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Neutrino	
  Oscilla*ons	
  and	
  Mixing	
  	
  	
  

v Standard	
  model	
  is	
  too	
  good	
  with	
  data	
  before	
  neutrino	
  oscilla*ons	
  	
  
v But	
  neutrino	
  oscilla*ons	
  	
  	
  	
  	
  	
  	
  neutrino	
  mixing	
  	
  	
  	
  	
  	
  	
  	
  	
  neutrino	
  masses!	
  
v How	
  to	
  expend	
  the	
  Standard	
  model	
  to	
  generate	
  neutrino	
  mass?	
  
v Much	
   small	
   masses	
   and	
   much	
   larger	
   mixing	
   comparing	
   with	
  
quarks:	
  not	
  natural	
  if	
  only	
  Dirac	
  masses	
  with	
  	
  	
  	
  	
  	
  	
  	
  

v Mixing	
  matrix	
  

v An*-­‐neutrinos	
  are	
  the	
  same	
  as	
  neutrinos?	
  
	
  	
  	
  	
  Majorana	
  or	
  Dirac?	
  

!υR
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Neutrino	
  Oscilla*ons	
  and	
  Mixing	
  	
  

v More	
  precise	
  neutrino	
  data	
  

v Normal	
  ordering	
  or	
  inverted	
  ordering?	
  

A global fit to neutrino oscillation data 

Forero, Tortola, Valle (2014) 

Neutrinos Concha Gonzalez-Garcia3ν Flavour Parameters
• For for 3 ν’s : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases
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Neutrino Mass Ordering 

Predic*ve	
  models?	
  
May	
  be	
  ruled	
  out	
  by	
  
experiments!	
  



Dart-yin Soh  Page	
  5	
  	
  2nd, Aug, SI2015 

Why	
  Neutrinos	
  Have	
  Masses?	
  

v God	
  should	
  use	
  natural	
  way	
  to	
  generate	
  neutrinos	
  masses	
  
v Sea-­‐saw:	
  tree	
  level	
  Majorana	
  masses	
  of	
  	
  	
  	
  	
  	
  &	
  no	
  fine-­‐tuning	
  Dirac	
  

	
  	
  	
  	
  very	
  heavy	
  neutrinos	
  	
  	
  
v  	
   Radia*ve	
   neutrino	
   masses:	
   naturally	
   small	
   due	
   to	
   the	
   loop	
  
correc*ons,	
  less	
  parameters	
  and	
  thus	
  predic*ve	
  
u Simple	
  and	
  clean:	
  only	
  Majorana	
  Masses	
  of	
  	
  
u Renormalizable,	
  no	
  counter-­‐term	
  and	
  thus	
  calculable	
  

!υR

Neutrino Mass Generation Neutrino Mass Generation at Tree Level

Neutrino Mass Generation

Seesaw mechanism (Type I, Type II, Type III...)
In Type I seesaw, some heavy right-handed neutrinos NR are
introduced.

L = −φ†ℓLyνNR −
1

2
N c

RMNR + h.c.

→ −νLmDNR −
1

2
N c

RMNR + h.c. mD = yν⟨φ⟩

Mass matrix
(

0 mD

mT
D M

)

→ mν = −mDM
−1mT

D + · · ·
(if mD ≪ M)

Typical scale
· If Yukawa coupling is O(1), mD ∼ 100 GeV and M ∼ 1014 GeV.
Super heavy NR → light neutrino masses.

Takashi Toma (IPPP) Internal Seminar 7th June 2013 4 / 34
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Neutrino Mass Generation Examples of Models

Examples of Models
Zee model

SU(2)L U(1)Y
φ2 2 1
h+ 1 1

· neutrino mass (1-loop level)

Ma model

SU(2)L U(1)Y Z2

Ni 1 0 −1
η 2 1/2 −1

· neutrino mass (1-loop level)
· DM candidates (N1 or η0)

V = µφT
1 φ2h

−

V =
λ5

2

(

φ†η
)2

Takashi Toma (IPPP) Internal Seminar 7th June 2013 7 / 34
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Radia*ve	
  Neutrino	
  Masses	
  

v Zee	
  model	
  (1980)	
  
u 2HDM+charged	
  singlet	
  
u Majorana	
  Yukawa	
  couplings	
  
u Was	
  studied	
  extensively	
  

v Zee-­‐Babu	
  model	
  
u Majorana	
  Yukawa	
  couplings	
  
	
  	
  	
  	
  of	
  both	
  L	
  &	
  R	
  leptons	
  
u S*ll	
  compa*ble	
  with	
  data	
  

v Ma	
  model	
  
u R	
  neutrinos	
  are	
  odd	
  under	
  Z2	
  
u Inert	
  doublet	
  scalar	
  
u Both	
  can	
  be	
  dark	
  ma<er	
  candidates	
  

Neutrino Mass Generation Examples of Models

Examples of Models

Zee-Babu model
SU(2)L U(1)Y

h+ 1 1
k++ 1 2

· neutrino mass (2-loop level)

Krauss-Nasri-Trodden model
SU(2)L U(1)Y Z2

S
+
1 1 1 +1

S
+
2 1 1 +1

NR 1 0 −1

· neutrino mass (3-loop level)
· DM candidate (NR)

V = µh−2
k++

V = λs

(

S+
1 S

−
2

)2

Non-self conjugate coupling is required.

Takashi Toma (IPPP) Internal Seminar 7th June 2013 8 / 34
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Zee	
  Model	
  

v The	
  general	
  Zee	
  model:	
  both	
  doublets	
  have	
  Yukawa:	
  the	
  Yukawa	
  
couplings	
  matrix	
  cannot	
  be	
  diagonized	
  

v Neutrino	
  mass	
  matrix	
  

v There	
  are	
  non-­‐zero	
  diagonal	
  elements	
  
v But	
  tree	
  level	
  FCNC:	
  Wolfenstein	
  Suggest	
  a	
  Z2	
  to	
  prevent	
  
	
  	
  	
  	
  the	
  second	
  Yukawa	
  
v Mass	
  matrix	
  with	
  vanishing	
  diagonal	
  elements	
  
v Phases	
  of	
  fab	
  are	
  absorbed	
  to	
  

Radiative loop corrections might come in handy!

Chapter 6

Radiative loop corrections

6.1 The Zee Model

The dimension 5 operator can also originate from radiative loop corrections. In the Zee model,
the electroweak sector of the Standard Model is extended with an extra charged scalar field,
which transforms as a singlet under SU(2) and couples to the lepton and Higgs doublets [61].
To preserve gauge invariance, h+ can not acquire a vacuum expectation value, only Higgs
doublets ⇥ break symmetry spontaneously. The Majorana neutrinos can thus couple to this
newly introduced scalar field and generate the dimension 5 operator. The new charged scalar
field has lepton number 2. Lepton number is therefore broken in the coupling with the Higgs
doublets.

A radiative contribution as seen in figure 6.1, generates the neutrino mass matrix.

Figure 6.1: Zee model

The coupling between two left handed doublets and the charged Higgs singlet gives the fol-
lowing contribution to the Lagrangian:

fac(⇤iaLC⇤jcL)�ijh+ h.c, (6.1)

91/121

h+

Extra scalar field:

New approach: 
Minimal deviation from tribimaximal

Frobenius and Zee could just be the right match!
12/12

Wednesday, June 26, 2013

flavor	
  can	
  
change	
  

L. Wolfenstein (1980) 

Smirnov, Tanimoto (1997) 
Jarlskog, Matsuda, Skaldhauge, Tanimoto (1999) 
Frampton, Glashow (1999) 

( )C. Jarlskog et al.rPhysics Letters B 449 1999 240–252 241

Another issue, to be understood, is why the neutrino masses are so small? The most popular answer to the
w xlatter question is given by the see-saw mechanism 12 which introduces heavy right-handed Majorana neutrinos

with masses of the order 1010y1016 GeV. This attractive model has been extensively studied in the literature.
However, it is important to consider also other possible scenarios with small neutrino masses, specially

Ž . w xextensions of the standard model SM at a low energy scale. The Zee model 13 is such an alternative and has
w xbeen studied in the literatures for almost twenty years 14–18 . In this paper, we will discuss the present status

of the Zee mass matrix, in the light of recent experimental results.
w xIn the Zee model 13 neutrino masses are generated by radiative corrections, and hence the model may

provide an explanation of the smallness of neutrino masses. In this model, the following Lagrangian is added to
the SM;

c y T y
X XLLs f C is C h qmF is F h qh.c.Ž .Ý l l l L 2 l L 1 2 2

Xl , l se ,m ,t
c c c cy ys2 f n m ye n h q2 f n t ye n hŽ . Ž . Ž . Ž .em eL L L mL et eL L L t L

c c y q 0 0 q yq2 f n t ym n h qm F F yF F h qh.c. , 1Ž . Ž . Ž .Ž .mt mL L L t L 1 2 1 2

