

Radiative Neutrino Mass in Extended Zee Model with Dark Matter

Dart-yin Soh with T. C. Yuan Institute of Physics, Academia Sinica

Content

- Introduction
- Radiative Neutrino Mass
- Is Zee Model Ruled Out by Current Data?
- A New Extended Zee Model
- Outlook

Neutrino Oscillations and Mixing

- Standard model is too good with data before neutrino oscillations
- \bullet But neutrino oscillations \rightarrow neutrino mixing \rightarrow neutrino masses!
- How to expend the Standard model to generate neutrino mass?
- Much small masses and much larger mixing comparing with quarks: not natural if only Dirac masses with v_R
- Mixing matrix

Neutrino Oscillations and Mixing

 v_3

ν,

ν1

Atmospheric

Solar

1 ?

More precise neutrino data

parameter	best fit	1σ range	2σ range					
$\Delta m_{21}^2 [10^{-5} \mathrm{eV}^2]$	7.60	7.42 - 7.79	7.26 - 7.99					
		Reactor LBL (KamLAND)						
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (NH)}$	2.48	2.41 – 2.53	2.35 – 2.59					
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (IH)}$	2.38	2.32 - 2.43	2.26 - 2.48					
$\sin^2 \theta_{12} / 10^{-1}$	A 3.23	ccelerator L 3.07–3.39	BL ν_{μ} Disapp (Minos) 2.92–3.57 Solar Experiments					
$\sin^2 \theta_{23} / 10^{-1}$ (NH)	$5.67 \ (4.67)^a$	4.39 - 5.99	4.13 - 6.23					
$\sin^2 \theta_{23} / 10^{-1} $ (IH)	5.73	5.30–5.98 Atmo	4.32–6.21 ospheric Experiments					
$\sin^2 \theta_{13} / 10^{-2}$ (NH)	2.34	2.14 - 2.54	1.95 – 2.74					
$\sin^2 \theta_{13} / 10^{-2}$ (IH)	2.40	2.21 – 2.59	2.02 - 2.78					
		Reactor M	MBL (Daya-Bay, Reno					
δ/π (NH)	1.34	0.96 - 1.98	0.0 - 2.0					
δ/π (IH)	1.48	1.16 - 1.82	$0.0 – 0.14 \ \& \ 0.81 2.0$					

Mass (eV)

0.050 0.049

≡0

0.058

0.009

≡0

mu tau

Solar

Atmospheric

1?

Normal ordering or inverted ordering?

2nd, Aug, SI2015

Why Neutrinos Have Masses?

God should use natural way to generate neutrinos masses

Sea-saw: tree level Majorana masses of v_{R} & no fine-tuning Dirac

$$\mathcal{L} = -\phi^{\dagger} \overline{\ell_L} y_{\nu} N_R - \frac{1}{2} \overline{N_R^c} M N_R + \text{h.c.}$$

$$\rightarrow -\overline{\nu_L} m_D N_R - \frac{1}{2} \overline{N_R^c} M N_R + \text{h.c.} \qquad m_D = y_{\nu} \langle \phi \rangle \qquad \begin{pmatrix} 0 & m_D \\ m_D^T & M \end{pmatrix} \rightarrow \qquad \begin{pmatrix} m_{\nu} = -m_D M^{-1} m_D^T + \cdots \\ (\text{if } m_D \ll M) \end{pmatrix}$$

very heavy neutrinos

Radiative neutrino masses: naturally small due to the loop corrections, less parameters and thus predictive

igoplus Simple and clean: only Majorana Masses of v_L

Renormalizable, no counter-term and thus calculable

Radiative Neutrino Masses

- Zee model (1980)
 - 2HDM+charged singlet
 - Majorana Yukawa couplings
 - Was studied extensively
- Zee-Babu model
 - Majorana Yukawa couplings of both L & R leptons
 - Still compatible with data
- Ma model
 - \bullet R neutrinos are odd under Z₂
 - Inert doublet scalar
 - Both can be dark matter candidates (N_1 or η^0)

