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Neutrino	  Oscilla*ons	  and	  Mixing	  	  	  

v Standard	  model	  is	  too	  good	  with	  data	  before	  neutrino	  oscilla*ons	  	  
v But	  neutrino	  oscilla*ons	  	  	  	  	  	  	  neutrino	  mixing	  	  	  	  	  	  	  	  	  neutrino	  masses!	  
v How	  to	  expend	  the	  Standard	  model	  to	  generate	  neutrino	  mass?	  
v Much	   small	   masses	   and	   much	   larger	   mixing	   comparing	   with	  
quarks:	  not	  natural	  if	  only	  Dirac	  masses	  with	  	  	  	  	  	  	  	  

v Mixing	  matrix	  

v An*-‐neutrinos	  are	  the	  same	  as	  neutrinos?	  
	  	  	  	  Majorana	  or	  Dirac?	  

!υR
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Neutrino	  Oscilla*ons	  and	  Mixing	  	  

v More	  precise	  neutrino	  data	  

v Normal	  ordering	  or	  inverted	  ordering?	  

A global fit to neutrino oscillation data 

Forero, Tortola, Valle (2014) 

Neutrinos Concha Gonzalez-Garcia3ν Flavour Parameters
• For for 3 ν’s : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases
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Neutrino Mass Ordering 

Predic*ve	  models?	  
May	  be	  ruled	  out	  by	  
experiments!	  
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Why	  Neutrinos	  Have	  Masses?	  

v God	  should	  use	  natural	  way	  to	  generate	  neutrinos	  masses	  
v Sea-‐saw:	  tree	  level	  Majorana	  masses	  of	  	  	  	  	  	  &	  no	  fine-‐tuning	  Dirac	  

	  	  	  	  very	  heavy	  neutrinos	  	  	  
v  	   Radia*ve	   neutrino	   masses:	   naturally	   small	   due	   to	   the	   loop	  
correc*ons,	  less	  parameters	  and	  thus	  predic*ve	  
u Simple	  and	  clean:	  only	  Majorana	  Masses	  of	  	  
u Renormalizable,	  no	  counter-‐term	  and	  thus	  calculable	  

!υR

Neutrino Mass Generation Neutrino Mass Generation at Tree Level

Neutrino Mass Generation

Seesaw mechanism (Type I, Type II, Type III...)
In Type I seesaw, some heavy right-handed neutrinos NR are
introduced.

L = −φ†ℓLyνNR −
1

2
N c

RMNR + h.c.

→ −νLmDNR −
1

2
N c

RMNR + h.c. mD = yν⟨φ⟩

Mass matrix
(

0 mD

mT
D M

)

→ mν = −mDM
−1mT

D + · · ·
(if mD ≪ M)

Typical scale
· If Yukawa coupling is O(1), mD ∼ 100 GeV and M ∼ 1014 GeV.
Super heavy NR → light neutrino masses.

Takashi Toma (IPPP) Internal Seminar 7th June 2013 4 / 34
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Neutrino Mass Generation Examples of Models

Examples of Models
Zee model

SU(2)L U(1)Y
φ2 2 1
h+ 1 1

· neutrino mass (1-loop level)

Ma model

SU(2)L U(1)Y Z2

Ni 1 0 −1
η 2 1/2 −1

· neutrino mass (1-loop level)
· DM candidates (N1 or η0)

V = µφT
1 φ2h

−

V =
λ5

2

(

φ†η
)2

Takashi Toma (IPPP) Internal Seminar 7th June 2013 7 / 34
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Radia*ve	  Neutrino	  Masses	  

v Zee	  model	  (1980)	  
u 2HDM+charged	  singlet	  
u Majorana	  Yukawa	  couplings	  
u Was	  studied	  extensively	  

v Zee-‐Babu	  model	  
u Majorana	  Yukawa	  couplings	  
	  	  	  	  of	  both	  L	  &	  R	  leptons	  
u S*ll	  compa*ble	  with	  data	  

v Ma	  model	  
u R	  neutrinos	  are	  odd	  under	  Z2	  
u Inert	  doublet	  scalar	  
u Both	  can	  be	  dark	  ma<er	  candidates	  

Neutrino Mass Generation Examples of Models

Examples of Models

Zee-Babu model
SU(2)L U(1)Y

h+ 1 1
k++ 1 2

· neutrino mass (2-loop level)

Krauss-Nasri-Trodden model
SU(2)L U(1)Y Z2

S
+
1 1 1 +1

S
+
2 1 1 +1

NR 1 0 −1

· neutrino mass (3-loop level)
· DM candidate (NR)

V = µh−2
k++

V = λs

(

S+
1 S

−
2

)2

Non-self conjugate coupling is required.

Takashi Toma (IPPP) Internal Seminar 7th June 2013 8 / 34
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Zee	  Model	  

v The	  general	  Zee	  model:	  both	  doublets	  have	  Yukawa:	  the	  Yukawa	  
couplings	  matrix	  cannot	  be	  diagonized	  

v Neutrino	  mass	  matrix	  

v There	  are	  non-‐zero	  diagonal	  elements	  
v But	  tree	  level	  FCNC:	  Wolfenstein	  Suggest	  a	  Z2	  to	  prevent	  
	  	  	  	  the	  second	  Yukawa	  
v Mass	  matrix	  with	  vanishing	  diagonal	  elements	  
v Phases	  of	  fab	  are	  absorbed	  to	  

Radiative loop corrections might come in handy!

Chapter 6

Radiative loop corrections

6.1 The Zee Model

The dimension 5 operator can also originate from radiative loop corrections. In the Zee model,
the electroweak sector of the Standard Model is extended with an extra charged scalar field,
which transforms as a singlet under SU(2) and couples to the lepton and Higgs doublets [61].
To preserve gauge invariance, h+ can not acquire a vacuum expectation value, only Higgs
doublets ⇥ break symmetry spontaneously. The Majorana neutrinos can thus couple to this
newly introduced scalar field and generate the dimension 5 operator. The new charged scalar
field has lepton number 2. Lepton number is therefore broken in the coupling with the Higgs
doublets.

A radiative contribution as seen in figure 6.1, generates the neutrino mass matrix.

Figure 6.1: Zee model

The coupling between two left handed doublets and the charged Higgs singlet gives the fol-
lowing contribution to the Lagrangian:

fac(⇤iaLC⇤jcL)�ijh+ h.c, (6.1)

91/121

h+

Extra scalar field:

New approach: 
Minimal deviation from tribimaximal

Frobenius and Zee could just be the right match!
12/12

Wednesday, June 26, 2013

flavor	  can	  
change	  

L. Wolfenstein (1980) 

Smirnov, Tanimoto (1997) 
Jarlskog, Matsuda, Skaldhauge, Tanimoto (1999) 
Frampton, Glashow (1999) 

( )C. Jarlskog et al.rPhysics Letters B 449 1999 240–252 241

Another issue, to be understood, is why the neutrino masses are so small? The most popular answer to the
w xlatter question is given by the see-saw mechanism 12 which introduces heavy right-handed Majorana neutrinos

with masses of the order 1010y1016 GeV. This attractive model has been extensively studied in the literature.
However, it is important to consider also other possible scenarios with small neutrino masses, specially

Ž . w xextensions of the standard model SM at a low energy scale. The Zee model 13 is such an alternative and has
w xbeen studied in the literatures for almost twenty years 14–18 . In this paper, we will discuss the present status

of the Zee mass matrix, in the light of recent experimental results.
w xIn the Zee model 13 neutrino masses are generated by radiative corrections, and hence the model may

provide an explanation of the smallness of neutrino masses. In this model, the following Lagrangian is added to
the SM;

c y T y
X XLLs f C is C h qmF is F h qh.c.Ž .Ý l l l L 2 l L 1 2 2

Xl , l se ,m ,t
c c c cy ys2 f n m ye n h q2 f n t ye n hŽ . Ž . Ž . Ž .em eL L L mL et eL L L t L

c c y q 0 0 q yq2 f n t ym n h qm F F yF F h qh.c. , 1Ž . Ž . Ž .Ž .mt mL L L t L 1 2 1 2