Ž .T Ž q 0.T "whereC s n ,l , F s F ,F , is1,2. The Higgs potential is omitted here. The charged Zee boson, h ,l L l L i i i
Ž .is a singlet under SU 2 . We need at least two Higgs doublets in order to make the Zee mechanism viable,L

since the antisymmetric coupling to the Zee boson is the cause of ByL violation, and hence of Majorana
masses. Note that only F couples to leptons, as in the SM. The mass matrix, generated by radiative correction1

w xat one loop level 13–18 , is given by

0 m mem et

m 0 m , 2Ž .em mt# 0m m 0et mt

where
mÕ22 2 2 2m s f m ym F M ,MŽ .Ž .em em m e 1 2Õ1
mÕ22 2 2 2m s f m ym F M ,M 3Ž .Ž . Ž .et et t e 1 2Õ1
mÕ22 2 2 2m s f m ym F M ,MŽ .Ž .mt mt t m 1 2Õ1

and
1 1 M 2

12 2F M ,M s ln . 4Ž .Ž .1 2 2 2 2 216p M yM M1 2 2

The parameter Õ is the vacuum expectation value of the neutral component of the Higgs doublet F .M1Ž2. 1Ž2. 1
and M are the masses of the physical particles defined by the fields2

HqshqcosfyFqsinf , HqshqsinfqFqcosf , 5Ž .1 2

where Fq is the charged Higgs boson that would have been a physical particle in the absence of the hq.
Finally, the mixing angle f is defined by

'4 2 mMWtan2fs . 6Ž .
222 2 y1'(g M yM y 4 2 g mMŽ . Ž .1 2 W

couplings	
  fab	
  
are	
  an*-­‐
symmetric	
  

!lR
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1 Problems of Our Previous Model

In our previous model, there is 2 Higgs doublets, i.e. �1 and �2, one charged singlet �± and one complex dark matter candidate
�0. To simplify the model we only considered the case that only �1 couples to fermions via Yukawa terms. I found the strange
symmetry Z02 to forbid �2 Yukawa interactions is actually a Z4 symmetry.

However, it was pointed out that this model was ruled out by the recent neutrino experiment results. The main reason is that
the mass matrix of the Majorana left-handed neutrinos via Zee mechanism is an real o↵-diagonal matrix M⌫:

0
BBBBBBBB@

0 a c
a 0 b
c b 0

1
CCCCCCCCA ⌘

0
BBBBBBBB@

0 meµ me⌧

meµ 0 mµ⌧
me⌧ mµ⌧ 0

1
CCCCCCCCA (1)

where

mab = fab(m2
b � m2

a)
v2
v1

F(M2
1 ,M

2
1), F(M2

1 ,M
2
1) =

1
16⇡2

1
M2

1 � M2
1

ln
M2

1

M2
2

(2)

M1 and M2 are the masses of physical charged scalars as mixing particles of �+ and '+ in the 2-higgs doublets. Why fab have to
be real numbers? We assume that a unitary transformation of leptons V diagonalize the Yukawa coupling matrix of leptons ya,bl .
Then EL,a = VabE0L,b and eR,a = Ṽabe0R,b. In this transformation the couplings fab becomes

fab ! f 0ab = (VT f V)ab, ⇥ab = arg[(VT f V)ab] VT f V ⌘ g (3)

⇥ab are the phases of gab = rabei⇥ab . We can find a diagonal matrix K = diag(eik1 , eik2 , eik3 ), so that the phases in fab can be
absorbed: 2⇥ = ⇥12 + ⇥23 + ⇥13 and

K =

0
BBBBBBBB@

ei(�⇥+⇥23) 0 0
0 ei(�⇥+⇥13) 0
0 0 ei(�⇥+⇥12)

1
CCCCCCCCA V 0 = KV (4)

Then
fab ! (V 0T f V 0)ab (5)

becomes real. We can choose matrix V 0 so that the Yukawa couplings ya,bl are diagonalized, however, diagonal matrix K commutes
with any diagonal matrix:

V†yṼ = K(V 0†yṼ 0)k† = V 0†yṼ 0 (6)

So Yukawa couplings ya,bl are diagonalized by V 0 as V we chose previously. The Majorana matrix M⌫ has only 3 parameters and
when it’s diagonalized to be diag(m1,m2,m3), m1 + m2 + m3 = 0 and the neutrino mixing angles are also determined by these 3
parameters. It’s very di�cult to explain the mass square di↵erences �m2

i and the not small ✓1,3 and the possible phase with ✓1,3.
However, we can add one more charged scalar �±2 so that we have 2 sets of couplings with the leptons: f 1

ab and f 2
ab. Since the

phases in f 1
ab are absorbed by matrix K, the phases in f 2

ab cannot be absorbed again. Then we can have complex Majorana matrix
M⌫!

2 Two Higgs Doublets and Complex Singlets

There is 2 Higgs doublets, i.e. �1 and �2 in this model. �1 is the SM-like doublet, while �2 is the doublet with no Yukawa
couplings. It’s more natural to assume both doublets a 1-to-1 symmetry (somehow like parity, we may discuss this later.) to the 8
singlet scalars �±1 , �±2 and �0

1, �0
2: The ”parity” symmetry between �2 and �±1 , �

±
2 , �

0
1, �

0
2 forbids us to add any number of singlets

in this model.
To make the notations uniform, we denote the components of �1, �2 and �± and �0 as

�1 =

 
'+1
'0

1

!
�2 =

 
'+2
'0

2

!
�+1

�0
1 = (�1 + i�2)/

p
2

�+2
�0

2 = (�3 + i�4)/
p

2
(7)

where � j can acquire vev v j/
p

2: '0
j = (v j + ⌘ j + i�i)/

p
2 where j = 1, 2 and ⌘ j, �i are real fields. The 2 complex singlets �+j and

�0
j does not form a doublet.

1
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−0.46
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(
+2.5
−2.1

)

∆m2
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−0.06

(
+0.21
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)
× 10−3 eV2 θ23 =

⎧
⎨

⎩
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(
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−4.8◦
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(
+4.3◦

−12.6◦

)
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(
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)
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(
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⎧
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⎩
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−84◦

(
+45◦

−315◦

)
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−68◦

(
+90◦

−270◦

)

|U |LEP(3σ) =
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⎝
0.799 → 0.844 0.515 → 0.581 0.129 → 0.173

0.212 → 0.527 0.426 → 0.707 0.598 → 0.805

0.233 → 0.538 0.450 → 0.722 0.573 → 0.787
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require !#m12

2 /#m23
2 !!1 in order to understand the solar and atmospheric data simultaneously, the only

solution is one that gives bimaximal mixing. It is pointed out that the present best-fit value of sin2 2$solar in the
Mikheyev-Smirnov-Wolfenstein large mixing angle solution cannot be explained within the framework of the
Zee model, because we derive a severe constraint on the value of sin2 2$solar , sin2 2$solar%1"(1/
16)(#msolar

2 /#matm
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Of the neutrino mass matrix models proposed currently,
the Zee model &1' is a very attractive one, because the model
can naturally lead to a large neutrino mixing with few pa-
rameters &2–4'. The neutrino mass matrix M ( in the basis on
which the charged lepton mass matrix Me is diagonal is
given by the form

M ("m0# 0 a c
a 0 b
c b 0

$ , !1"

where

a# f e)!m)
2"me

2", b# f)*!m*
2"m)

2 ",
!2"

c# f *e!me
2"m*

2",

and f e) , f )* , and f *e are lepton-number violating Yukawa
coupling constants with the Zee scalar h$. It is known that,
if we consider a Zee mass matrix with a#c%!b!, the model
can give a nearly bimaximal mixing &2,4,5':

U(## cos $ "sin $ 0

1
!2
sin $

1
!2
cos $ "

1
!2

1
!2
sin $

1
!2
cos $

1
!2

$ , !3"

where

tan $#!"m(1 /m(2, !4"

#m12
2 #m(1

2 "m(2
2 "2!2ab , #m23

2 #m(2
2 "m(3

2 "2a2,
!5"

which leads to

#m12
2 /#m23

2 "!2 b/a . !6"

