Radiative Neutrino Mass in Extended Zee Model with Dark Matter

Dart-yin Soh
with T. C. Yuan
Institute of Physics, Academia Sinica

Content

- Introduction
- Radiative Neutrino Mass
- Is Zee Model Ruled Out by Current Data?
- A New Extended Zee Model
- Outlook
*Standard model is too good with data before neutrino oscillations
But neutrino oscillations \Rightarrow neutrino mixing \Rightarrow neutrino masses!
*How to expend the Standard model to generate neutrino mass?
*Much small masses and much larger mixing comparing with quarks: not natural if only Dirac masses with v_{R}
*Mixing matrix
$\begin{aligned} & U=\left(\begin{array}{ccc}c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\ -s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\ s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}\end{array}\right)\left(\begin{array}{c}e^{2} \\ 0 \\ \\ \end{array}\right. \\ & \text { Anti-neutrinos are the same as neutrinos? }\end{aligned}$ Majorana or Dirac?

Neutrino Oscillations and Mixing

*More precise neutrino data

parameter	best fit	1σ range	2σ range	
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	7.60	$7.42-7.79$	$7.26-7.99$	
		Reactor LBL (KamLAND)		
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right](\mathrm{NH})$	2.48	$2.41-2.53$	$2.35-2.59$	
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right](\mathrm{IH})$	2.38	$2.32-2.43$	$2.26-2.48$	
	Accelerator LBL ν_{μ} Disapp (Minos)			
$\sin ^{2} \theta_{12} / 10^{-1}$	3.23	$3.07-3.39$	$2.92-3.57$	
	Solar Experiments			
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{NH})$	$5.67(4.67)^{a}$	$4.39-5.99$	$4.13-6.23$	
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{IH})$	5.73	$5.30-5.98$	$4.32-6.21$	
		Atmospheric Experiments		
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{NH})$	2.34	$2.14-2.54$	$1.95-2.74$	
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{IH})$	2.40	$2.21-2.59$	$2.02-2.78$	
		Reactor MBL (Daya-Bay, Reno		
$\delta / \pi(\mathrm{NH})$	1.34	$0.96-1.98$	$0.0-2.0$	
$\delta / \pi(\mathrm{IH})$	1.48	$1.16-1.82$	$0.0-0.14 \& 0.81-2.0$	

Normal ordering or inverted ordering?

Predictive models? May be ruled out by experiments!

Why Neutrinos Have Masses?

*God should use natural way to generate neutrinos masses

* Sea-saw: tree level Majorana masses of $v_{R} \&$ no fine-tuning Dirac $\mathcal{L}=-\phi^{\dagger} \overline{\ell_{L}} y_{\nu} N_{R}-\frac{1}{2} \overline{N_{R}^{c}} M N_{R}+$ h.c. $\rightarrow-\overline{\nu_{L}} m_{D} N_{R}-\frac{1}{2} \overline{N_{R}^{C}} M N_{R}+$ h.c. $\quad m_{D}=y_{\nu}\langle\phi\rangle \quad\left(\begin{array}{cc}0 & m_{D} \\ m_{D}^{T} & M\end{array}\right) \quad \rightarrow \quad \begin{aligned} & \quad \begin{array}{l}m_{\nu}=-m_{D} M^{-1} m_{D}^{T}+\cdots \\ \left.\text { (if } m_{D} \ll M\right)\end{array}\end{aligned}$
very heavy neutrinos
* Radiative neutrino masses: naturally small due to the loop corrections, less parameters and thus predictive
Simple and clean: only Majorana Masses of v_{L}
Renormalizable, no counter-term and thus calculable

Radiative Neutrino Masses

* Zee model (1980)

2HDM+charged singlet

Majorana Yukawa couplings | h^{+} | 1 | 1 |
| :--- | :--- | :--- |

Was studied extensively

$\mathcal{V}=\mu \phi_{1}^{T} \phi_{2} h^{-}$
*Zee-Babu model
Majorana Yukawa couplings of both L \& R leptons
Still compatible with data

	$S U(2)_{L}$	$U(1)_{Y}$
h^{+}	$\mathbf{1}$	1
k^{++}	$\mathbf{1}$	2

- neutrino mass (2-loop level)

- Ma model

$\rightarrow R$ neutrinos are odd under Z_{2}

- Inert doublet scalar

	$S U(2)_{L}$	$U(1)_{Y}$	\mathbb{Z}_{2}
N_{i}	$\mathbf{1}$	0	-1
η	$\mathbf{2}$	$1 / 2$	-1