Ž .T Ž q 0.T "whereC s n ,l , F s F ,F , is1,2. The Higgs potential is omitted here. The charged Zee boson, h ,l L l L i i i
Ž .is a singlet under SU 2 . We need at least two Higgs doublets in order to make the Zee mechanism viable,L

since the antisymmetric coupling to the Zee boson is the cause of ByL violation, and hence of Majorana
masses. Note that only F couples to leptons, as in the SM. The mass matrix, generated by radiative correction1

w xat one loop level 13–18 , is given by

0 m mem et

m 0 m , 2Ž .em mt# 0m m 0et mt

where
mÕ22 2 2 2m s f m ym F M ,MŽ .Ž .em em m e 1 2Õ1
mÕ22 2 2 2m s f m ym F M ,M 3Ž .Ž . Ž .et et t e 1 2Õ1
mÕ22 2 2 2m s f m ym F M ,MŽ .Ž .mt mt t m 1 2Õ1

and
1 1 M 2

12 2F M ,M s ln . 4Ž .Ž .1 2 2 2 2 216p M yM M1 2 2

The parameter Õ is the vacuum expectation value of the neutral component of the Higgs doublet F .M1Ž2. 1Ž2. 1
and M are the masses of the physical particles defined by the fields2

HqshqcosfyFqsinf , HqshqsinfqFqcosf , 5Ž .1 2

where Fq is the charged Higgs boson that would have been a physical particle in the absence of the hq.
Finally, the mixing angle f is defined by

'4 2 mMWtan2fs . 6Ž .
222 2 y1'(g M yM y 4 2 g mMŽ . Ž .1 2 W

couplings	  fab	  
are	  an*-‐
symmetric	  

!lR
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1 Problems of Our Previous Model

In our previous model, there is 2 Higgs doublets, i.e. �1 and �2, one charged singlet �± and one complex dark matter candidate
�0. To simplify the model we only considered the case that only �1 couples to fermions via Yukawa terms. I found the strange
symmetry Z02 to forbid �2 Yukawa interactions is actually a Z4 symmetry.

However, it was pointed out that this model was ruled out by the recent neutrino experiment results. The main reason is that
the mass matrix of the Majorana left-handed neutrinos via Zee mechanism is an real o↵-diagonal matrix M⌫:

0
BBBBBBBB@

0 a c
a 0 b
c b 0

1
CCCCCCCCA ⌘

0
BBBBBBBB@

0 meµ me⌧

meµ 0 mµ⌧
me⌧ mµ⌧ 0

1
CCCCCCCCA (1)

where

mab = fab(m2
b � m2

a)
v2
v1

F(M2
1 ,M

2
1), F(M2

1 ,M
2
1) =

1
16⇡2

1
M2

1 � M2
1

ln
M2

1

M2
2

(2)

M1 and M2 are the masses of physical charged scalars as mixing particles of �+ and '+ in the 2-higgs doublets. Why fab have to
be real numbers? We assume that a unitary transformation of leptons V diagonalize the Yukawa coupling matrix of leptons ya,bl .
Then EL,a = VabE0L,b and eR,a = Ṽabe0R,b. In this transformation the couplings fab becomes

fab ! f 0ab = (VT f V)ab, ⇥ab = arg[(VT f V)ab] VT f V ⌘ g (3)

⇥ab are the phases of gab = rabei⇥ab . We can find a diagonal matrix K = diag(eik1 , eik2 , eik3 ), so that the phases in fab can be
absorbed: 2⇥ = ⇥12 + ⇥23 + ⇥13 and

K =

0
BBBBBBBB@

ei(�⇥+⇥23) 0 0
0 ei(�⇥+⇥13) 0
0 0 ei(�⇥+⇥12)

1
CCCCCCCCA V 0 = KV (4)

Then
fab ! (V 0T f V 0)ab (5)

becomes real. We can choose matrix V 0 so that the Yukawa couplings ya,bl are diagonalized, however, diagonal matrix K commutes
with any diagonal matrix:

V†yṼ = K(V 0†yṼ 0)k† = V 0†yṼ 0 (6)

So Yukawa couplings ya,bl are diagonalized by V 0 as V we chose previously. The Majorana matrix M⌫ has only 3 parameters and
when it’s diagonalized to be diag(m1,m2,m3), m1 + m2 + m3 = 0 and the neutrino mixing angles are also determined by these 3
parameters. It’s very di�cult to explain the mass square di↵erences �m2

i and the not small ✓1,3 and the possible phase with ✓1,3.
However, we can add one more charged scalar �±2 so that we have 2 sets of couplings with the leptons: f 1

ab and f 2
ab. Since the

phases in f 1
ab are absorbed by matrix K, the phases in f 2

ab cannot be absorbed again. Then we can have complex Majorana matrix
M⌫!

2 Two Higgs Doublets and Complex Singlets

There is 2 Higgs doublets, i.e. �1 and �2 in this model. �1 is the SM-like doublet, while �2 is the doublet with no Yukawa
couplings. It’s more natural to assume both doublets a 1-to-1 symmetry (somehow like parity, we may discuss this later.) to the 8
singlet scalars �±1 , �±2 and �0

1, �0
2: The ”parity” symmetry between �2 and �±1 , �

±
2 , �

0
1, �

0
2 forbids us to add any number of singlets

in this model.
To make the notations uniform, we denote the components of �1, �2 and �± and �0 as

�1 =

 
'+1
'0

1

!
�2 =

 
'+2
'0

2

!
�+1

�0
1 = (�1 + i�2)/

p
2

�+2
�0

2 = (�3 + i�4)/
p

2
(7)

where � j can acquire vev v j/
p

2: '0
j = (v j + ⌘ j + i�i)/

p
2 where j = 1, 2 and ⌘ j, �i are real fields. The 2 complex singlets �+j and

�0
j does not form a doublet.

1
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v Zee-‐Wolfenstein	  model	  was	  ruled	  out	  by	  data	  
v Even	  when	   fab	   are	  complex,	   the	  mass	  matrix	  predicts	  bimaximal	  
mixing,	  thus	  is	  not	  compa*ble	  with	  	  

v Symmetric	  mass	  matrix	  

v Only	  solu*on	  of	  inverted	  ordering	  is	  possible,	  but	  it	  give	  large	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  <≈1,	  far	  from	  the	  current	  data	  
v Babu	  and	   Julio	   imposed	  a	   family-‐dependent	  Z4	   symmetry	  ac*ng	  
on	  the	  leptons	  	  

v Non-‐zero	  diagonal	  but	  avoid	  FCNC,	  somehow	  save	  Zee	  model	  
	  

Neutrinos Concha Gonzalez-GarciaFlavour Parameters: Present Status 1σ (3σ):
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−0.46

)
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(
+2.5
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)

∆m2
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(
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× 10−3 eV2 θ23 =

⎧
⎨

⎩
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(
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−4.8◦
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+4.3◦
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⎧
⎨

⎩
(N) 315◦+36◦

−84◦

(
+45◦

−315◦
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(I) 270◦+50◦

−68◦
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⎝
0.799 → 0.844 0.515 → 0.581 0.129 → 0.173
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0.233 → 0.538 0.450 → 0.722 0.573 → 0.787
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⎠

Koide (2001) 
X.G. He (2004) 

Can the Zee model explain the observed neutrino data?