Furthermore, if we assume a badly broken horizontal sym-
metry SU(3)H and put a simple ansatz on the transition ma-

trix elements in the infinite momentum frame !not on the
mass matrix", we can obtain the relations &6'

f i j#+ i jk &mk
e /!mi

e$mj
e"' f , !7"

where f is a common factor and mi
e#(me ,m) ,m*), so that

we can predict

#m12
2 /#m23

2 "!2me/m)#6.7&10"3, !8"

which is in excellent agreement with the observed value
!best-fit value" &7,8'

# #msolar
2

#matm
2 $

expt

"
2.2&10"5 eV2

3.2&10"3 eV2
#6.9&10"3. !9"

Thus, the Zee model is very attractive from the phenom-
enological point of view. However, most authors who inves-
tigated the Zee neutrino mass matrix have failed to obtain the
observed value sin2 2$solar"0.7 in the Mikheyev-Smirnov-
Wolfenstein !MSW" large mixing angle !LMA" solution &9',
although it is easy to obtain the bimaximal mixing !3". It is a
serious problem for the Zee model whether or not the model
can fit the observed value sin2 2$solar"0.7. In the present
paper, from a parameter-independent study of the Zee neu-
trino mass matrix !1", we conclude that the value of
sin2 2$solar must satisfy a severe constraint sin2 2$solar%1
"(1/16)(#msolar

2 /#matm
2 )2 in the Zee model with

#msolar
2 /#matm

2 !1. A similar subject has also been dis-
cussed by Frampton and Glashow &10'. However, the con-
straint obtained in the present paper is more explicit and very
severe. This constraint will force us to abandon the Zee
model or to modify the original Zee model to an extended
version with some additional terms.
The mass matrix !1" is diagonalized by a unitary matrix

U( as

U(
TM (U(#D(,diag!m1 ,m2 ,m3". !10"

The Maki-Nakagawa-Sakata !MNS" &11' matrix UMNS is
given by UMNS#U( , because the charged lepton mass ma-
trix is diagonal in the Zee model. In order to obtain the
relations among the mass matrix parameters and the mass
eigenvalues, we define the Hermitian matrix H( as*Email address: koide@u-shizuoka-ken.ac.jp
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H!!M !
†M ! , "11#

so that we obtain

U!
†H!U!!D!*D!!diag" !m1!2,!m2!2,!m3!2#. "12#

The form of H! is explicitly given by

H!!H0"H1 , "13#

where

H0!m0
2" !a!2#!b!2#!c!2#1, "14#

H1!m0
2" !b!2 "c*b "a*b

"b*c !c!2 "a*c
"b*a "c*a !a!2

# , "15#

and 1 is a 3$3 unit matrix. The matrix H1 is diagonalized as

U!
†H1U!!diag"h1 ,h2 ,h3#, "16#

and the eigenvalues hi satisfy the equation

hi
3"" !a!2#!b!2#!c!2#m0

2hi
2#4!a!2!b!2!c!2m0

6!0. "17#

By redefining m0, without losing generality, we can take
!a!2#!b!2#!c!2!1, so that the solutions hi!m0

2xi are de-
scribed by only one parameter

!q!2!!a!2!b!2!c!2 "18#

as

xi
3"xi

2#4!q!2!0. "19#

Equation "19# has three real solutions xi only when !q!2
%1/27. The behaviors of the solutions xi are illustrated in
Fig. 1. The mass squared !mi!2 is given by

!mi!2!"1"xi#m0
2 . "20#

From Fig. 1, we find that the cases which can explain the
observed fact !$m12

2 /$m23
2 !&1 are only the cases with !q!2

$1/27 and !q!2$0.
For the case with !q!2$1/27, by putting

x1!
2
3 #%1 , x2! 2

3 "%2 , x3!" 1
3 #%3 , !q!2! 1

27 "%q
2 ,
"21#

and by putting Eqs. "21# into Eq. "19#, we obtain

%1$%2$2%q , %3$4%q
2 , "22#

so that we obtain

$m21
2 /$m32

2 $4%q . "23#

On the other hand, from Eq. "16#, we obtain

"H1 /m0
2# ii!!U!i1!2x1#!U!i2!2x2#!U!i3!2x3 . "24#

For the case with !q!2$1/27, Eq. "24# gives

"H1 /m0
2# ii$ 2

3 "!U!i3!2#2%q" !U!i1!2"!U!i2!2#, "25#

i.e.,

!b!2$ 2
3 "!U!13!2, !c!2$ 2

3 "!U!23!2, !a!2$ 2
3 "!U!33!2.

"26#

Since we know that the only solution under the conditions
!a!2#!b!2#!c!2!1 and !a!2!b!2!c!2$1/27 is !a!2$!b!2
$!c!2$1/3, the relation "25# yields

!U!13!2$ 1
3 , !U!23!2$ 1

3 , !U!33!2$ 1
3 , "27#

which gives

sin2 2&atm!4!U!23!2!U!33!2$ 4
9 . "28#

The value "28# is too small to explain the observed value '7(
sin2 2&atm$1.0, so that the case with !q!2$1/27 is ruled out.
Next, we investigate the case with !q!2$0. By putting

x1!"%1 , x2!%2 , x3!1"%3 , "29#

and putting Eqs. "29# into Eq. "19#, we obtain

%1$2!q!"1"!q!#, %2$2!q!"1#!q!#, %3$4!q!2,
"30#

so that we obtain

$m12
2 $4!q!m0

2 , $m23
2 $"1"2!q!2#m0

2 , "31#

$m12
2 /$m23

2 $4!q!. "32#

On the other hand, from the relation "24#, we obtain

"H1 /m0
2# ii$!U!i3!2"2!q!" !U!i1!2"!U!i2!2#

#2!q!2"1"3!U!i3!2#, "33#

FIG. 1. The eigenvalues xi (i!1,2,3) versus !q!2. The solutions
xi of Eq. "19# have real three values only in the range 0)!q!2
)1/27. The values xi take (0,0,1) and ("1/3,2/3,2/3) at !q!2!0
and !q!2!1/27, respectively. The mass eigenvalues !mi!2 are given
by !mi!2!(1"xi)m0

2.
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hi
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2hi
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2xi are de-
scribed by only one parameter
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Fig. 1. The mass squared !mi!2 is given by
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Of the neutrino mass matrix models proposed currently,
the Zee model &1' is a very attractive one, because the model
can naturally lead to a large neutrino mixing with few pa-
rameters &2–4'. The neutrino mass matrix M ( in the basis on
which the charged lepton mass matrix Me is diagonal is
given by the form

M ("m0# 0 a c
a 0 b
c b 0

$ , !1"

where

a# f e)!m)
2"me

2", b# f)*!m*
2"m)

2 ",
!2"

c# f *e!me
2"m*

2",

and f e) , f )* , and f *e are lepton-number violating Yukawa
coupling constants with the Zee scalar h$. It is known that,
if we consider a Zee mass matrix with a#c%!b!, the model
can give a nearly bimaximal mixing &2,4,5':
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which leads to
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2 /#m23

2 "!2 b/a . !6"

Furthermore, if we assume a badly broken horizontal sym-
metry SU(3)H and put a simple ansatz on the transition ma-

trix elements in the infinite momentum frame !not on the
mass matrix", we can obtain the relations &6'

f i j#+ i jk &mk
e /!mi

e$mj
e"' f , !7"

where f is a common factor and mi
e#(me ,m) ,m*), so that

we can predict

#m12
2 /#m23

2 "!2me/m)#6.7&10"3, !8"

which is in excellent agreement with the observed value
!best-fit value" &7,8'

# #msolar
2

#matm
2 $

expt

"
2.2&10"5 eV2

3.2&10"3 eV2
#6.9&10"3. !9"

Thus, the Zee model is very attractive from the phenom-
enological point of view. However, most authors who inves-
tigated the Zee neutrino mass matrix have failed to obtain the
observed value sin2 2$solar"0.7 in the Mikheyev-Smirnov-
Wolfenstein !MSW" large mixing angle !LMA" solution &9',
although it is easy to obtain the bimaximal mixing !3". It is a
serious problem for the Zee model whether or not the model
can fit the observed value sin2 2$solar"0.7. In the present
paper, from a parameter-independent study of the Zee neu-
trino mass matrix !1", we conclude that the value of
sin2 2$solar must satisfy a severe constraint sin2 2$solar%1
"(1/16)(#msolar

2 /#matm
2 )2 in the Zee model with

#msolar
2 /#matm

2 !1. A similar subject has also been dis-
cussed by Frampton and Glashow &10'. However, the con-
straint obtained in the present paper is more explicit and very
severe. This constraint will force us to abandon the Zee
model or to modify the original Zee model to an extended
version with some additional terms.
The mass matrix !1" is diagonalized by a unitary matrix

U( as

U(
TM (U(#D(,diag!m1 ,m2 ,m3". !10"

The Maki-Nakagawa-Sakata !MNS" &11' matrix UMNS is
given by UMNS#U( , because the charged lepton mass ma-
trix is diagonal in the Zee model. In order to obtain the
relations among the mass matrix parameters and the mass
eigenvalues, we define the Hermitian matrix H( as*Email address: koide@u-shizuoka-ken.ac.jp

PHYSICAL REVIEW D, VOLUME 64, 077301

0556-2821/2001/64!7"/077301!4"/$20.00 ©2001 The American Physical Society64 077301-1

Rates for the decays μ → eγ and τ → 3μ may be accessible
to proposed experiments.
The rest of the paper is organized as follows. In Sec. II

we describe the model. In Sec. III we address the flavor
structure of the charged lepton mass matrix and Yukawa
matrices. Neutrino phenomenology is worked out in
Sec. IV. Section V is devoted to lepton flavor violation
discussions, and Sec. VI addresses Higgs decays. Finally,
Sec. VII has our conclusions.