- neutrino mass (1-loop level)
- Both can be dark matter candidate $\$$ candidates (N_{1} or η^{0})

$\mathcal{V}=\frac{\lambda_{5}}{2}\left(\phi^{\dagger} \eta\right)^{2}$

Zee Model

*The general Zee model: both doublets have Yukawa: the Yukawa couplings matrix cannot be diagonized

Neutrino mass matrix

$$
M_{\nu}=\kappa\left(\widehat{f} M_{\ell}^{\mathrm{diag}} \hat{Y}^{T}+\hat{Y} M_{\ell}^{\mathrm{diag}} \hat{f}^{T}\right)
$$

*There are non-zero diagonal elements

*But tree level FCNC: Wolfenstein Suggest a $2 / 2$ to prevent the second Yukawa

Mass matrix with vanishing diagonal elements
flavor can change

Phases of $f_{a b}$ are absorbed to l_{R}

$$
\begin{aligned}
& 2 f_{e \mu}\left[\overline{\nu_{e L}}\left(\mu_{L}\right)^{c}-\bar{e}_{L}\left(\nu_{\mu L}\right)^{c}\right] h^{-}+2 f_{e \tau}\left[\overline{\nu_{e L}}\left(\tau_{L}\right)^{c}-\bar{e}_{L}\left(\nu_{\tau L}\right)^{c}\right] h^{-} \\
& +2 f_{\mu \tau}\left[\overline{\nu_{\mu L}}\left(\tau_{L}\right)^{c}-\bar{\mu}_{L L}\left(\nu_{\tau L}\right)^{c}\right] h^{-}+\mu\left(\Phi_{1}^{+} \Phi_{2}^{0}-\Phi_{1}^{0} \Phi_{2}^{+}\right) h^{-}+\text {h.c. }
\end{aligned}
$$

$$
\left(\begin{array}{ccc}
0 & m_{e \mu} & m_{e \tau} \\
m_{e \mu} & 0 & m_{\mu \tau} \\
m_{e \tau} & m_{\mu \tau} & 0
\end{array}\right) \quad m_{a b}=f_{a b}\left(m_{b}^{2}-m_{a}^{2}\right) \frac{\kappa v_{2}}{v_{1}} F\left(M_{1}^{2}, M_{1}^{2}\right), \quad F\left(M_{1}^{2}, M_{1}^{2}\right)=\frac{1}{16 \pi^{2}} \frac{1}{M_{1}^{2}-M_{1}^{2}} \ln \frac{M_{1}^{2}}{M_{2}^{2}}
$$ couplings $f_{a b}$ are antisymmetric

Zee Model

* Zee-Wolfenstein model was ruled out by data
*Even when $f_{a b}$ are complex, the mass matrix predicts bimaximal mixing, thus is not compatible with $\theta_{12}=33.5_{-0.7}^{\circ+0.8}\left(\begin{array}{c}+2.1\end{array}\right)$
*Symmetric mass matrix $U_{\nu}^{T} M_{\nu} U_{\nu}=D_{\nu} \equiv \operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right)$

$$
H_{\nu}=M_{\nu}^{\dagger} M_{\nu} \quad U_{\nu}^{\dagger} H_{\nu} U_{\nu}=D_{\nu}^{*} D_{\nu}=\operatorname{diag}\left(\left|m_{1}\right|^{2},\left|m_{2}\right|^{2},\left|m_{3}\right|^{2}\right)
$$

*Only solution of inverted ordering is possible, but it give large $\sin ^{2} 2 \theta_{\text {solar }}<\approx 1$, far from the current data
*Babu and Julio imposed a family-dependent Z_{4} symmetry acting on the leptons

$$
\left(\begin{array}{ccc}
x & a & b \\
a & Y & c \\
b & c & \varepsilon
\end{array}\right) \quad \begin{gathered}
L_{i}:(-i, i, i) ; \\
H_{1}:+1 ;
\end{gathered} e_{i}^{c}:(-i,-i,-i) ;-1 ; \quad h_{2}^{+}:-1 .
$$

*Non-zero diagonal but avoid FCNC, somehow save Zee model

Extension of Zee Model without Flavor Sym?