Yoshio Koide*
Department of Physics, University of Shizuoka, 52-1 Yada, Shizuoka 422-8526, Japan

!Received 24 April 2001; published 14 August 2001"

The eigenvalues and mixing angles in the Zee model are investigated parameter independently. When we
require !#m12

2 /#m23
2 !!1 in order to understand the solar and atmospheric data simultaneously, the only

solution is one that gives bimaximal mixing. It is pointed out that the present best-fit value of sin2 2$solar in the
Mikheyev-Smirnov-Wolfenstein large mixing angle solution cannot be explained within the framework of the
Zee model, because we derive a severe constraint on the value of sin2 2$solar , sin2 2$solar%1"(1/
16)(#msolar
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Of the neutrino mass matrix models proposed currently,
the Zee model &1' is a very attractive one, because the model
can naturally lead to a large neutrino mixing with few pa-
rameters &2–4'. The neutrino mass matrix M ( in the basis on
which the charged lepton mass matrix Me is diagonal is
given by the form

M ("m0# 0 a c
a 0 b
c b 0

$ , !1"

where

a# f e)!m)
2"me

2", b# f)*!m*
2"m)

2 ",
!2"

c# f *e!me
2"m*

2",

and f e) , f )* , and f *e are lepton-number violating Yukawa
coupling constants with the Zee scalar h$. It is known that,
if we consider a Zee mass matrix with a#c%!b!, the model
can give a nearly bimaximal mixing &2,4,5':

U(## cos $ "sin $ 0

1
!2
sin $

1
!2
cos $ "

1
!2

1
!2
sin $

1
!2
cos $

1
!2

$ , !3"

where

tan $#!"m(1 /m(2, !4"

#m12
2 #m(1

2 "m(2
2 "2!2ab , #m23

2 #m(2
2 "m(3

2 "2a2,
!5"

which leads to

#m12
2 /#m23

2 "!2 b/a . !6"

Furthermore, if we assume a badly broken horizontal sym-
metry SU(3)H and put a simple ansatz on the transition ma-

trix elements in the infinite momentum frame !not on the
mass matrix", we can obtain the relations &6'

f i j#+ i jk &mk
e /!mi

e$mj
e"' f , !7"

where f is a common factor and mi
e#(me ,m) ,m*), so that

we can predict

#m12
2 /#m23

2 "!2me/m)#6.7&10"3, !8"

which is in excellent agreement with the observed value
!best-fit value" &7,8'

# #msolar
2

#matm
2 $

expt

"
2.2&10"5 eV2

3.2&10"3 eV2
#6.9&10"3. !9"

Thus, the Zee model is very attractive from the phenom-
enological point of view. However, most authors who inves-
tigated the Zee neutrino mass matrix have failed to obtain the
observed value sin2 2$solar"0.7 in the Mikheyev-Smirnov-
Wolfenstein !MSW" large mixing angle !LMA" solution &9',
although it is easy to obtain the bimaximal mixing !3". It is a
serious problem for the Zee model whether or not the model
can fit the observed value sin2 2$solar"0.7. In the present
paper, from a parameter-independent study of the Zee neu-
trino mass matrix !1", we conclude that the value of
sin2 2$solar must satisfy a severe constraint sin2 2$solar%1
"(1/16)(#msolar

2 /#matm
2 )2 in the Zee model with

#msolar
2 /#matm

2 !1. A similar subject has also been dis-
cussed by Frampton and Glashow &10'. However, the con-
straint obtained in the present paper is more explicit and very
severe. This constraint will force us to abandon the Zee
model or to modify the original Zee model to an extended
version with some additional terms.
The mass matrix !1" is diagonalized by a unitary matrix

U( as

U(
TM (U(#D(,diag!m1 ,m2 ,m3". !10"

The Maki-Nakagawa-Sakata !MNS" &11' matrix UMNS is
given by UMNS#U( , because the charged lepton mass ma-
trix is diagonal in the Zee model. In order to obtain the
relations among the mass matrix parameters and the mass
eigenvalues, we define the Hermitian matrix H( as*Email address: koide@u-shizuoka-ken.ac.jp
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H!!M !
†M ! , "11#

so that we obtain

U!
†H!U!!D!*D!!diag" !m1!2,!m2!2,!m3!2#. "12#

The form of H! is explicitly given by

H!!H0"H1 , "13#

where

H0!m0
2" !a!2#!b!2#!c!2#1, "14#

H1!m0
2" !b!2 "c*b "a*b

"b*c !c!2 "a*c
"b*a "c*a !a!2

# , "15#

and 1 is a 3$3 unit matrix. The matrix H1 is diagonalized as

U!
†H1U!!diag"h1 ,h2 ,h3#, "16#

and the eigenvalues hi satisfy the equation

hi
3"" !a!2#!b!2#!c!2#m0

2hi
2#4!a!2!b!2!c!2m0

6!0. "17#

By redefining m0, without losing generality, we can take
!a!2#!b!2#!c!2!1, so that the solutions hi!m0

2xi are de-
scribed by only one parameter

!q!2!!a!2!b!2!c!2 "18#

as

xi
3"xi

2#4!q!2!0. "19#

Equation "19# has three real solutions xi only when !q!2
%1/27. The behaviors of the solutions xi are illustrated in
Fig. 1. The mass squared !mi!2 is given by

!mi!2!"1"xi#m0
2 . "20#

From Fig. 1, we find that the cases which can explain the
observed fact !$m12

2 /$m23
2 !&1 are only the cases with !q!2

$1/27 and !q!2$0.
For the case with !q!2$1/27, by putting

x1!
2
3 #%1 , x2! 2

3 "%2 , x3!" 1
3 #%3 , !q!2! 1

27 "%q
2 ,
"21#

and by putting Eqs. "21# into Eq. "19#, we obtain

%1$%2$2%q , %3$4%q
2 , "22#

so that we obtain

$m21
2 /$m32

2 $4%q . "23#

On the other hand, from Eq. "16#, we obtain

"H1 /m0
2# ii!!U!i1!2x1#!U!i2!2x2#!U!i3!2x3 . "24#

For the case with !q!2$1/27, Eq. "24# gives

"H1 /m0
2# ii$ 2

3 "!U!i3!2#2%q" !U!i1!2"!U!i2!2#, "25#

i.e.,

!b!2$ 2
3 "!U!13!2, !c!2$ 2

3 "!U!23!2, !a!2$ 2
3 "!U!33!2.

"26#

Since we know that the only solution under the conditions
!a!2#!b!2#!c!2!1 and !a!2!b!2!c!2$1/27 is !a!2$!b!2
$!c!2$1/3, the relation "25# yields

!U!13!2$ 1
3 , !U!23!2$ 1

3 , !U!33!2$ 1
3 , "27#

which gives

sin2 2&atm!4!U!23!2!U!33!2$ 4
9 . "28#

The value "28# is too small to explain the observed value '7(
sin2 2&atm$1.0, so that the case with !q!2$1/27 is ruled out.
Next, we investigate the case with !q!2$0. By putting

x1!"%1 , x2!%2 , x3!1"%3 , "29#

and putting Eqs. "29# into Eq. "19#, we obtain

%1$2!q!"1"!q!#, %2$2!q!"1#!q!#, %3$4!q!2,
"30#

so that we obtain

$m12
2 $4!q!m0

2 , $m23
2 $"1"2!q!2#m0

2 , "31#

$m12
2 /$m23

2 $4!q!. "32#

On the other hand, from the relation "24#, we obtain

"H1 /m0
2# ii$!U!i3!2"2!q!" !U!i1!2"!U!i2!2#

#2!q!2"1"3!U!i3!2#, "33#

FIG. 1. The eigenvalues xi (i!1,2,3) versus !q!2. The solutions
xi of Eq. "19# have real three values only in the range 0)!q!2
)1/27. The values xi take (0,0,1) and ("1/3,2/3,2/3) at !q!2!0
and !q!2!1/27, respectively. The mass eigenvalues !mi!2 are given
by !mi!2!(1"xi)m0