II. THE MODEL

The model we present is a special case of the general Zee
model [1]. Neutrino masses are induced as one-loop
radiative corrections through the exchange of charged
scalars. The gauge symmetry and the fermionic content
of the model are identical to those of the Standard Model.
In particular, Standard Model singlet right-handed neutri-
nos are not introduced. The scalar sector is extended so that
there are two Higgs doubletsHað1; 2;−1=2Þ (a ¼ 1; 2) and
a charged singlet ηþð1; 1;þ1Þ. A discrete Z4 symmetry
acting on the lepton fields Lið1; 2;−1=2Þ, eci ð1; 1;þ1Þ and
the Higgs fields Ha and ηþ is assumed, with the following
transformation properties:

Li∶ð−i; i; iÞ; eci ∶ð−i;−i;−iÞ;
H1∶þ 1; H2∶ − 1; ηþ∶ − 1: (1)

Here i ¼ 1–3 is the family index. Thus the Z4 symmetry is
family dependent. This is the crucial difference of our
model compared to the Wolfenstein realization of the Zee
model, where a family universal Z2 is assumed in order to
suppress naturally tree-level flavor changing neutral cur-
rents mediated by the Higgs bosons. In our version, there
will be tree-level flavor changing neutral currents, but as we
show, the amplitudes for these processes are sufficiently
suppressed to be consistent with data, even when the
neutral scalars which mediate them have masses of order
hundred GeV.
In the leptonic sector, the following Yukawa couplings

can be written down consistent with the gauge symmetry
and the Z4 symmetry of Eq. (1):

LðlÞ
Yuk ¼

X

i ¼ 2; 3;

α ¼ 1; 2; 3

YiαLiecαH1 þ
X

α ¼ 1; 2; 3
YαL1ecαH2

þ f23L2L3ηþ þ H:c: (2)

Lepton number is not broken by these Yukawa couplings,
as can be seen by assigning a lepton number of −2 to the ηþ
field. However, the Higgs potential contains a cubic term
which is Z4 invariant that breaks lepton number and
possibly also a quadratic term that breaks the Z4 symmetry
softly:

V ¼ fμH1H2ηþ þm2
12H

†
1H2 þ H:c:gþ…: (3)

Here the…. stands for other terms which are not so relevant
for our present discussions. However, it should be noted
that the action of the Z4 symmetry does not create an
accidental global Uð1Þ symmetry of the Higgs potential,
which could have led to an unwanted pseudo-Goldstone
boson. [Note that the Z4 symmetry allows a quartic
coupling ðH†

1H2Þ2 þ H:c in the Higgs potential which
guarantees that there is no global Uð1Þ present, even in
the absence of soft breaking of Z4 by the m2

12 term of
Eq. (3).] In our discussions we shall allow form2

12 in Eq. (3)
to be either zero or nonzero, keeping the option open for
breaking the Z4 symmetry softly. The two cases lead to
essentially the same results in the neutrino sector, but
would affect the Higgs phenomenology differently.
In the quark sector the Z4 symmetry of the model acts

universally with all the down-type quarks and the up-type
quarks coupling to the same Higgs field H1 or H2. The
quark Yukawa couplings have the form

LðqÞ
Yuk ¼

X

i;j¼1−3
Yu
ijQiucj ~Ha þ

X

i;j¼1−3
Yd
ijQidcjHa þ H:c: (4)

where the Higgs label a takes the same value, either 1 or 2,
in both terms. Here ~Ha ¼ iτ2H%

a. With this form of the
quark Yukawa couplings the Z4 charge assignment of
Eq. (1) is anomaly free [8]. To see this, consider the case
where the Higgs field Ha in both terms of Eq. (4) is H1. In
this case, the following Z4 charges can be assigned to
the quarks: Qi∶ ð−i;−i;−iÞ, uci ∶ ði; i; iÞ, and dci ∶ ði; i; iÞ.
The mixed ½SUð3Þ'2 × Z4 and ½SUð2ÞL'2 × Z4 anomaly
coefficients are then

A2½ðSUð2ÞLÞ2 × Z4' ¼
1

2
fð−1þ 1þ 1Þ þ 3ð−1 − 1 − 1Þg

¼ −4; (5)

A3½ðSUð3ÞCÞ2 × Z4' ¼
1

2
f2ð−1 − 1 − 1Þ þ ð1þ 1þ 1Þ

þ ð1þ 1þ 1Þg ¼ 0: (6)

In Eqs. (5)–(6), the factor 1
2 is the index of the fundamental

representation of SUðNÞ, the factors 3 and 2 are color and
SUð2ÞL multiplicities, and a Z4 charge of (i is treated as
charge (1 mod(4). Now, the condition for the absence of
discrete anomalies for a ZN group is that all the anomaly
coefficients must obey Ai ¼ piðN=2Þ; with pi being
integers. We see that both anomalies satisfy this condition.
The ½Uð1ÞY '2 × Z4 anomaly coefficient is not restricted by
the discrete anomaly cancellation condition. If all quarks
couple to H2 in Eq. (4) instead of H1, the Z4 charge
assignment of Qi∶ ð−i;−i;−iÞ, uci ∶ ð−i;−i;−iÞ, and
dci ∶ ð−i;−i;−iÞ can be chosen, in which case Eq. (5) will
remain unchanged, while Eq. (6) will be modified to
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sociated one-loop contribution to neutrino mass. We refer to
this as the !h"1"2k# model. In this case the one-loop and
the two-loop contributions are to be added.
Later, Babu $7% studied these two classes of models. In

particular, in the !h"k# model we have Det$m (2)%!0 since
Det$ f %!0 due to the fact that f is a 3"3 antisymmetric
matrix.
At this point we depart from our general treatment and

focus on specific possibilities as suggested by experiments.
The various possible textures of the Majorana neutrino mass
matrix, in particular those dictated by the conservation of
additive combination of electron, muon, and tau numbers,
such as L&#L'$Le , were studied in Ref. $4%. Typically, it
is awkward in many models of neutrino masses to impose
conservation of these additive combinations, however, as
was pointed out in Ref. $4%, it can be quite naturally imple-
mented in this class of models by simply setting various
couplings to zero. For example, suppose we set f&' to zero.
Then the f e& term demands that the h field carry Le!$1,
L&!$1, and L'!0, while the f e' term demands that the h
field carry Le!$1, L&!0, and L'!$1. The clash between
these two terms implies that L& and L' are violated, but that
L&#L'$Le and Le are conserved.
One purpose of this paper is to study the two-loop contri-

bution to m( in the !h"1"2# model. The relevant diagrams
are shown in Fig. 3. For instance, the diagram in Fig. 3)a*
contributes to (m()ab a term

)m(
)2 **ab!+,

c ,d
f ac f cd* f db)mc

2$md
2*!+) f $m2, f*% f *ab ,

)3*

where +!a2(16-2)$2(M 12 /Mh
2) with a2 of order one. We

are interested in the diagonal entries in (m(
(2))ab since the

off-diagonal entries just give a small perturbation to the one-
loop contribution in Eq. )1*. We see from the antisymmetry
of f that the diagonal elements necessarily involve the prod-
uct of all three of the nonzero f ab , (a.b). Thus, for
instance, (m(

(2))ee!+ f e' f '&* f&e(m'
2$m&

2 )/+ f e' f '&* f&em'
2.