 \cdot neutrino mass (2-loop level)

 $\overline{U(1)}_Y$

1

• neutrino mass (1-loop level)

 $SU(2)_L$

 $SU(2)_L$

2

1

 ϕ_2 h^+

 h^+

 k^{++}

 $U(1)_Y$

1

2

 \cdot neutrino mass (1-loop level)

Zee Model

 $\ell_L \langle \phi^0 \rangle \ell_R$

 \mathcal{V}_L

The general Zee model: both doublets have Yukawa: the Yukawa couplings matrix cannot be diagonized

Neutrino mass matrix

$$M_{\nu} = \kappa \left(\widehat{f} M_{\ell}^{\mathsf{diag}} \widehat{Y}^T + \widehat{Y} M_{\ell}^{\mathsf{diag}} \widehat{f}^T \right)$$

There are non-zero diagonal elements

- But tree level FCNC: Wolfenstein Suggest a Z₂ to prevent the second Yukawa
 flavor can change
- Mass matrix with vanishing diagonal elements
- $\Rightarrow \text{ Phases of } f_{ab} \text{ are absorbed to } l_{R} = 2f_{e\mu} \left[\overline{\nu_{eL}}(\mu_{L})^{c} \overline{e}_{L}(\nu_{\mu L})^{c}\right] h^{-} + 2f_{e\tau} \left[\overline{\nu_{eL}}(\tau_{L})^{c} \overline{e}_{L}(\nu_{\tau L})^{c}\right] h^{-} + 2f_{\mu\tau} \left[\overline{\nu_{\mu L}}(\tau_{L})^{c} \overline{\mu}_{L}(\nu_{\tau L})^{c}\right] h^{-} + \mu \left(\Phi_{1}^{+} \Phi_{2}^{0} \Phi_{1}^{0} \Phi_{2}^{+}\right) h^{-} + \text{h.c.},$

$$\begin{pmatrix} 0 & m_{e\mu} & m_{e\tau} \\ m_{e\mu} & 0 & m_{\mu\tau} \\ m_{e\tau} & m_{\mu\tau} & 0 \end{pmatrix} m_{ab} = f_{ab}(m_b^2 - m_a^2) \frac{\kappa v_2}{v_1} F(M_1^2, M_1^2), \quad F(M_1^2, M_1^2) = \frac{1}{16\pi^2} \frac{1}{M_1^2 - M_1^2} \ln \frac{M_1^2}{M_2^2}$$
 couplings f_{ab} are anti-symmetric

 ν_L

Zee Model

- Zee-Wolfenstein model was ruled out by data
- Even when f_{ab} are complex, the mass matrix predicts bimaximal mixing, thus is not compatible with $\theta_{12} = 33.5^{\circ} + 0.8_{-0.7} \left(+2.5_{-2.1} \right)$
- Symmetric mass matrix $U_{\nu}^{T}M_{\nu}U_{\nu} = D_{\nu} \equiv \operatorname{diag}(m_{1}, m_{2}, m_{3})$ $H_{\nu} = M_{\nu}^{\dagger}M_{\nu} \quad U_{\nu}^{\dagger}H_{\nu}U_{\nu} = D_{\nu}^{*}D_{\nu} = \operatorname{diag}(|m_{1}|^{2}, |m_{2}|^{2}, |m_{3}|^{2})$ Koide (2001) X.G. He (2004)
- ♦ Only solution of inverted ordering is possible, but it give large $sin^2 2θ_{solar} < ≈1$, far from the current data

Non-zero diagonal but avoid FCNC, somehow save Zee model

Extension of Zee Model without Flavor Sym?