2.
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Of the neutrino mass matrix models proposed currently,
the Zee model &1' is a very attractive one, because the model
can naturally lead to a large neutrino mixing with few pa-
rameters &2–4'. The neutrino mass matrix M ( in the basis on
which the charged lepton mass matrix Me is diagonal is
given by the form

M ("m0# 0 a c
a 0 b
c b 0

$ , !1"

where

a# f e)!m)
2"me

2", b# f)*!m*
2"m)

2 ",
!2"

c# f *e!me
2"m*

2",

and f e) , f )* , and f *e are lepton-number violating Yukawa
coupling constants with the Zee scalar h$. It is known that,
if we consider a Zee mass matrix with a#c%!b!, the model
can give a nearly bimaximal mixing &2,4,5':
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which leads to
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Furthermore, if we assume a badly broken horizontal sym-
metry SU(3)H and put a simple ansatz on the transition ma-

trix elements in the infinite momentum frame !not on the
mass matrix", we can obtain the relations &6'

f i j#+ i jk &mk
e /!mi

e$mj
e"' f , !7"

where f is a common factor and mi
e#(me ,m) ,m*), so that

we can predict
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which is in excellent agreement with the observed value
!best-fit value" &7,8'
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#matm
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2.2&10"5 eV2

3.2&10"3 eV2
#6.9&10"3. !9"

Thus, the Zee model is very attractive from the phenom-
enological point of view. However, most authors who inves-
tigated the Zee neutrino mass matrix have failed to obtain the
observed value sin2 2$solar"0.7 in the Mikheyev-Smirnov-
Wolfenstein !MSW" large mixing angle !LMA" solution &9',
although it is easy to obtain the bimaximal mixing !3". It is a
serious problem for the Zee model whether or not the model
can fit the observed value sin2 2$solar"0.7. In the present
paper, from a parameter-independent study of the Zee neu-
trino mass matrix !1", we conclude that the value of
sin2 2$solar must satisfy a severe constraint sin2 2$solar%1
"(1/16)(#msolar

2 /#matm
2 )2 in the Zee model with

#msolar
2 /#matm

2 !1. A similar subject has also been dis-
cussed by Frampton and Glashow &10'. However, the con-
straint obtained in the present paper is more explicit and very
severe. This constraint will force us to abandon the Zee
model or to modify the original Zee model to an extended
version with some additional terms.
The mass matrix !1" is diagonalized by a unitary matrix

U( as

U(
TM (U(#D(,diag!m1 ,m2 ,m3". !10"

The Maki-Nakagawa-Sakata !MNS" &11' matrix UMNS is
given by UMNS#U( , because the charged lepton mass ma-
trix is diagonal in the Zee model. In order to obtain the
relations among the mass matrix parameters and the mass
eigenvalues, we define the Hermitian matrix H( as*Email address: koide@u-shizuoka-ken.ac.jp
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Rates for the decays μ → eγ and τ → 3μ may be accessible
to proposed experiments.
The rest of the paper is organized as follows. In Sec. II

we describe the model. In Sec. III we address the flavor
structure of the charged lepton mass matrix and Yukawa
matrices. Neutrino phenomenology is worked out in
Sec. IV. Section V is devoted to lepton flavor violation
discussions, and Sec. VI addresses Higgs decays. Finally,
Sec. VII has our conclusions.

II. THE MODEL

The model we present is a special case of the general Zee
model [1]. Neutrino masses are induced as one-loop
radiative corrections through the exchange of charged
scalars. The gauge symmetry and the fermionic content
of the model are identical to those of the Standard Model.
In particular, Standard Model singlet right-handed neutri-
nos are not introduced. The scalar sector is extended so that
there are two Higgs doubletsHað1; 2;−1=2Þ (a ¼ 1; 2) and
a charged singlet ηþð1; 1;þ1Þ. A discrete Z4 symmetry
acting on the lepton fields Lið1; 2;−1=2Þ, eci ð1; 1;þ1Þ and
the Higgs fields Ha and ηþ is assumed, with the following
transformation properties:

Li∶ð−i; i; iÞ; eci ∶ð−i;−i;−iÞ;
H1∶þ 1; H2∶ − 1; ηþ∶ − 1: (1)

Here i ¼ 1–3 is the family index. Thus the Z4 symmetry is
family dependent. This is the crucial difference of our
model compared to the Wolfenstein realization of the Zee
model, where a family universal Z2 is assumed in order to
suppress naturally tree-level flavor changing neutral cur-
rents mediated by the Higgs bosons. In our version, there
will be tree-level flavor changing neutral currents, but as we
show, the amplitudes for these processes are sufficiently
suppressed to be consistent with data, even when the
neutral scalars which mediate them have masses of order
hundred GeV.
In the leptonic sector, the following Yukawa couplings

can be written down consistent with the gauge symmetry
and the Z4 symmetry of Eq. (1):

LðlÞ
Yuk ¼

X

i ¼ 2; 3;

α ¼ 1; 2; 3

YiαLiecαH1 þ
X

α ¼ 1; 2; 3
YαL1ecαH2

þ f23L2L3ηþ þ H:c: (2)

Lepton number is not broken by these Yukawa couplings,
as can be seen by assigning a lepton number of −2 to the ηþ
field. However, the Higgs potential contains a cubic term
which is Z4 invariant that breaks lepton number and
possibly also a quadratic term that breaks the Z4 symmetry
softly:

V ¼ fμH1H2ηþ þm2
12H

†
1H2 þ H:c:gþ…: (3)

Here the…. stands for other terms which are not so relevant
for our present discussions. However, it should be noted
that the action of the Z4 symmetry does not create an
accidental global Uð1Þ symmetry of the Higgs potential,
which could have led to an unwanted pseudo-Goldstone
boson. [Note that the Z4 symmetry allows a quartic
coupling ðH†

1H2Þ2 þ H:c in the Higgs potential which
guarantees that there is no global Uð1Þ present, even in
the absence of soft breaking of Z4 by the m2

12 term of
Eq. (3).] In our discussions we shall allow form2

12 in Eq. (3)
to be either zero or nonzero, keeping the option open for
breaking the Z4 symmetry softly. The two cases lead to
essentially the same results in the neutrino sector, but
would affect the Higgs phenomenology differently.
In the quark sector the Z4 symmetry of the model acts

universally with all the down-type quarks and the up-type
quarks coupling to the same Higgs field H1 or H2. The
quark Yukawa couplings have the form

LðqÞ
Yuk ¼

X

i;j¼1−3
Yu
ijQiucj ~Ha þ

X

i;j¼1−3
Yd
ijQidcjHa þ H:c: (4)

where the Higgs label a takes the same value, either 1 or 2,
in both terms. Here ~Ha ¼ iτ2H%

a. With this form of the
quark Yukawa couplings the Z4 charge assignment of
Eq. (1) is anomaly free [8]. To see this, consider the case
where the Higgs field Ha in both terms of Eq. (4) is H1. In
this case, the following Z4 charges can be assigned to
the quarks: Qi∶ ð−i;−i;−iÞ, uci ∶ ði; i; iÞ, and dci ∶ ði; i; iÞ.
The mixed ½SUð3Þ'2 × Z4 and ½SUð2ÞL'2 × Z4 anomaly
coefficients are then