Note that similarly (m(
(2))&&/+ f e'* f '& f&em'

2 which is equal
to (m(

(2))ee . An interesting texture emerges upon noting that
(m(

(2))'' is smaller by a factor m&
2 /m'

2.

Thus, for phenomenological analysis we have a neutrino
mass matrix of the form

m(!! r a b
a s c
b c t

"
where the texture a/b%c&r/s%t . We expect that the
terms r/s would provide small corrections to the phenom-
enological analysis of Jarlskog et al. $11%.
It is probably premature to consider the effects of CP

violation; the enormous difficulty of measuring CP violation

FIG. 2. Two-loop contribution to neutrino mass in !h"k#
model.

FIG. 3. )a* Two-loop contribution to neutrino mass in !h"1"2#
model. )b* Two-loop contribution to neutrino mass in !h"1"2#
model. )c* Two-loop contribution to neutrino mass in !h"1"2#
model.
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so that we obtain

!H1 /m0
2"22!!c!2"!U#23!2, !H1 /m0

2"33!!a!2"!U#33!2,
!34"

and

sin2 2$atm"4!a!2!c!2. !35"

Generally, the only solution of the equation xy"1/4 for posi-
tive numbers x and y under the condition x"y#1 is x"y
"1/2. Therefore, the solution of the equation sin2 2$atm
!4!U#23!2!U#33!2"1 under the condition !U#23!2"!U#33!2
!1$!U#13!2#1 is

!U#23!2"!U#33!2" 1
2 , !U#13!2"0, !36"

and also the solution of the equation sin22$atm!4!a!2!c!2"1
under the condition !a!2"!c!2!1$!b!2#1 is

!a!2"!c!2" 1
2 , !b!2"0. !37"

The result !37" means that

!q!2" 1
4 !b!2. !38"

The (1,1) component of Eq. !33" gives

!b!2"!U#13!2$!b!! !U#11!2$!U#12!2"

" 1
2 !b!2!1$3!U#13!2". !39"

When we put

!U#11!!!1$!U#13!2 cos $ , !U#12!!!1$!U#13!2 sin $ ,
!40"

we obtain

sin2 2$solar"sin2 2$"1$
1
4 !b!2# 1$2

!U#13!2

!b!2 $ 2,
!41"

where

!b!" 1
2 !%msolar

2 /%matm
2 " . !42"

A model that gives !U#13!2!0 obviously cannot give a siz-
able deviation from sin2 2$solar!1. However, if !U#13!2&!b!,
then the value of sin2 2$solar is sensitive to the value of
!U#13!2. Therefore, we must estimate the value of !U#13!2
carefully.
We use the relation

'
k!1

3

!H1 /m0
2" ikU#k j!U#i jx j . !43"

For j!3, we obtain

!b!2U#13$c*bU#23$a*bU#33!U#13x3 , !44"

$b*cU#13"!c!2bU#23$a*cU#33!U#23x3 , !45"

$b*aU#13$c*aU#23"!a!2U#33!U#33x3 . !46"

By eliminating U#23 , we obtain the relation without any ap-
proximation:

U#13!
$2!x3$1"!b!2"ba*U#33

! !a!2$!c!2"!b!2"!x3$!b!2"!x3$1"!b!2"
. !47"

If we use the approximate expression x3"1$4!q!2"1
$!b!2, the factor (x3$1"!b!2) becomes vanishing. There-
fore, in order to estimate the factor (x3$1"!b!2) more pre-
cisely, we use the following expression for x3 to the order of
!q!4:

x3"1$4!q!2!1"8!q!2". !48"

Then, we can show that

x3$1"!b!2"!b!2(! !a!2$!c!2"2"7!b!4) . !49"

Since we know that !b!2 is very small, i.e., !b!2"(1/
4)(%msolar

2 /%matm
2 )2, we investigate only the case (!a!2

$!c!2)2*!q!4. Then, from Eq. !47", we obtain

U#13"$2! !a!2$!c!2"ba*U#33 , !50"

i.e.,

!U#13!2"! !a!2$!c!2"2!b!2. !51"

On the other hand, we can show that the quantities
(%m12

2 /%m23
2 )2 and sin2 2$atm!4!U#23!2!U#33!2 are insensi-

tive to the parameter (!a!2$!c!2). Therefore, from Eqs. !47"
and !51", we obtain the following parameter-independent re-
lation:

sin2 2$solar"1$ 1
4 (1$2! !a!2$!c!2"2)2!b!2

*1$ 1
16 !%msolar

2 /%matm
2 "2, !52"

where we have used (1$2(!a!2$!c!2)2)2+1.
The constraint !52" cannot be loosened even if we con-

sider renormalization group equation !RGE" effects. The
mass matrix form !1" is given by the radiative diagrams at
the low energy scale, where the charged lepton mass matrix
is given by the diagonal form. Although the coupling con-
stants f i j given in Eq. !2" are affected by the RGE, since our
conclusion !52" is independent of the explicit values of the
parameters a, b, and c in Eq. !1", the conclusion !52" cannot
be loosened even by taking RGE effects into consideration.
However, we must note that the mass matrix form !1" is

based on only the one-loop radiative mass diagrams. When
we take two-loop diagrams into consideration, as pointed out
by Chang and Zee (12), nonvanishing contributions appear in
the diagonal elements of M # . For the case that gives
sin2 2$atom"1, the relations !37" are required, so that the re-
lations ! f e,!m,

2"! f e-!m-
2%! f,-!m-

2 are required. Then, as
discussed in Ref. (12), we can estimate

!M #12!"!M #13!%!M #23!&!M #11!"!M #22!%!M #33!, !53"
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where !M !i j!" f i j(mi
2!mj

2) and !M !ii!"! f 12!! f 23!! f 31!(mj
2

!mk
2) ( j#i#k). We are interested in the value of the ratio

!M !11 /M !23!. If the ratio is negligibly small, the result $52%
will still be valid, but not if the ratio is sizable. According to
Ref. &12', we estimate !M !11 /M !23! as

"M !11

M !23
"( ! f e)!! f)*!! f *e!

16+2! f)*!
#

! f e)!2

16+2 $m)

m*
% 2"10!5. $54%

Therefore, we conclude that the severe constraint $52% is still
valid even if we take two-loop diagrams into consideration.
However, note that if the mass matrix $1% is not due to the

Zee mechanism but due to a seesaw mechanism, M !

#!mLMR
!1mL

T , the form of M ! will be changed by the
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Therefore, we conclude that when we require
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2 /,matm
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sin2 2-solar must also be very close to 1. On the other hand, in
contrast to the theoretical bound $52%, the best-fit value of
sin2 2-solar is

sin2 2-solar#0.66, $55%

for the MSW LMA solution &9'. The prediction sin2 2-solar
#1.0 is in poor agreement with the observed data $outside
the 99% C.L.%. Of course, the value $55% is a best-fit value,
and it does not mean that the Zee model is ruled out. How-
ever, if the data in future exclude the value sin2 2-solar#1.0
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adhere to the Zee model, the only solution we should take is
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didates $the best-fit solutions% at present $for example, the
MSW LMA solution gives .min

2 $29.0, while the Just So2
solution gives .min

2 $36.1 &9'%.
In conclusion, we have investigated the Zee neutrino mass

matrix $1% parameter independently. When we require that
the value ,msolar

2 /,matm
2 $,m12

2 /,m23
2 should be very
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/!a!2!b!2!c!2#1/27 and !q!2#0 where !a!2%!b!2%!c!2
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so that it is ruled out. The case with !q!2#0 leads not
only to sin2 2-atm#1, but also to sin2 2-solar01!(1/
16)(,msolar

2 /,matm
2 )2. The prediction sin2 2-solar#1.0 is in

poor agreement with the observed data. However, in spite of
this problem, the Zee model is still attractive to us, because it
can lead naturally to a nearly bimaximal mixing. Therefore,
we hope that the problem will be overcome by some future
modification of the original Zee model. For example, the
following attempts look promising: introducing a new dou-
bly charged scalar k%% in order to obtain sizable two-loop
contributions &14', introducing right-handed neutrinos in or-
der to additional mass terms, embedding the original Zee
model into an R-parity violating supersymmetry $SUSY%
model &15' and into an R-parity conserving SUSY model
&16', and so on.
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parity, we may discuss this later.) to the 8 singlet scalars �±1 , �±2 and �0
1, �0

2: The ”parity” symmetry
between �2 and �±1 , �

±
2 , �

0
1, �

0
2 forbids us to add any number of singlets in this model.