- Can we extended the Zee model without imposing a flavor symmetry?
- 2-loop corrections can generate diagonal masses
- *****To be compatible with data, $|f_{e\mu}|m_{\mu}^2 \simeq |f_{e\tau}|m_{\tau}^2 \gg |f_{\mu\tau}|m_{\tau}^2$
- **2-loop correction** $(m_{\nu}^{(2)})_{ab} = \gamma \sum_{c,d} f_{ac} f_{cd}^* f_{db} (m_c^2 m_d^2) = \gamma (f[m^2, f^*]f)_{ab}$
- **Correction to** $\sin^2 2\theta_{solar}$

$$\left|\frac{M_{\nu 11}}{M_{\nu 23}}\right| \sim \frac{|f_{e\mu}||f_{\mu\tau}||f_{\tau e}|}{16\pi^2 |f_{\mu\tau}|} \simeq \frac{|f_{e\mu}|^2}{16\pi^2} \left(\frac{m_{\mu}}{m_{\tau}}\right)^2 < 10^{-5}$$

Even 2-loop corrections can't help to save the model

A New Extended Zee Model

Type-I 2HDM with 2 extra charged and neutral singlets as the 2 Higgs doublets

$$\Phi_{1} = \begin{pmatrix} \varphi_{1}^{+} \\ \varphi_{1}^{0} \end{pmatrix} = \begin{pmatrix} \varphi_{1}^{+} \\ \frac{(\nu_{1}+\eta_{1}+i\phi_{1})}{\sqrt{2}} \end{pmatrix} \quad \Phi_{2} = \begin{pmatrix} \varphi_{2}^{+} \\ \varphi_{2}^{0} \end{pmatrix} = \begin{pmatrix} \varphi_{2}^{+} \\ \frac{(\nu_{2}+\eta_{2}+i\phi_{2})}{\sqrt{2}} \end{pmatrix} \quad \chi_{1}^{0} = \frac{\chi_{1}^{+} \\ \frac{(\mu_{1}+\chi_{1}+i\chi_{2})}{\sqrt{2}} \end{pmatrix} \quad \chi_{2}^{0} = \frac{\chi_{2}^{+} \\ \chi_{2}^{0} = \frac{(\mu_{1}+\chi_{3}+i\chi_{4})}{\sqrt{2}} \end{pmatrix}$$
$$\mathcal{L}_{H,kim} = (D_{\mu}\Phi_{1})^{\dagger} (D^{\mu}\Phi_{1}) + (D_{\mu}\Phi_{2})^{\dagger} (D^{\mu}\Phi_{2}) + D_{\mu}^{\chi}\chi_{1}^{-}D^{\chi,\mu}\chi_{1}^{+} + \partial_{\mu}(\chi_{1}^{0})^{*}\partial^{\mu}\chi_{1}^{0} + D_{\mu}^{\chi}\chi_{2}^{-}D^{\chi,\mu}\chi_{2}^{+} + \partial_{\mu}(\chi_{2}^{0})^{*}\partial^{\mu}\chi_{2}^{0}$$

***** Both doublets & neutral singlets can get VEV, and no mixing of $\chi_1^{\pm}, \chi_2^{\pm}$

$$\tan\beta = v_2/v_1 \qquad \alpha = u_2/u_1 \qquad \tilde{\chi} = \cos\alpha\chi_1^0 + \sin\alpha\chi_2^0 \qquad \rho = \sin\alpha\chi_1^0 + \cos\alpha\chi_2^0$$

Symmetry		l_L	l_R	Q_L	u_R	d_R	Φ_1	Φ_2	χ_1^{\pm}	χ_2^{\pm}	$ ilde{\chi}$	ρ
• Synnicery	Z_4	$g_3(-1)$	$g_3(-1)$	$g_3(-1)$	$g_{3}(-1)$	$g_3(-1)$	$g_2(+1)$	<i>e</i> (-2)	$g_2(+1)$	$g_2(+1)$	$g_2(+1)$	$g_2(+1)$
	$SU(2)_L$	2	1	2	1	1	2	2	1	1	1	1
	Lepton L	1	1	0	0	0	0	0	± 2	±2	0	0
	Z_2						1	1	1	1	1	-1