A2½ðSUð2ÞLÞ2 × Z4' ¼
1

2
fð−1þ 1þ 1Þ þ 3ð−1 − 1 − 1Þg

¼ −4; (5)

A3½ðSUð3ÞCÞ2 × Z4' ¼
1

2
f2ð−1 − 1 − 1Þ þ ð1þ 1þ 1Þ

þ ð1þ 1þ 1Þg ¼ 0: (6)

In Eqs. (5)–(6), the factor 1
2 is the index of the fundamental

representation of SUðNÞ, the factors 3 and 2 are color and
SUð2ÞL multiplicities, and a Z4 charge of (i is treated as
charge (1 mod(4). Now, the condition for the absence of
discrete anomalies for a ZN group is that all the anomaly
coefficients must obey Ai ¼ piðN=2Þ; with pi being
integers. We see that both anomalies satisfy this condition.
The ½Uð1ÞY '2 × Z4 anomaly coefficient is not restricted by
the discrete anomaly cancellation condition. If all quarks
couple to H2 in Eq. (4) instead of H1, the Z4 charge
assignment of Qi∶ ð−i;−i;−iÞ, uci ∶ ð−i;−i;−iÞ, and
dci ∶ ð−i;−i;−iÞ can be chosen, in which case Eq. (5) will
remain unchanged, while Eq. (6) will be modified to
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sociated one-loop contribution to neutrino mass. We refer to
this as the !h"1"2k# model. In this case the one-loop and
the two-loop contributions are to be added.
Later, Babu $7% studied these two classes of models. In

particular, in the !h"k# model we have Det$m (2)%!0 since
Det$ f %!0 due to the fact that f is a 3"3 antisymmetric
matrix.
At this point we depart from our general treatment and

focus on specific possibilities as suggested by experiments.
The various possible textures of the Majorana neutrino mass
matrix, in particular those dictated by the conservation of
additive combination of electron, muon, and tau numbers,
such as L&#L'$Le , were studied in Ref. $4%. Typically, it
is awkward in many models of neutrino masses to impose
conservation of these additive combinations, however, as
was pointed out in Ref. $4%, it can be quite naturally imple-
mented in this class of models by simply setting various
couplings to zero. For example, suppose we set f&' to zero.
Then the f e& term demands that the h field carry Le!$1,
L&!$1, and L'!0, while the f e' term demands that the h
field carry Le!$1, L&!0, and L'!$1. The clash between
these two terms implies that L& and L' are violated, but that
L&#L'$Le and Le are conserved.
One purpose of this paper is to study the two-loop contri-

bution to m( in the !h"1"2# model. The relevant diagrams
are shown in Fig. 3. For instance, the diagram in Fig. 3)a*
contributes to (m()ab a term

)m(
)2 **ab!+,

c ,d
f ac f cd* f db)mc

2$md
2*!+) f $m2, f*% f *ab ,

)3*

where +!a2(16-2)$2(M 12 /Mh
2) with a2 of order one. We

are interested in the diagonal entries in (m(
(2))ab since the

off-diagonal entries just give a small perturbation to the one-
loop contribution in Eq. )1*. We see from the antisymmetry
of f that the diagonal elements necessarily involve the prod-
uct of all three of the nonzero f ab , (a.b). Thus, for
instance, (m(

(2))ee!+ f e' f '&* f&e(m'
2$m&

2 )/+ f e' f '&* f&em'
2.

Note that similarly (m(
(2))&&/+ f e'* f '& f&em'

2 which is equal
to (m(

(2))ee . An interesting texture emerges upon noting that
(m(

(2))'' is smaller by a factor m&
2 /m'

2.

Thus, for phenomenological analysis we have a neutrino
mass matrix of the form

m(!! r a b
a s c
b c t

"
where the texture a/b%c&r/s%t . We expect that the
terms r/s would provide small corrections to the phenom-
enological analysis of Jarlskog et al. $11%.
It is probably premature to consider the effects of CP

violation; the enormous difficulty of measuring CP violation

FIG. 2. Two-loop contribution to neutrino mass in !h"k#
model.

FIG. 3. )a* Two-loop contribution to neutrino mass in !h"1"2#
model. )b* Two-loop contribution to neutrino mass in !h"1"2#
model. )c* Two-loop contribution to neutrino mass in !h"1"2#
model.

RAPID COMMUNICATIONS

RADIATIVELY INDUCED NEUTRINO MAJORANA . . . PHYSICAL REVIEW D 61 071303)R*

071303-3

sociated one-loop contribution to neutrino mass. We refer to
this as the !h"1"2k# model. In this case the one-loop and
the two-loop contributions are to be added.
Later, Babu $7% studied these two classes of models. In

particular, in the !h"k# model we have Det$m (2)%!0 since
Det$ f %!0 due to the fact that f is a 3"3 antisymmetric
matrix.
At this point we depart from our general treatment and

focus on specific possibilities as suggested by experiments.
The various possible textures of the Majorana neutrino mass
matrix, in particular those dictated by the conservation of
additive combination of electron, muon, and tau numbers,
such as L&#L'$Le , were studied in Ref. $4%. Typically, it
is awkward in many models of neutrino masses to impose
conservation of these additive combinations, however, as
was pointed out in Ref. $4%, it can be quite naturally imple-
mented in this class of models by simply setting various
couplings to zero. For example, suppose we set f&' to zero.
Then the f e& term demands that the h field carry Le!$1,
L&!$1, and L'!0, while the f e' term demands that the h
field carry Le!$1, L&!0, and L'!$1. The clash between
these two terms implies that L& and L' are violated, but that
L&#L'$Le and Le are conserved.
One purpose of this paper is to study the two-loop contri-

bution to m( in the !h"1"2# model. The relevant diagrams
are shown in Fig. 3. For instance, the diagram in Fig. 3)a*
contributes to (m()ab a term

)m(
)2 **ab!+,

c ,d
f ac f cd* f db)mc

2$md
2*!+) f $m2, f*% f *ab ,

)3*

where +!a2(16-2)$2(M 12 /Mh
2) with a2 of order one. We

are interested in the diagonal entries in (m(
(2))ab since the

off-diagonal entries just give a small perturbation to the one-
loop contribution in Eq. )1*. We see from the antisymmetry
of f that the diagonal elements necessarily involve the prod-
uct of all three of the nonzero f ab , (a.b). Thus, for
instance, (m(

(2))ee!+ f e' f '&* f&e(m'
2$m&

2 )/+ f e' f '&* f&em'
2.

Note that similarly (m(
(2))&&/+ f e'* f '& f&em'

2 which is equal
to (m(

(2))ee . An interesting texture emerges upon noting that
(m(

(2))'' is smaller by a factor m&
2 /m'

2.

Thus, for phenomenological analysis we have a neutrino
mass matrix of the form

m(!! r a b
a s c
b c t

"
where the texture a/b%c&r/s%t . We expect that the
terms r/s would provide small corrections to the phenom-
enological analysis of Jarlskog et al. $11%.
It is probably premature to consider the effects of CP

violation; the enormous difficulty of measuring CP violation

FIG. 2. Two-loop contribution to neutrino mass in !h"k#
model.

FIG. 3. )a* Two-loop contribution to neutrino mass in !h"1"2#
model. )b* Two-loop contribution to neutrino mass in !h"1"2#
model. )c* Two-loop contribution to neutrino mass in !h"1"2#
model.