To make the notations uniform, we denote the components of �1, �2 and �± and �0 as

�1 =
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'0
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!
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0
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(v1+⌘1+i�1)p
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1
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�+2
�0

2 =
(ui+�3+i�4)p

2
(7)

where � j can acquire vev v j/
p

2: '0
j = (v j+⌘ j+ i�i)/

p
2 where j = 1, 2 and ⌘ j, �i are real fields. The

2 complex singlets �+j and �0
j does not form a doublet. The neutral singlets �0

j can get vev. < �0
j >= ui

The general kinematical terms of all these fields is:

LH,kim = (Dµ�1)†(Dµ�1)+ (Dµ�2)†(Dµ�2)+D�µ�
�
1 D�,µ�+1 + @µ(�

0
1)⇤@µ�0

1 +D�µ�
�
2 D�,µ�+2 + @µ(�

0
2)⇤@µ�0

2
(8)

where
Dµ = @µ � igTaWa

µ � ig0YBµ/2 D�µ = @µ + ig0Y�Bµ (9)

Both �+j is the U(1)Y scalar with charge Q� = Y� = 1 and g0Y�Bµ = eAµ � e tan ✓WZµ. We assume the
following conditions besides gauge invariance:

• Renormalizable. The operators in all the scalar Lagrangians are up to dimension-4.

• Z2 symmetry on �0
j rather than on �i respectively.

• One of the �0
j may has vev iv�/

p
2 so that we may one have one complex dark matter candidate.

As before, the most general Lagrangian of the 2 Higgs doublets are:

VH12 = �
m2

11
2
�†1�1 �

m2
22
2
�†2�2 +
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(�†2�1)2 + h.c.
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2
(�†1�1)2 +
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2
(�†2�2)2 + �3(�†1�1)(�†2�2) + �4(�†1�2)(�†2�1)

(10)

We can ignore the terms of �6 and �7. When arg(�5) , 2arg(m2
12), there is explicit CP violation.

We discuss the potential involved �± and �0 later.

3 Quantum Numbers

lL lR QL uR dR �1 �2 �±1 �±2 �0
1 �0

2
Z4 g3(-1) g3(-1) g3(-1) g3 (�1) g3(-1) g2(+1) e(-2) g2(+1) g2(+1) g2(+1) g2(+1)

S U(2)L 2 1 2 1 1 2 2 1 1 1 1
Lepton L 1 1 0 0 0 0 0 ±2 ±2 0 0
Parity P 1 1 -1 -1 -1 -1

4 2-doublet-singlet terms

The 2-doublet-singlet term for the loop diagram of neutrinos Majorana masses is
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2 �1��c†
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2 �'�2'0⇤

1 )�+1 ]+22[('+1'
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0⇤
2 �'�2'0⇤

1 )�+2 ]
(11)
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tan � = v2/v1 ↵ = u2/u1 �̃ = cos↵�0
1 + sin↵�0

2 ⇢ = sin↵�0
1 + cos↵�0

2 (12)

L12� =1(�c†
2 �1 � �c†

1 �2)��1 �̃ + 2(�c†
2 �1 � �c†

1 �2)��2 �̃ + h.c. =

21u('+1'
0
2 � '+2'0

1)��1 + 22u('+1'
0
2 � '+2'0

1)��2 + h.c. + · · ·
(13)

The total Lagrangian of the Higgs sector is

LH = LH,kim � VH12 � V� �L12� (14)

5 Yukawa Term and the Majorana Leptonic Term

We assume the left-right fermion pairs only have Yukawa couplings with �1 so that the parity conserves
(Type-1 2HDM):

LYukawa = �[yi j
d Q̄i

L ·�1d j
R+y

i j
u Q̄i

L ·�c
1u j

R+y
i
lL̄

i
L ·�1liR]�[yi j⇤

d d̄ j
R�
†
1 ·Qi

L+y
i j⇤
u ū j

R�
c†
1 ·Qi

L+y
i⇤
l l̄RR�

†
1 ·Li

L] (15)

The Majorana left-handed leptonic singlet term is

Llepsig = f 1
abLaT

iL C Lb
jL✏

i j�+1 + f 1
abLb†

iL C La⇤
jL✏

i j��1 + f 2
abLaT

iL C Lb
jL✏

i j�+2 + f 2
abLb†

iL C La⇤
jL✏

i j��2
= � f 1

ab
¯(Lc)a

iLLb
jL�
+
1 � f 1

abL̄a
iL(Lc)b

jL�
�
1 � f 2

ab
¯(Lc)a

iLLb
jL�
+
2 � f 2

abL̄a
iL(Lc)b

jL�
�
2

(16)

6 The Majorana Mass Mitrix

Since the flavors of neutrinos and leptons change in the loop diagrams of Zee Majorana masses, the
Majorana mass matrix M⌫ remain o↵-diagonal as in (1). Now there are 4 diagrams contributing to each
mab: 2 of �±1 type and the other 2 of �±2 type. However, since f j

ab cannot be real simultaneously, the
matrix elements mab of M⌫ are complex. We can guess mab to be

mab =
(m2

b � m2
a)

16⇡2 u tan �[ f 1
ab1F(M2

11,M
2
12) + f 2

ab2F(M2
21,M

2
22)] (17)

m(2)
ab =

O(1)
(16⇡2)2 u

X

i, j=1,2

X

c,d=e,µ,⌧

[ f i
ac f j⇤

cd f j
db(m2

c � m2
d)iF(M2

�1,M
2
�2)] (18)

|M⌫11|
|M⌫23| =

1
16⇡2 | f 1⇤

µ⌧ f 1
e⌧ + f 2⇤

µ⌧ f 2
e⌧|
| f 1

eµ1 + f 2
eµ2|

| f 1
µ⌧1 + f 2

µ⌧2|
,

1
16⇡2

m⌧2
mµ2
| f 1

e⌧ + f 2
eµ| (19)

When M⌫ are symmetric complex matrix, it cannot be made diagonal in UT M⌫U. However, since M⌫M
†
⌫

is Hermitian, we can diagonalize it with a unitary transformation U:

UM⌫M†⌫U† =

0
BBBBBBBB@

m2
1 0 0

0 m2
2 0

0 0 m2
3

1
CCCCCCCCAUM⌫UT U†T M†⌫U† (20)

Then UM⌫UT can be made diagonal with phases. The phases can also be absorbed into U. Now since
M⌫M

†
⌫ is not o↵-diagonal, we don’t have constraint m1 + m2 + m3 = 0. And since M⌫ is complex, we

may have more freedom to fit the neutrino experiments data!
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where � j can acquire vev v j/
p

2: '0
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2 where j = 1, 2 and ⌘ j, �i are real fields. The
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Both �+j is the U(1)Y scalar with charge Q� = Y� = 1 and g0Y�Bµ = eAµ � e tan ✓WZµ. We assume the
following conditions besides gauge invariance:

• Renormalizable. The operators in all the scalar Lagrangians are up to dimension-4.

• Z2 symmetry on �0
j rather than on �i respectively.
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2 so that we may one have one complex dark matter candidate.
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We can ignore the terms of �6 and �7. When arg(�5) , 2arg(m2
12), there is explicit CP violation.

We discuss the potential involved �± and �0 later.

3 Quantum Numbers

lL lR QL uR dR �1 �2 �±1 �±2 �̃ ⇢
Z4 g3(-1) g3(-1) g3(-1) g3 (�1) g3(-1) g2(+1) e(-2) g2(+1) g2(+1) g2(+1) g2(+1)

S U(2)L 2 1 2 1 1 2 2 1 1 1 1
Lepton L 1 1 0 0 0 0 0 ±2 ±2 0 0

Z2 1 1 1 1 1 -1

4 2-doublet-singlet terms

The 2-doublet-singlet term for the loop diagram of neutrinos Majorana masses is
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sociated one-loop contribution to neutrino mass. We refer to
this as the !h"1"2k# model. In this case the one-loop and
the two-loop contributions are to be added.
Later, Babu $7% studied these two classes of models. In

particular, in the !h"k# model we have Det$m (2)%!0 since
Det$ f %!0 due to the fact that f is a 3"3 antisymmetric
matrix.
At this point we depart from our general treatment and

focus on specific possibilities as suggested by experiments.
The various possible textures of the Majorana neutrino mass
matrix, in particular those dictated by the conservation of
additive combination of electron, muon, and tau numbers,
such as L&#L'$Le , were studied in Ref. $4%. Typically, it
is awkward in many models of neutrino masses to impose
conservation of these additive combinations, however, as
was pointed out in Ref. $4%, it can be quite naturally imple-
mented in this class of models by simply setting various
couplings to zero. For example, suppose we set f&' to zero.
Then the f e& term demands that the h field carry Le!$1,
L&!$1, and L'!0, while the f e' term demands that the h
field carry Le!$1, L&!0, and L'!$1. The clash between
these two terms implies that L& and L' are violated, but that
L&#L'$Le and Le are conserved.
One purpose of this paper is to study the two-loop contri-

bution to m( in the !h"1"2# model. The relevant diagrams
are shown in Fig. 3. For instance, the diagram in Fig. 3)a*
contributes to (m()ab a term

)m(
)2 **ab!+,

c ,d
f ac f cd* f db)mc

2$md
2*!+) f $m2, f*% f *ab ,

)3*

where +!a2(16-2)$2(M 12 /Mh
2) with a2 of order one. We

are interested in the diagonal entries in (m(
(2))ab since the

off-diagonal entries just give a small perturbation to the one-
loop contribution in Eq. )1*. We see from the antisymmetry
of f that the diagonal elements necessarily involve the prod-
uct of all three of the nonzero f ab , (a.b). Thus, for
instance, (m(

(2))ee!+ f e' f '&* f&e(m'
2$m&

2 )/+ f e' f '&* f&em'
2.

