \rightarrow \pi \pi J/Ψ$

- Z_c(3900)^{+/-}, observed by BESIII, confirmed by Bell and CLEO-c data.
- Z_c(3900)⁰, evidence with 3.7σ at CLEO-c, observed by BESIII.

Z _c (3900)	Mass(MeV)	Width(MeV)
Z _c (3900) ^{+/-}	3899.0 <u>+</u> 3.6 <u>+</u> 4.9	46 ±10±20
Z _c (3900) ⁰	3894.8 <u>+</u> 2.3 <u>+</u> 2.7	29.6 <u>+</u> 8.2 <u>+</u> 8.2

Iso-spin triplet is established!

e⁺e⁻→π Z_c(3885)^{+/-/0} → π ($D\overline{D}^*$)

preliminary

- $Z_c(3885)^{+/-/0}$, observed by BESIII.
- Have a mass and width close to Z_c(3900).

Z _c (3885)	Mass(MeV)	Width(MeV)
Z _c (3885) ^{+/-}	3883.9 <u>+</u> 1.5 <u>+</u> 4.2	24.8 <u>+</u> 3.3 <u>+</u> 1.0
Z _c (3885) ⁰	3885.7 ^{+4.3} _{-5.7} ±8.4	35 ⁺¹¹ ₋₁₂ ±15

Iso-spin triplet is established!

$e^+e^- \rightarrow \pi Z_c(4020)^{+/-/0} \rightarrow \pi \pi h_c$

$e^+e^- \rightarrow \pi Z_c(4025)^{+/-/0} \rightarrow \pi (D^*\overline{D}^*)$

- $Z_c(4020)^{+/-/0}$, observed by BESIII.
- The $Z_c(4020)$ and $Z_c(4025)$ are consistent within 1.5 σ .
 - If they are the same state:

 $\frac{\Gamma(Z_c(4025) \rightarrow D^*\overline{D}^*)}{\Gamma(Z_c(4020) \rightarrow \pi h_c)} = 12 \pm 5$

Iso-spin triplet is established!

Z _c (4020)	Mass(MeV)	Width(MeV)
Z _c (4020) ^{+/-}	4026.3±2.6±3.7	24.8±5.6±7.7
Z _c (4020) ⁰	4025.5 ^{+2.0} _{-4.7} ±3.1	23.0 <u>±</u> 6.0 <u>±</u> 1.0

Summary of Z_c states at BESIII

PART 2

Zc(4025)+/-

Topology

Flow chart

Invariant mass of $K^-\pi^+\pi^+$

- We reconstruct a D⁺ with only K⁻ π^+ π^+ .
- The dots are data and histograms are MC.
- The M(K⁻ π^+ π^+) is required to be in (1.854, 1.884)GeV/c².

D⁺ recoiling mass

- The variable RM(D⁺)+M(D⁺)-m(D⁺) could improve the mass resolution by reducing the correlation of RM(D⁺) and M(D⁺).
- To remove the background $e^+e^- > D^{(*)} D^{(*)}$, we require $RM(D^+) + M(D^+) m(D^+) > 2.3 GeV/c^2$.

Require an additional π^{0}

$D^+\pi^-$ recoiling mass

- The left peak corresponds to $DD^* \pi$ process while the right one corresponds to $D^* D^* \pi$ process
- The green histogram is Wrong Sign. We use it to describe the combinatorial backgrounds.

Fit to data

- Signal: efficiency-weighted S wave mass-dependent BW convoluted with a detector resolution function.
- Background: kernel-estimate of Wrong Sign Shape and its magnitude is fixed to the number of the fitted background.
- PHSP: The shape of the PHSP signal is taken from MC simulation and its amplitude is taken as a free parameter.

Systematic uncertainties

Source	$m({\rm MeV}/c^2)$	$\Gamma(MeV)$	$\sigma_{\rm tot}(\%)$	R(%)
Tracking			4	
Particle ID			5	
Tagging π^0			4	
Mass scale	1.8			
Signal shape	1.4	7.3	1	5
Backgrounds	1.5	0.6	5	5
Efficiencies	0.9	2.2	1	5
D^{**} states	2.2	0.7	5	2
Fit range	0.9	0.9	1	1
$D^{*+}\bar{D}^{*0}\pi^{-}$ line shape			4	
PHSP model			2	2
Luminosity			1.0	
Branching fractions			2.6	
total	3.7	7.7	11	9

D*D** process

- Non-peaking type won't contribute to the peak.
- Type I: Much broader than the peak.
- Type II: may affect the result, its amplitude need to be decided through fit.

- Type I: add an additional component D^{*}D^{**}.
- Fix its amplitude and obtain the shape from MC.
- The resonance is still significance.
- The change of results are considered as systematic uncertainties.

- Type II: add an additional component D^{*}D**.
- Float its amplitude and obtain the shape from MC.
- No sign of type II from the fit.