RAPID COMMUNICATIONS

RADIATIVELY INDUCED NEUTRINO MAJORANA . . . PHYSICAL REVIEW D 61 071303)R*

071303-3

so that we obtain

!H1 /m0
2"22!!c!2"!U#23!2, !H1 /m0

2"33!!a!2"!U#33!2,
!34"

and

sin2 2$atm"4!a!2!c!2. !35"

Generally, the only solution of the equation xy"1/4 for posi-
tive numbers x and y under the condition x"y#1 is x"y
"1/2. Therefore, the solution of the equation sin2 2$atm
!4!U#23!2!U#33!2"1 under the condition !U#23!2"!U#33!2
!1$!U#13!2#1 is

!U#23!2"!U#33!2" 1
2 , !U#13!2"0, !36"

and also the solution of the equation sin22$atm!4!a!2!c!2"1
under the condition !a!2"!c!2!1$!b!2#1 is

!a!2"!c!2" 1
2 , !b!2"0. !37"

The result !37" means that

!q!2" 1
4 !b!2. !38"

The (1,1) component of Eq. !33" gives

!b!2"!U#13!2$!b!! !U#11!2$!U#12!2"

" 1
2 !b!2!1$3!U#13!2". !39"

When we put

!U#11!!!1$!U#13!2 cos $ , !U#12!!!1$!U#13!2 sin $ ,
!40"

we obtain

sin2 2$solar"sin2 2$"1$
1
4 !b!2# 1$2

!U#13!2

!b!2 $ 2,
!41"

where

!b!" 1
2 !%msolar

2 /%matm
2 " . !42"

A model that gives !U#13!2!0 obviously cannot give a siz-
able deviation from sin2 2$solar!1. However, if !U#13!2&!b!,
then the value of sin2 2$solar is sensitive to the value of
!U#13!2. Therefore, we must estimate the value of !U#13!2
carefully.
We use the relation

'
k!1

3

!H1 /m0
2" ikU#k j!U#i jx j . !43"

For j!3, we obtain

!b!2U#13$c*bU#23$a*bU#33!U#13x3 , !44"

$b*cU#13"!c!2bU#23$a*cU#33!U#23x3 , !45"

$b*aU#13$c*aU#23"!a!2U#33!U#33x3 . !46"

By eliminating U#23 , we obtain the relation without any ap-
proximation:

U#13!
$2!x3$1"!b!2"ba*U#33

! !a!2$!c!2"!b!2"!x3$!b!2"!x3$1"!b!2"
. !47"

If we use the approximate expression x3"1$4!q!2"1
$!b!2, the factor (x3$1"!b!2) becomes vanishing. There-
fore, in order to estimate the factor (x3$1"!b!2) more pre-
cisely, we use the following expression for x3 to the order of
!q!4:

x3"1$4!q!2!1"8!q!2". !48"

Then, we can show that

x3$1"!b!2"!b!2(! !a!2$!c!2"2"7!b!4) . !49"

Since we know that !b!2 is very small, i.e., !b!2"(1/
4)(%msolar

2 /%matm
2 )2, we investigate only the case (!a!2

$!c!2)2*!q!4. Then, from Eq. !47", we obtain

U#13"$2! !a!2$!c!2"ba*U#33 , !50"

i.e.,

!U#13!2"! !a!2$!c!2"2!b!2. !51"

On the other hand, we can show that the quantities
(%m12

2 /%m23
2 )2 and sin2 2$atm!4!U#23!2!U#33!2 are insensi-

tive to the parameter (!a!2$!c!2). Therefore, from Eqs. !47"
and !51", we obtain the following parameter-independent re-
lation:

sin2 2$solar"1$ 1
4 (1$2! !a!2$!c!2"2)2!b!2

*1$ 1
16 !%msolar

2 /%matm
2 "2, !52"

where we have used (1$2(!a!2$!c!2)2)2+1.
The constraint !52" cannot be loosened even if we con-

sider renormalization group equation !RGE" effects. The
mass matrix form !1" is given by the radiative diagrams at
the low energy scale, where the charged lepton mass matrix
is given by the diagonal form. Although the coupling con-
stants f i j given in Eq. !2" are affected by the RGE, since our
conclusion !52" is independent of the explicit values of the
parameters a, b, and c in Eq. !1", the conclusion !52" cannot
be loosened even by taking RGE effects into consideration.
However, we must note that the mass matrix form !1" is

based on only the one-loop radiative mass diagrams. When
we take two-loop diagrams into consideration, as pointed out
by Chang and Zee (12), nonvanishing contributions appear in
the diagonal elements of M # . For the case that gives
sin2 2$atom"1, the relations !37" are required, so that the re-
lations ! f e,!m,

2"! f e-!m-
2%! f,-!m-

2 are required. Then, as
discussed in Ref. (12), we can estimate

!M #12!"!M #13!%!M #23!&!M #11!"!M #22!%!M #33!, !53"
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and
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sider renormalization group equation !RGE" effects. The
mass matrix form !1" is given by the radiative diagrams at
the low energy scale, where the charged lepton mass matrix
is given by the diagonal form. Although the coupling con-
stants f i j given in Eq. !2" are affected by the RGE, since our
conclusion !52" is independent of the explicit values of the
parameters a, b, and c in Eq. !1", the conclusion !52" cannot
be loosened even by taking RGE effects into consideration.
However, we must note that the mass matrix form !1" is
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where !M !i j!" f i j(mi
2!mj

2) and !M !ii!"! f 12!! f 23!! f 31!(mj
2

!mk
2) ( j#i#k). We are interested in the value of the ratio

!M !11 /M !23!. If the ratio is negligibly small, the result $52%
will still be valid, but not if the ratio is sizable. According to
Ref. &12', we estimate !M !11 /M !23! as

"M !11

M !23
"( ! f e)!! f)*!! f *e!

16+2! f)*!
#

! f e)!2

16+2 $m)

m*
% 2"10!5. $54%

Therefore, we conclude that the severe constraint $52% is still
valid even if we take two-loop diagrams into consideration.
However, note that if the mass matrix $1% is not due to the

Zee mechanism but due to a seesaw mechanism, M !

#!mLMR
!1mL

T , the form of M ! will be changed by the
RGE effects.
Therefore, we conclude that when we require

,msolar
2 /,matm

2 #1 for the Zee model, although we
can obtain sin2 2-atm#1, at the same time, the value of
sin2 2-solar must also be very close to 1. On the other hand, in
contrast to the theoretical bound $52%, the best-fit value of
sin2 2-solar is

sin2 2-solar#0.66, $55%

for the MSW LMA solution &9'. The prediction sin2 2-solar
#1.0 is in poor agreement with the observed data $outside
the 99% C.L.%. Of course, the value $55% is a best-fit value,
and it does not mean that the Zee model is ruled out. How-
ever, if the data in future exclude the value sin2 2-solar#1.0
completely, we will be forced to abandon the Zee model, at
least, for the MSW LMA solution. At present, if we still
adhere to the Zee model, the only solution we should take is
the Just So2 solution &13' with sin2 2-solar#1.0. However, the
Just So2 solution is not always the best of the possible can-

didates $the best-fit solutions% at present $for example, the
MSW LMA solution gives .min

2 $29.0, while the Just So2
solution gives .min

2 $36.1 &9'%.
In conclusion, we have investigated the Zee neutrino mass

matrix $1% parameter independently. When we require that
the value ,msolar

2 /,matm
2 $,m12

2 /,m23
2 should be very

small, the only possible solutions are two cases with !q!2
/!a!2!b!2!c!2#1/27 and !q!2#0 where !a!2%!b!2%!c!2
$1. The case with !q!2#1/27 leads to sin2 2-atm#4/9,
so that it is ruled out. The case with !q!2#0 leads not
only to sin2 2-atm#1, but also to sin2 2-solar01!(1/
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2 /,matm
2 )2. The prediction sin2 2-solar#1.0 is in

poor agreement with the observed data. However, in spite of
this problem, the Zee model is still attractive to us, because it
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we hope that the problem will be overcome by some future
modification of the original Zee model. For example, the
following attempts look promising: introducing a new dou-
bly charged scalar k%% in order to obtain sizable two-loop
contributions &14', introducing right-handed neutrinos in or-
der to additional mass terms, embedding the original Zee
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model &15' and into an R-parity conserving SUSY model
&16', and so on.
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2 where j = 1, 2 and ⌘ j, �i are real fields. The
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j >= ui
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where
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Both �+j is the U(1)Y scalar with charge Q� = Y� = 1 and g0Y�Bµ = eAµ � e tan ✓WZµ. We assume the
following conditions besides gauge invariance:

• Renormalizable. The operators in all the scalar Lagrangians are up to dimension-4.
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j rather than on �i respectively.
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We can ignore the terms of �6 and �7. When arg(�5) , 2arg(m2
12), there is explicit CP violation.