Note that similarly (m(
(2))&&/+ f e'* f '& f&em'

2 which is equal
to (m(

(2))ee . An interesting texture emerges upon noting that
(m(

(2))'' is smaller by a factor m&
2 /m'

2.

Thus, for phenomenological analysis we have a neutrino
mass matrix of the form

m(!! r a b
a s c
b c t

"
where the texture a/b%c&r/s%t . We expect that the
terms r/s would provide small corrections to the phenom-
enological analysis of Jarlskog et al. $11%.
It is probably premature to consider the effects of CP

violation; the enormous difficulty of measuring CP violation

FIG. 2. Two-loop contribution to neutrino mass in !h"k#
model.

FIG. 3. )a* Two-loop contribution to neutrino mass in !h"1"2#
model. )b* Two-loop contribution to neutrino mass in !h"1"2#
model. )c* Two-loop contribution to neutrino mass in !h"1"2#
model.

RAPID COMMUNICATIONS

RADIATIVELY INDUCED NEUTRINO MAJORANA . . . PHYSICAL REVIEW D 61 071303)R*

071303-3

sociated one-loop contribution to neutrino mass. We refer to
this as the !h"1"2k# model. In this case the one-loop and
the two-loop contributions are to be added.
Later, Babu $7% studied these two classes of models. In

particular, in the !h"k# model we have Det$m (2)%!0 since
Det$ f %!0 due to the fact that f is a 3"3 antisymmetric
matrix.
At this point we depart from our general treatment and

focus on specific possibilities as suggested by experiments.
The various possible textures of the Majorana neutrino mass
matrix, in particular those dictated by the conservation of
additive combination of electron, muon, and tau numbers,
such as L&#L'$Le , were studied in Ref. $4%. Typically, it
is awkward in many models of neutrino masses to impose
conservation of these additive combinations, however, as
was pointed out in Ref. $4%, it can be quite naturally imple-
mented in this class of models by simply setting various
couplings to zero. For example, suppose we set f&' to zero.
Then the f e& term demands that the h field carry Le!$1,
L&!$1, and L'!0, while the f e' term demands that the h
field carry Le!$1, L&!0, and L'!$1. The clash between
these two terms implies that L& and L' are violated, but that
L&#L'$Le and Le are conserved.
One purpose of this paper is to study the two-loop contri-

bution to m( in the !h"1"2# model. The relevant diagrams
are shown in Fig. 3. For instance, the diagram in Fig. 3)a*
contributes to (m()ab a term

)m(
)2 **ab!+,

c ,d
f ac f cd* f db)mc

2$md
2*!+) f $m2, f*% f *ab ,

)3*

where +!a2(16-2)$2(M 12 /Mh
2) with a2 of order one. We

are interested in the diagonal entries in (m(
(2))ab since the

off-diagonal entries just give a small perturbation to the one-
loop contribution in Eq. )1*. We see from the antisymmetry
of f that the diagonal elements necessarily involve the prod-
uct of all three of the nonzero f ab , (a.b). Thus, for
instance, (m(

(2))ee!+ f e' f '&* f&e(m'
2$m&

2 )/+ f e' f '&* f&em'
2.

Note that similarly (m(
(2))&&/+ f e'* f '& f&em'

2 which is equal
to (m(

(2))ee . An interesting texture emerges upon noting that
(m(

(2))'' is smaller by a factor m&
2 /m'

2.

Thus, for phenomenological analysis we have a neutrino
mass matrix of the form

m(!! r a b
a s c
b c t

"
where the texture a/b%c&r/s%t . We expect that the
terms r/s would provide small corrections to the phenom-
enological analysis of Jarlskog et al. $11%.
It is probably premature to consider the effects of CP

violation; the enormous difficulty of measuring CP violation

FIG. 2. Two-loop contribution to neutrino mass in !h"k#
model.

FIG. 3. )a* Two-loop contribution to neutrino mass in !h"1"2#
model. )b* Two-loop contribution to neutrino mass in !h"1"2#
model. )c* Two-loop contribution to neutrino mass in !h"1"2#
model.

RAPID COMMUNICATIONS

RADIATIVELY INDUCED NEUTRINO MAJORANA . . . PHYSICAL REVIEW D 61 071303)R*

071303-3

!χ i
+

!χ i
+

!χ i
+

!χ i
±

!χ i
±

!χ i
±

tan � = v2/v1 ↵ = u2/u1 �̃ = cos↵�0
1 + sin↵�0

2 ⇢ = sin↵�0
1 + cos↵�0

2, < ⇢ >= 0 (12)

L12� =1(�c†
2 �1 � �c†

1 �2)��1 �̃ + 2(�c†
2 �1 � �c†

1 �2)��2 �̃ + h.c.

=21u('+1'
0
2 � '+2'0

1)��1 + 22u('+1'
0
2 � '+2'0

1)��2 + h.c. + · · · (13)

The total Lagrangian of the Higgs sector is

LH = LH,kim � VH12 � V� �L12� (14)

5 Yukawa Term and the Majorana Leptonic Term

We assume the left-right fermion pairs only have Yukawa couplings with �1 so that the parity conserves
(Type-1 2HDM):
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The Majorana left-handed leptonic singlet term is
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6 The Majorana Mass Mitrix

Since the flavors of neutrinos and leptons change in the loop diagrams of Zee Majorana masses, the
Majorana mass matrix M⌫ remain o↵-diagonal as in (1). Now there are 4 diagrams contributing to each
mab: 2 of �±1 type and the other 2 of �±2 type. However, since f j

ab cannot be real simultaneously, the
matrix elements mab of M⌫ are complex. We can guess mab to be
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M⌫M

†
⌫ is not o↵-diagonal, we don’t have constraint m1 + m2 + m3 = 0. And since M⌫ is complex, we

may have more freedom to fit the neutrino experiments data!

3

tan � = v2/v1 ↵ = u2/u1 �̃ = cos↵�0
1 + sin↵�0

2 ⇢ = sin↵�0
1 + cos↵�0

2, < ⇢ >= 0 (12)

L12� =1(�c†
2 �1 � �c†

1 �2)��1 �̃ + 2(�c†
2 �1 � �c†

1 �2)��2 �̃ + h.c.