 $\pounds \mathcal{L}_{lepsig} = f_{ab}^{1} L_{iL}^{aT} C L_{jL}^{b} \epsilon^{ij} \chi_{1}^{+} + f_{ab}^{1} L_{iL}^{b\dagger} C L_{jL}^{a*} \epsilon^{ij} \chi_{1}^{-} + f_{ab}^{2} L_{iL}^{aT} C L_{jL}^{b} \epsilon^{ij} \chi_{2}^{+} + f_{ab}^{2} L_{iL}^{b\dagger} C L_{jL}^{a*} \epsilon^{ij} \chi_{2}^{-}$ $\mathcal{L}_{12\chi} = \kappa_{1} (\Phi_{2}^{c\dagger} \Phi_{1} - \Phi_{1}^{c\dagger} \Phi_{2}) \chi_{1}^{-} \tilde{\chi} + \kappa_{2} (\Phi_{2}^{c\dagger} \Phi_{1} - \Phi_{1}^{c\dagger} \Phi_{2}) \chi_{2}^{-} \tilde{\chi} + h.c.$ $= 2\kappa_{1} u (\varphi_{1}^{+} \varphi_{2}^{0} - \varphi_{2}^{+} \varphi_{1}^{0}) \chi_{1}^{-} + 2\kappa_{2} u (\varphi_{1}^{+} \varphi_{2}^{0} - \varphi_{2}^{+} \varphi_{1}^{0}) \chi_{2}^{-} + h.c. + \cdots$

A New Extended Zee Model

Mass Matrix is complex, but...

$$m_{ab} = \frac{(m_b^2 - m_a^2)}{16\pi^2} u \tan\beta [f_{ab}^1 \kappa_1 F(M_{11}^2, M_{12}^2) + f_{ab}^2 \kappa_2 F(M_{21}^2, M_{22}^2)] \xrightarrow{\chi_{12}^{+}}$$

2-loop correction to the diagonal

$$m_{ab}^{(2)} = \frac{O(1)}{(16\pi^2)^2} u \sum_{i,j=1,2} \sum_{c,d=e,\mu,\tau} [f_{ac}^i f_{cd}^{j*} f_{db}^j (m_c^2 - m_d^2) \kappa_i F(M_{\chi 1}^2, M_{\chi 2}^2)]$$

The ratio contributing to $\sin^2 2\theta_{solar}$ becomes $\frac{|M_{\nu 11}|}{|M_{\nu 23}|} = \frac{1}{16\pi^2} \int_{\mu\tau}^{1*} f_{e\tau}^1 + f_{\mu\tau}^{2*} f_{e\tau}^2 \int_{\mu\tau}^{1*} |f_{\mu\tau}^1 \kappa_1 + f_{e\mu}^2 \kappa_2| = \frac{1}{16\pi^2} \frac{m_{\tau^2}}{m_{\mu^2}} |f_{e\tau}^1 + f_{e\mu}^2|$

There's room to make our prediction consistent
 with the solar mixing angle and there's CP phase!
 Fit the parameters fⁱ_{ab}, κ_i and constraint from FCNF and 0vββ decay

*****There's also scalar dark matter candidate! $\rho = sin\alpha\chi_1^0 + \cos\alpha\chi_2^0, \quad <\rho >= 0$

It's constrained by the neutrino part directly

• But $\rho \rho \rightarrow \chi^+ \chi^- \rightarrow l^+ l^- v v$ can be sensitive to the neutrino parameters

A Maybe we can also consider a $SU_{D}(2)$ extension of Ma model

We will fit the parameters to constrain our model with the current neutrino data

- Interesting LHC phenomenology, e.g. 2 TeV heavy resonance
- Relic density for the dark matter candidate

Outlook

Thank you!