We discuss the potential involved �± and �0 later.
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The total Lagrangian of the Higgs sector is

LH = LH,kim � VH12 � V� �L12� (14)

5 Yukawa Term and the Majorana Leptonic Term

We assume the left-right fermion pairs only have Yukawa couplings with �1 so that the parity conserves
(Type-1 2HDM):
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The Majorana left-handed leptonic singlet term is
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6 The Majorana Mass Mitrix

Since the flavors of neutrinos and leptons change in the loop diagrams of Zee Majorana masses, the
Majorana mass matrix M⌫ remain o↵-diagonal as in (1). Now there are 4 diagrams contributing to each
mab: 2 of �±1 type and the other 2 of �±2 type. However, since f j

ab cannot be real simultaneously, the
matrix elements mab of M⌫ are complex. We can guess mab to be
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When M⌫ are symmetric complex matrix, it cannot be made diagonal in UT M⌫U. However, since M⌫M
†
⌫

is Hermitian, we can diagonalize it with a unitary transformation U:
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Then UM⌫UT can be made diagonal with phases. The phases can also be absorbed into U. Now since
M⌫M

†
⌫ is not o↵-diagonal, we don’t have constraint m1 + m2 + m3 = 0. And since M⌫ is complex, we

may have more freedom to fit the neutrino experiments data!
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j rather than on �i respectively.
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We can ignore the terms of �6 and �7. When arg(�5) , 2arg(m2
12), there is explicit CP violation.

We discuss the potential involved �± and �0 later.

3 Quantum Numbers
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S U(2)L 2 1 2 1 1 2 2 1 1 1 1
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sociated one-loop contribution to neutrino mass. We refer to
this as the !h"1"2k# model. In this case the one-loop and
the two-loop contributions are to be added.
Later, Babu $7% studied these two classes of models. In

particular, in the !h"k# model we have Det$m (2)%!0 since
Det$ f %!0 due to the fact that f is a 3"3 antisymmetric
matrix.
At this point we depart from our general treatment and

focus on specific possibilities as suggested by experiments.
The various possible textures of the Majorana neutrino mass
matrix, in particular those dictated by the conservation of
additive combination of electron, muon, and tau numbers,
such as L&#L'$Le , were studied in Ref. $4%. Typically, it
is awkward in many models of neutrino masses to impose
conservation of these additive combinations, however, as
was pointed out in Ref. $4%, it can be quite naturally imple-
mented in this class of models by simply setting various
couplings to zero. For example, suppose we set f&' to zero.
Then the f e& term demands that the h field carry Le!$1,
L&!$1, and L'!0, while the f e' term demands that the h
field carry Le!$1, L&!0, and L'!$1. The clash between
these two terms implies that L& and L' are violated, but that
L&#L'$Le and Le are conserved.
One purpose of this paper is to study the two-loop contri-

bution to m( in the !h"1"2# model. The relevant diagrams
are shown in Fig. 3. For instance, the diagram in Fig. 3)a*
contributes to (m()ab a term

)m(
)2 **ab!+,

c ,d
f ac f cd* f db)mc

2$md
2*!+) f $m2, f*% f *ab ,

)3*

where +!a2(16-2)$2(M 12 /Mh
2) with a2 of order one. We

are interested in the diagonal entries in (m(
(2))ab since the

off-diagonal entries just give a small perturbation to the one-
loop contribution in Eq. )1*. We see from the antisymmetry
of f that the diagonal elements necessarily involve the prod-
uct of all three of the nonzero f ab , (a.b). Thus, for
instance, (m(

(2))ee!+ f e' f '&* f&e(m'
2$m&

2 )/+ f e' f '&* f&em'
2.

Note that similarly (m(
(2))&&/+ f e'* f '& f&em'

2 which is equal
to (m(

(2))ee . An interesting texture emerges upon noting that
(m(

(2))'' is smaller by a factor m&
2 /m'

2.

Thus, for phenomenological analysis we have a neutrino
mass matrix of the form

m(!! r a b
a s c
b c t

"
where the texture a/b%c&r/s%t . We expect that the
terms r/s would provide small corrections to the phenom-
enological analysis of Jarlskog et al. $11%.
It is probably premature to consider the effects of CP

violation; the enormous difficulty of measuring CP violation

FIG. 2. Two-loop contribution to neutrino mass in !h"k#
model.

FIG. 3. )a* Two-loop contribution to neutrino mass in !h"1"2#
model. )b* Two-loop contribution to neutrino mass in !h"1"2#
model. )c* Two-loop contribution to neutrino mass in !h"1"2#
model.
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The total Lagrangian of the Higgs sector is

LH = LH,kim � VH12 � V� �L12� (14)

5 Yukawa Term and the Majorana Leptonic Term

We assume the left-right fermion pairs only have Yukawa couplings with �1 so that the parity conserves
(Type-1 2HDM):
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The Majorana left-handed leptonic singlet term is
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6 The Majorana Mass Mitrix

Since the flavors of neutrinos and leptons change in the loop diagrams of Zee Majorana masses, the
Majorana mass matrix M⌫ remain o↵-diagonal as in (1). Now there are 4 diagrams contributing to each
mab: 2 of �±1 type and the other 2 of �±2 type. However, since f j

ab cannot be real simultaneously, the
matrix elements mab of M⌫ are complex. We can guess mab to be
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When M⌫ are symmetric complex matrix, it cannot be made diagonal in UT M⌫U. However, since M⌫M
†
⌫

is Hermitian, we can diagonalize it with a unitary transformation U:
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Then UM⌫UT can be made diagonal with phases. The phases can also be absorbed into U. Now since
M⌫M

†
⌫ is not o↵-diagonal, we don’t have constraint m1 + m2 + m3 = 0. And since M⌫ is complex, we

may have more freedom to fit the neutrino experiments data!
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The eigenvalues and mixing angles in the Zee model are investigated parameter independently. When we
require !#m12

2 /#m23
2 !!1 in order to understand the solar and atmospheric data simultaneously, the only

solution is one that gives bimaximal mixing. It is pointed out that the present best-fit value of sin2 2$solar in the
Mikheyev-Smirnov-Wolfenstein large mixing angle solution cannot be explained within the framework of the
Zee model, because we derive a severe constraint on the value of sin2 2$solar , sin2 2$solar%1"(1/
16)(#msolar

2 /#matm
2 )2.