* Can we extended the Zee model without imposing a flavor symmetry?
* 2-loop corrections can generate diagonal masses
*To be compatible with data, $\left|f_{e \mu}\right| m_{\mu}^{2} \approx\left|f_{e \tau}\right| m_{\tau}^{2} \gtrdot\left|f_{\mu \tau}^{\prime}\right| m_{\tau}^{2}$
2-loop correction $\left(m_{v}^{(2)}\right)_{a b}=\gamma \sum_{c, d} f_{a c} f_{c d}^{} f f_{d b}\left(m_{c}^{2}-m_{d}^{2}\right)=\gamma\left(f\left[m^{2}, f^{*} 1 f f_{a b}\right.\right.$

Correction to $\sin ^{2} 2 \theta_{\text {solar }}$ Chang, Zee (2000)

$$
\left.\left\lvert\, \frac{M_{v 11}}{M_{\nu 23} \mid} \sim \frac{\left|f_{e \mu}\right|\left|f_{\mu \mu}\right|\left|f_{\tau e}\right|}{16 \pi^{2}\left|f_{\mu \tau}\right|} \simeq \frac{\left|f_{e \mu \mu}\right|^{2}}{16 \pi^{2}} \frac{m_{\mu}}{m_{\tau}}\right.\right)^{2}<10^{-5}
$$

*Even 2-loop corrections can't help to save the model

A New Extended Zee Model

*Type-I 2HDM with 2 extra charged and neutral singlets as the 2 Higgs doublets

$$
\begin{gathered}
\Phi_{1}=\binom{\varphi_{1}^{+}}{\varphi_{1}^{0}}=\binom{\varphi_{1}^{+}}{\frac{\left(v_{1}+\eta_{1}+i \phi_{1}\right)}{\sqrt{2}}} \quad \Phi_{2}=\binom{\varphi_{2}^{+}}{\varphi_{2}^{0}}=\binom{\varphi_{2}^{+}}{\frac{\left(v_{2}+\eta_{2}+i \phi_{2}\right)}{\sqrt{2}}} \quad \begin{array}{c}
\chi_{1}^{+} \\
\chi_{1}^{0}=\frac{\left.\chi_{1}+\chi_{1}+i \chi_{2}\right)}{\sqrt{2}} \\
\chi_{2}^{0}=\frac{\chi_{2}^{+}}{\frac{\left(i_{i}+\chi_{3}+i \chi_{4}\right)}{\sqrt{2}}} \\
\mathcal{L}_{H, k i m}
\end{array}=\left(D_{\mu} \Phi_{1}\right)^{\dagger}\left(D^{\mu} \Phi_{1}\right)+\left(D_{\mu} \Phi_{2}\right)^{\dagger}\left(D^{\mu} \Phi_{2}\right)+D_{\mu}^{\chi} \chi_{1}^{-} D^{\chi, \mu} \chi_{1}^{+}+\partial_{\mu}\left(\chi_{1}^{0}\right)^{*} \partial^{\mu} \chi_{1}^{0}+D_{\mu}^{\chi} \chi_{2}^{-} D^{\chi, \mu} \chi_{2}^{+}+\partial_{\mu}\left(\chi_{2}^{0}\right)^{*} \partial^{\mu} \chi_{2}^{0}
\end{gathered}
$$

Both doublets \& neutral singlets can get VEV, and no mixing of $\chi_{1}^{ \pm}, \chi_{2}^{ \pm}$

$$
\tan \beta=v_{2} / v_{1} \quad \alpha=u_{2} / u_{1} \quad \tilde{\chi}=\cos \alpha \chi_{1}^{0}+\sin \alpha \chi_{2}^{0} \quad \rho=\sin \alpha \chi_{1}^{0}+\cos \alpha \chi_{2}^{0}
$$

*Symmetry

	l_{L}	l_{R}	Q_{L}	u_{R}	d_{R}	Φ_{1}	Φ_{2}	$\chi_{1}^{ \pm}$	$\chi_{2}^{ \pm}$	$\tilde{\chi}$	ρ
Z_{4}	$g_{3}(-1)$	$g_{3}(-1)$	$g_{3}(-1)$	$g_{3}(-1)$	$g_{3}(-1)$	$g_{2}(+1)$	$e(-2)$	$g_{2}(+1)$	$g_{2}(+1)$	$g_{2}(+1)$	$g_{2}(+1)$
$S U(2)_{L}$	2	1	2	1	1	2	2	1	1	1	1
Lepton L	1	1	0	0	0	0	0	± 2	± 2	0	0
Z_{2}						1	1	1	1	1	-1