PART 3

Zc(4025)⁰

Topology

Flow chart

Double tag method

• Tag a D and a \overline{D}

mode 0: $D^0 \to K^- \pi^+ + c.c.$ mode 1: $D^0 \to K^- \pi^+ \pi^0 + c.c.$ mode 3: $D^0 \to K^- \pi^+ \pi^+ \pi^- + c.c.$

mode 200: $D^+ \rightarrow K^- \pi^+ \pi^+ + c.c.$

Choose the best combination with minimum R

$$R = \sqrt{\chi^2_{KF}(D) + \chi^2_{KF}(\overline{D})}$$

• Why double tag?

Double tag will reduce the efficiency dramatically, but it will also remove lots of backgrounds. In our analysis, how to suppress the background is crucial.

χ^2_{KF} of K^- π^+ π^+

We apply different cut for different mode: Mode 0, 3, 200: χ^2_{KF} <15 Mode 1 : χ^2_{KF} <20

γ veto method

- To reject backgrounds, each photon candidate originating from the bachelor π^0 is required not to form a π^0 (M($\gamma \gamma$))with any other photon in the event.
- γ veto could rise the signal-to-background ratio dramatically.

Select a good π^0

- After γ veto, the signal-to-background ratio becomes good.
- We require the Invariant mass of π^0 lies in the region (0.12,0.145)GeV/c²

The invariant mass of $D \pi^0(\overline{D} \pi^0)$

- The deep color region corresponds to the D* peak
- Since we should remove the π^0 from D^{*}. We require M(D π^0) and M($\overline{D} \pi^0$) are lager than 2.02GeV/c².

The recoil mass of D $\pi^0(\overline{D} \pi^0)$ $DD^* \pi$ process Events/(10MeV/c²) 0 0 0 0 s=4.23GeV √s=4.26GeV Events/(10MeV/c² 200 150 $D^* D^* \pi \text{ process}$ 100 (\mathbf{a}) \mathbf{b} 50 0 0 2.1 2.2 2 2 2.1 2.2 $RM(D\pi^0)(GeV/c^2)$ $\overline{RM}(D\pi^0)$ (GeV/c²)

- The left peak around $2GeV/c^2$ corresponds to the D^{*} peak.
- The right peak around 2.15GeV/c² is produced by $D^* D^* \pi^0$ process.
- The phase space of missing energy is limit, which includes a D^{*} and a soft π . Because of the soft π , the peak of RM(D π^0) will shift up from D^{*} to about 2.15GeV/c². The resolution of the peak will be broadened slightly.

Why oval cut?

oval cut can removes more background than quadrate cut.

Why oval @4230 is smaller than @4260?

the phase-space of missing energy @4230 is smaller than @4260, so the peak @4230 is sharper than @4260.

Simultaneous fit

- Signal: efficiency-weighted S wave mass-dependent BW convoluted with a detector resolution function.
- Background: kernel-estimate of Wrong Sign Shape and its magnitude is fixed to the number of the fitted background.
- PHSP: The shape of the PHSP signal is taken from MC simulation and its amplitude is taken as a free parameter.

Source	$m({ m MeV}/c^2)$	$\Gamma({\rm MeV})$	$\sigma_{4230}(\%)$	$\sigma_{4260}(\%)$.
Tracking			5	5
Particle ID			5	5
π^0 reconstruction			4	4
Photon veto			4.2	4.2
Mass scale	2.6			
Detector resolution	0.2	0.1	0.3	0.5
Backgrounds	0.6	0.2	5.6	5.4
Oval cut	1.5	1.0	4.2	2.0
Fit range		0.1	0.3	0.5
$D^* \bar{D}^* \pi^0$ line shape			6.0	3.0
Luminosity			1	1
\mathcal{B}_1 and \mathcal{B}_2			6.5	5.3
Isospin violation		0.2	0.3	0.2
Vacuum polarization			0.5	0.5
Total	3.1	1.0	14.6	12.5

Comparison between $Z_c(4025)\ ^0$ and $Z_c(4025)\ ^+$

	Mass(MeV/c ²)	Width(MeV/c ²)	$\sigma(e^+e^- \rightarrow Z_c(4025) \pi \rightarrow D^*\overline{D}^*\pi)$ (pb) @4.26GeV
$Z_c(4025)^{0}$	$4025.5^{+2,0}_{-4.7}\pm 3.1$	$23.0 \pm 6.0 \pm 1.0$	$43.4 \pm 8.0 \pm 5.4$
$Z_c(4025)$ +	$4026.3 \pm 2.6 \pm 3.7$	$24.8 \pm 5.6 \pm 7.7$	$42.2 \pm 2.8 \pm 4.6$

PART 3

Summary

- BESIII has observed serval Zc states. They should consist of at least four quarks and considered as candidates of tetra-quark state.
- Tetra-quarks or molecules?
- e⁺e⁻->Ζ_c ππ?
- More Z_c ?

36