DOI: 10.1103/PhysRevD.64.077301 PACS number!s": 14.60.Pq

Of the neutrino mass matrix models proposed currently,
the Zee model &1' is a very attractive one, because the model
can naturally lead to a large neutrino mixing with few pa-
rameters &2–4'. The neutrino mass matrix M ( in the basis on
which the charged lepton mass matrix Me is diagonal is
given by the form

M ("m0# 0 a c
a 0 b
c b 0

$ , !1"

where

a# f e)!m)
2"me

2", b# f)*!m*
2"m)

2 ",
!2"

c# f *e!me
2"m*

2",

and f e) , f )* , and f *e are lepton-number violating Yukawa
coupling constants with the Zee scalar h$. It is known that,
if we consider a Zee mass matrix with a#c%!b!, the model
can give a nearly bimaximal mixing &2,4,5':

U(## cos $ "sin $ 0

1
!2
sin $

1
!2
cos $ "

1
!2

1
!2
sin $

1
!2
cos $

1
!2

$ , !3"

where

tan $#!"m(1 /m(2, !4"

#m12
2 #m(1

2 "m(2
2 "2!2ab , #m23

2 #m(2
2 "m(3

2 "2a2,
!5"

which leads to

#m12
2 /#m23

2 "!2 b/a . !6"

Furthermore, if we assume a badly broken horizontal sym-
metry SU(3)H and put a simple ansatz on the transition ma-

trix elements in the infinite momentum frame !not on the
mass matrix", we can obtain the relations &6'

f i j#+ i jk &mk
e /!mi

e$mj
e"' f , !7"

where f is a common factor and mi
e#(me ,m) ,m*), so that

we can predict

#m12
2 /#m23

2 "!2me/m)#6.7&10"3, !8"

which is in excellent agreement with the observed value
!best-fit value" &7,8'

# #msolar
2

#matm
2 $

expt

"
2.2&10"5 eV2

3.2&10"3 eV2
#6.9&10"3. !9"

Thus, the Zee model is very attractive from the phenom-
enological point of view. However, most authors who inves-
tigated the Zee neutrino mass matrix have failed to obtain the
observed value sin2 2$solar"0.7 in the Mikheyev-Smirnov-
Wolfenstein !MSW" large mixing angle !LMA" solution &9',
although it is easy to obtain the bimaximal mixing !3". It is a
serious problem for the Zee model whether or not the model
can fit the observed value sin2 2$solar"0.7. In the present
paper, from a parameter-independent study of the Zee neu-
trino mass matrix !1", we conclude that the value of
sin2 2$solar must satisfy a severe constraint sin2 2$solar%1
"(1/16)(#msolar

2 /#matm
2 )2 in the Zee model with

#msolar
2 /#matm

2 !1. A similar subject has also been dis-
cussed by Frampton and Glashow &10'. However, the con-
straint obtained in the present paper is more explicit and very
severe. This constraint will force us to abandon the Zee
model or to modify the original Zee model to an extended
version with some additional terms.
The mass matrix !1" is diagonalized by a unitary matrix

U( as

U(
TM (U(#D(,diag!m1 ,m2 ,m3". !10"

The Maki-Nakagawa-Sakata !MNS" &11' matrix UMNS is
given by UMNS#U( , because the charged lepton mass ma-
trix is diagonal in the Zee model. In order to obtain the
relations among the mass matrix parameters and the mass
eigenvalues, we define the Hermitian matrix H( as*Email address: koide@u-shizuoka-ken.ac.jp
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tan � = v2/v1 ↵ = u2/u1 �̃ = cos↵�0
1 + sin↵�0

2 ⇢ = sin↵�0
1 + cos↵�0

2, < ⇢ >= 0 (12)

L12� =1(�c†
2 �1 � �c†

1 �2)��1 �̃ + 2(�c†
2 �1 � �c†

1 �2)��2 �̃ + h.c.

=21u('+1'
0
2 � '+2'0

1)��1 + 22u('+1'
0
2 � '+2'0

1)��2 + h.c. + · · · (13)

The total Lagrangian of the Higgs sector is

LH = LH,kim � VH12 � V� �L12� (14)

5 Yukawa Term and the Majorana Leptonic Term

We assume the left-right fermion pairs only have Yukawa couplings with �1 so that the parity conserves
(Type-1 2HDM):

LYukawa = �[yi j
d Q̄i

L ·�1d j
R+y

i j
u Q̄i

L ·�c
1u j

R+y
i
lL̄

i
L ·�1liR]�[yi j⇤
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†
1 ·Qi
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i j⇤
u ū j

R�
c†
1 ·Qi
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l l̄RR�

†
1 ·Li

L] (15)

The Majorana left-handed leptonic singlet term is

Llepsig = f 1
abLaT

iL C Lb
jL✏

i j�+1 + f 1
abLb†

iL C La⇤
jL✏
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iLLb
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jL�
�
2

(16)

6 The Majorana Mass Mitrix

Since the flavors of neutrinos and leptons change in the loop diagrams of Zee Majorana masses, the
Majorana mass matrix M⌫ remain o↵-diagonal as in (1). Now there are 4 diagrams contributing to each
mab: 2 of �±1 type and the other 2 of �±2 type. However, since f j

ab cannot be real simultaneously, the
matrix elements mab of M⌫ are complex. We can guess mab to be

mab =
(m2

b � m2
a)

16⇡2 u tan �[ f 1
ab1F(M2

11,M
2
12) + f 2

ab2F(M2
21,M

2
22)] (17)

m(2)
ab =

O(1)
(16⇡2)2 u

X

i, j=1,2

X

c,d=e,µ,⌧

[ f i
ac f j⇤

cd f j
db(m2

c � m2
d)iF(M2

�1,M
2
�2)] (18)

|M⌫11|
|M⌫23| =

1
16⇡2 | f 1⇤

µ⌧ f 1
e⌧ + f 2⇤

µ⌧ f 2
e⌧|
| f 1

eµ1 + f 2
eµ2|

| f 1
µ⌧1 + f 2

µ⌧2|
,

1
16⇡2

m⌧2
mµ2
| f 1

e⌧ + f 2
eµ| (19)

When M⌫ are symmetric complex matrix, it cannot be made diagonal in UT M⌫U. However, since M⌫M
†
⌫

is Hermitian, we can diagonalize it with a unitary transformation U:

UM⌫M†⌫U† =

0
BBBBBBBB@

m2
1 0 0

0 m2
2 0

0 0 m2
3

1
CCCCCCCCAUM⌫UT U†T M†⌫U† (20)

Then UM⌫UT can be made diagonal with phases. The phases can also be absorbed into U. Now since
M⌫M

†
⌫ is not o↵-diagonal, we don’t have constraint m1 + m2 + m3 = 0. And since M⌫ is complex, we

may have more freedom to fit the neutrino experiments data!
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A	  New	  Extended	  Zee	  Model	  

v There’s	  also	  scalar	  dark	  ma<er	  candidate!	  

v It’s	  constrained	  by	  the	  neutrino	  part	  directly	  
v But	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  can	  be	  sensi*ve	  to	  the	  neutrino	  parameters	  
v Maybe	  we	  can	  also	  consider	  a	  	  	  	  	  	  	  	  	  	  extension	  of	  Ma	  model	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
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Majorana mass matrix M⌫ remain o↵-diagonal as in (1). Now there are 4 diagrams contributing to each
mab: 2 of �±1 type and the other 2 of �±2 type. However, since f j
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Then UM⌫UT can be made diagonal with phases. The phases can also be absorbed into U. Now since
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⌫ is not o↵-diagonal, we don’t have constraint m1 + m2 + m3 = 0. And since M⌫ is complex, we

may have more freedom to fit the neutrino experiments data!
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!ρρ→ χ +χ− → l+l−νν
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Outlook	  

v We	  will	  fit	  the	  parameters	  to	  constrain	  our	  model	  with	  the	  current	  
neutrino	  data	  

v Interes*ng	  LHC	  phenomenology,	  e.g.	  2	  TeV	  heavy	  resonance	  
v Relic	  density	  for	  the	  dark	  ma<er	  candidate	  
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