$\mathcal{L}_{\text {lepsig }}=f_{a b}^{1} L_{i L}^{a T} C L_{j L}^{b} \epsilon^{i j} \chi_{1}^{+}+f_{a b}^{1} L_{i L}^{b \dagger} C L_{j L}^{a *} \epsilon^{i j} \chi_{1}^{-}+f_{a b}^{2} L_{i L}^{a T} C L_{j L}^{b} \epsilon^{i j} \chi_{2}^{+}+f_{a b}^{2} L_{i L}^{b \dagger} C L_{j L}^{a *} \epsilon^{i j} \chi_{2}^{-}$

$$
\begin{aligned}
\mathcal{L}_{12 \chi} & =\kappa_{1}\left(\Phi_{2}^{c \dagger} \Phi_{1}-\Phi_{1}^{c \dagger} \Phi_{2}\right) \chi_{1}^{-} \tilde{\chi}+\kappa_{2}\left(\Phi_{2}^{c \dagger} \Phi_{1}-\Phi_{1}^{c \dagger} \Phi_{2}\right) \chi_{2}^{-} \tilde{\chi}+\text { h.c. } \\
& =2 \kappa_{1} u\left(\varphi_{1}^{+} \varphi_{2}^{0}-\varphi_{2}^{+} \varphi_{1}^{0}\right) \chi_{1}^{-}+2 \kappa_{2} u\left(\varphi_{1}^{+} \varphi_{2}^{0}-\varphi_{2}^{+} \varphi_{1}^{0}\right) \chi_{2}^{-}+\text {h.c. }+\cdots
\end{aligned}
$$

A New Extended Zee Model

*Mass Matrix is complex, but...

$$
\begin{aligned}
& m_{a b}=\frac{\left(m_{b}^{2}-m_{a}^{2}\right)}{16 \pi^{2}} u \tan \beta\left[f_{a b}^{1} \kappa_{1} F\left(M_{11}^{2}, M_{12}^{2}\right)+f_{a b}^{2} \kappa_{2} F\left(M_{21}^{2}, M_{2}\right.\right. \\
& \text { correction to the diagonal } \\
& m_{a b}^{(2)}=\frac{O(1)}{\left(16 \pi^{2}\right)^{2}} u \sum_{i, j=1,2} \sum_{c, d=e, \mu, \tau}\left[f_{a c}^{i} f_{c d}^{j *} f_{d b}^{j}\left(m_{c}^{2}-m_{d}^{2}\right) \kappa_{i} F\left(M_{\chi 1}^{2}, M_{\chi 2}^{2}\right)\right]
\end{aligned}
$$

The ratio contributing to $\sin ^{2} 2 \theta_{\text {solar }}$ becomes

$$
\frac{\left|M_{\nu 11}\right|}{\left|M_{\nu 23}\right|}=\frac{1}{16 \pi^{2} \frac{\mid f_{\mu \tau}^{1 *}}{1 *} f_{e \tau}^{1}+f_{\mu \tau}^{2 *} f_{e \tau}^{2}\left|\frac{\left|f_{e \mu} \kappa_{1}+f_{e \mu} \kappa_{2}\right|}{\left|f_{\mu \tau}^{1} \kappa_{1}+f_{\mu \tau}^{2} \kappa_{2}\right|} \neq \frac{1}{16 \pi^{2}} \frac{m_{\tau^{2}}}{m_{\mu^{2}}}\right| f_{e \tau}^{1}+f_{e \mu}^{2}| |}
$$

*There's room to make our prediction consistent with the solar mixing angle and there's CP phase!

Fit the parameters $f_{a b}^{i}, \kappa_{i}$ and constraint from FCNF and $0 v \beta \beta$ decay

A New Extended Zee Model

*There's also scalar dark matter candidate!

$$
\rho=\sin \alpha \chi_{1}^{0}+\cos \alpha \chi_{2}^{0}, \quad<\rho>=0
$$

* It's constrained by the neutrino part directly
* But $\rho \rho \rightarrow \chi^{+} \chi^{-} \rightarrow l^{+} V^{-} v v$ can be sensitive to the neutrino parameters
* Maybe we can also consider a $s U_{o}(2)$ extension of Ma model

We will fit the parameters to constrain our model with the current neutrino data
*Interesting LHC phenomenology, e.g. 2 TeV heavy resonance
Relic density for the dark matter candidate

Thank you!