=21u('+1'
0
2 � '+2'0

1)��1 + 22u('+1'
0
2 � '+2'0

1)��2 + h.c. + · · · (13)

The total Lagrangian of the Higgs sector is

LH = LH,kim � VH12 � V� �L12� (14)

5 Yukawa Term and the Majorana Leptonic Term

We assume the left-right fermion pairs only have Yukawa couplings with �1 so that the parity conserves
(Type-1 2HDM):

LYukawa = �[yi j
d Q̄i

L ·�1d j
R+y

i j
u Q̄i

L ·�c
1u j

R+y
i
lL̄

i
L ·�1liR]�[yi j⇤

d d̄ j
R�
†
1 ·Qi

L+y
i j⇤
u ū j
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When M⌫ are symmetric complex matrix, it cannot be made diagonal in UT M⌫U. However, since M⌫M
†
⌫

is Hermitian, we can diagonalize it with a unitary transformation U:

UM⌫M†⌫U† =

0
BBBBBBBB@

m2
1 0 0

0 m2
2 0

0 0 m2
3

1
CCCCCCCCAUM⌫UT U†T M†⌫U† (20)

Then UM⌫UT can be made diagonal with phases. The phases can also be absorbed into U. Now since
M⌫M

†
⌫ is not o↵-diagonal, we don’t have constraint m1 + m2 + m3 = 0. And since M⌫ is complex, we

may have more freedom to fit the neutrino experiments data!
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The eigenvalues and mixing angles in the Zee model are investigated parameter independently. When we
require !#m12

2 /#m23
2 !!1 in order to understand the solar and atmospheric data simultaneously, the only

solution is one that gives bimaximal mixing. It is pointed out that the present best-fit value of sin2 2$solar in the
Mikheyev-Smirnov-Wolfenstein large mixing angle solution cannot be explained within the framework of the
Zee model, because we derive a severe constraint on the value of sin2 2$solar , sin2 2$solar%1"(1/
16)(#msolar

2 /#matm
2 )2.
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Of the neutrino mass matrix models proposed currently,
the Zee model &1' is a very attractive one, because the model
can naturally lead to a large neutrino mixing with few pa-
rameters &2–4'. The neutrino mass matrix M ( in the basis on
which the charged lepton mass matrix Me is diagonal is
given by the form

M ("m0# 0 a c
a 0 b
c b 0

$ , !1"

where

a# f e)!m)
2"me

2", b# f)*!m*
2"m)

2 ",
!2"

c# f *e!me
2"m*

2",

and f e) , f )* , and f *e are lepton-number violating Yukawa
coupling constants with the Zee scalar h$. It is known that,
if we consider a Zee mass matrix with a#c%!b!, the model
can give a nearly bimaximal mixing &2,4,5':

U(## cos $ "sin $ 0

1
!2
sin $

1
!2
cos $ "

1
!2

1
!2
sin $

1
!2
cos $

1
!2

$ , !3"

where

tan $#!"m(1 /m(2, !4"

#m12
2 #m(1

2 "m(2
2 "2!2ab , #m23

2 #m(2
2 "m(3

2 "2a2,
!5"

which leads to

#m12
2 /#m23

2 "!2 b/a . !6"

Furthermore, if we assume a badly broken horizontal sym-
metry SU(3)H and put a simple ansatz on the transition ma-

trix elements in the infinite momentum frame !not on the
mass matrix", we can obtain the relations &6'

f i j#+ i jk &mk
e /!mi

e$mj
e"' f , !7"

where f is a common factor and mi
e#(me ,m) ,m*), so that

we can predict

#m12
2 /#m23

2 "!2me/m)#6.7&10"3, !8"

which is in excellent agreement with the observed value
!best-fit value" &7,8'

# #msolar
2

#matm
2 $

expt

"
2.2&10"5 eV2

3.2&10"3 eV2
#6.9&10"3. !9"

Thus, the Zee model is very attractive from the phenom-
enological point of view. However, most authors who inves-
tigated the Zee neutrino mass matrix have failed to obtain the
observed value sin2 2$solar"0.7 in the Mikheyev-Smirnov-
Wolfenstein !MSW" large mixing angle !LMA" solution &9',
although it is easy to obtain the bimaximal mixing !3". It is a
serious problem for the Zee model whether or not the model
can fit the observed value sin2 2$solar"0.7. In the present
paper, from a parameter-independent study of the Zee neu-
trino mass matrix !1", we conclude that the value of
sin2 2$solar must satisfy a severe constraint sin2 2$solar%1
"(1/16)(#msolar

2 /#matm
2 )2 in the Zee model with

#msolar
2 /#matm

2 !1. A similar subject has also been dis-
cussed by Frampton and Glashow &10'. However, the con-
straint obtained in the present paper is more explicit and very
severe. This constraint will force us to abandon the Zee
model or to modify the original Zee model to an extended
version with some additional terms.
The mass matrix !1" is diagonalized by a unitary matrix

U( as

U(
TM (U(#D(,diag!m1 ,m2 ,m3". !10"

The Maki-Nakagawa-Sakata !MNS" &11' matrix UMNS is
given by UMNS#U( , because the charged lepton mass ma-
trix is diagonal in the Zee model. In order to obtain the
relations among the mass matrix parameters and the mass
eigenvalues, we define the Hermitian matrix H( as*Email address: koide@u-shizuoka-ken.ac.jp
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tan � = v2/v1 ↵ = u2/u1 �̃ = cos↵�0
1 + sin↵�0

2 ⇢ = sin↵�0
1 + cos↵�0

2, < ⇢ >= 0 (12)
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1 �2)��2 �̃ + h.c.

=21u('+1'
0
2 � '+2'0

1)��1 + 22u('+1'
0
2 � '+2'0

1)��2 + h.c. + · · · (13)

The total Lagrangian of the Higgs sector is

LH = LH,kim � VH12 � V� �L12� (14)

5 Yukawa Term and the Majorana Leptonic Term

We assume the left-right fermion pairs only have Yukawa couplings with �1 so that the parity conserves
(Type-1 2HDM):

LYukawa = �[yi j
d Q̄i

L ·�1d j
R+y

i j
u Q̄i

L ·�c
1u j

R+y
i
lL̄

i
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1 ·Qi
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i j⇤
u ū j
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1 ·Qi

L+y
i⇤
l l̄RR�

†
1 ·Li

L] (15)

The Majorana left-handed leptonic singlet term is
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abLaT

iL C Lb
jL✏

i j�+1 + f 1
abLb†

iL C La⇤
jL✏
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jL�
�
2

(16)

6 The Majorana Mass Mitrix

Since the flavors of neutrinos and leptons change in the loop diagrams of Zee Majorana masses, the
Majorana mass matrix M⌫ remain o↵-diagonal as in (1). Now there are 4 diagrams contributing to each
mab: 2 of �±1 type and the other 2 of �±2 type. However, since f j

ab cannot be real simultaneously, the
matrix elements mab of M⌫ are complex. We can guess mab to be

mab =
(m2

b � m2
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16⇡2 u tan �[ f 1
ab1F(M2

11,M
2
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2
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2
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eµ| (19)

When M⌫ are symmetric complex matrix, it cannot be made diagonal in UT M⌫U. However, since M⌫M
†
⌫

is Hermitian, we can diagonalize it with a unitary transformation U:

UM⌫M†⌫U† =

0
BBBBBBBB@

m2
1 0 0

0 m2
2 0

0 0 m2
3

1
CCCCCCCCAUM⌫UT U†T M†⌫U† (20)

Then UM⌫UT can be made diagonal with phases. The phases can also be absorbed into U. Now since
M⌫M

†
⌫ is not o↵-diagonal, we don’t have constraint m1 + m2 + m3 = 0. And since M⌫ is complex, we

may have more freedom to fit the neutrino experiments data!
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The total Lagrangian of the Higgs sector is

LH = LH,kim � VH12 � V� �L12� (14)

5 Yukawa Term and the Majorana Leptonic Term

We assume the left-right fermion pairs only have Yukawa couplings with �1 so that the parity conserves
(Type-1 2HDM):

LYukawa = �[yi j
d Q̄i

L ·�1d j
R+y

i j
u Q̄i

L ·�c
1u j

R+y
i
lL̄

i
L ·�1liR]�[yi j⇤

d d̄ j
R�
†
1 ·Qi

L+y
i j⇤
u ū j
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6 The Majorana Mass Mitrix

Since the flavors of neutrinos and leptons change in the loop diagrams of Zee Majorana masses, the
Majorana mass matrix M⌫ remain o↵-diagonal as in (1). Now there are 4 diagrams contributing to each
mab: 2 of �±1 type and the other 2 of �±2 type. However, since f j

ab cannot be real simultaneously, the
matrix elements mab of M⌫ are complex. We can guess mab to be
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When M⌫ are symmetric complex matrix, it cannot be made diagonal in UT M⌫U. However, since M⌫M
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is Hermitian, we can diagonalize it with a unitary transformation U:
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Then UM⌫UT can be made diagonal with phases. The phases can also be absorbed into U. Now since
M⌫M

†
⌫ is not o↵-diagonal, we don’t have constraint m1 + m2 + m3 = 0. And since M⌫ is complex, we

may have more freedom to fit the neutrino experiments data!
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!ρρ→ χ +χ− → l+l−νν

!!SUD(2)
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Outlook	
  

v We	
  will	
  fit	
  the	
  parameters	
  to	
  constrain	
  our	
  model	
  with	
  the	
  current	
  
neutrino	
  data	
  

v Interes*ng	
  LHC	
  phenomenology,	
  e.g.	
  2	
  TeV	
  heavy	
  resonance	
  
v Relic	
  density	
  for	
  the	
  dark	
  ma<er	
  candidate	
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