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1 Introduction

Lectures about naturalness of the weak scale. Incredibly important topic in the LHC
era. A driver of the program for physics beyond the Standard Model. Count AT-
LAS, CMS searches in SUSY and Exotica groups: 170 of 226 searches motivated by
naturalness. Need to understand why this is so important and make sure program
at LHC is complete.

Higgs boson was the theory problem of the last 40 years. Naturalness of the weak
scale is the theory problem of our time.

The starting point for all phenomenology, the Standard Model consists of an
SU(3)× SU(2)× U(1) gauge theory with the following matter content:

Table 1: Standard Model field content (×3 generations); conventions are those for
LH Weyl fermions. Here the bars are just part of the field name, not conjugation

Field SU(3) SU(2) U(1)

Q =

(
u
d

)
� � 1

6

ū � - −2
3

d̄ � - 1
3

L =

(
ν
e

)
- � −1

2

ē - - 1
ν̄? - - 0
H - � −1

2

Notably, the interactions of the Standard Model are the most general marginal
and relevant operators allowed by gauge invariance and Lorentz invariance. They
are encoded in gauge and matter kinetic terms, as well as in Yukawa couplings and
a potential for the Higgs:
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LSM = Lkin + Lyuk + Lhiggs (1)

Lkin = −1

4
(Ga

µν)
2 − 1

4
(W a

µν)
2 − 1

4
B2
µν + (DµH)†(DµH) + iψ†I σ̄

µ(Dµψ)I (2)

Lyuk = −ye(εijHiLj)ē− yd(εijHiQjα)d̄α − yu(H†iQiα)ūα + h.c. (3)

Lhiggs = m2H†H − λ(H†H)2 (4)

The yukawas are 3× 3 matrices. The sign of m2 leads to spontaneous symmetry
breaking.

Remarkably, if the Standard Model is the complete theory of the universe, we
have now measured all of its parameters (the quartic coupling is inferred from knowl-
edge of the Higgs vev).

The fact that all marginal and relevant couplings allowed by the symmetries of
the theory are present is a marvelous example of Gell-Mann’s totalitarian principle,
namely

Everything not forbidden is compulsory.

The fact that the totalitarian principle seems to be born out so completely in the
context of the Standard Model will be important!

Can’t write down a gauge-invariant mass term for any SM fermion respecting
gauge & Lorentz symmetries. Fermion masses can only arise after electroweak sym-
metry is broken.

The Higgs, however, enjoys no such symmetry. The mass term

m2H†H

is a complete invariant under any gauge or global symmetry. It is also the only
marginal operator in the Standard Model.

Observationally, the mass parameter is m2 ∼ (89 GeV)2. Simply an experimen-
tal fact in the Standard Model. But a curious scale. The Standard Model is itself
not a complete description of nature. We know there are also gravitational interac-
tions, which we can express at low energies in terms of a quantum field theory with
Lagrangian density of the form
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LEH ∼M2
P

√
− det(g)tr

[
gµν∂µ∂ν exp

(
hαβ
MP

)]
(5)

where gµν = ηµν + 1
MP

hµν where ηµν is the Minkowski metric and hµν is a tensor

field. Intrinsically non-renormalizable, with scale MP ∼ 1019 GeV. Field theory con-
tains an infinite number of irrelevant operators equally important at the scale MP .
We do not know what the complete theory at MP is.

1.1 “Just-so story” vs. hierarchy problem

Worrisome; two dimensionful scales that differ by sixteen orders of magnitude. How-
ever, we already see a hierarchy of nearly six orders of magnitude in the known
fermion masses (between the electron at 0.5 MeV and the top quark at 173 GeV),
or something in the ballpark of twelve orders of magnitude between neutrino masses
and the top quark.

However, there is a further complication at the quantum level. In the case of
fermion masses the hierarchy is merely a just-so story. Consider a Dirac fermion Ψ.
A mass for this fermion consists of a term of the form

mΨ̄Ψ (6)

where Ψ̄ = Ψ†γ0. This mass term is invariant under global abelian rotations of
the form Ψ→ eiαΨ. However, in the limit m→ 0, there is an additional symmetry,
namely Ψ → eiβγ5Ψ. Quantum corrections respect the symmetries of the quantum
action, so when m = 0 implies that quantum corrections will not generate a mass
term. Moreover, when the chiral symmetry is broken by m 6= 0, quantum corrections
will be proportional to the symmetry-breaking term. Corrections to fermion masses
are proportional to fermion masses.

Thus a large hierarchy between fermion masses is a curiosity, but not a deeply
troubling one. If the fundamental theory of the universe generates fermions with
very different masses, quantum corrections need not disturb the hierarchy.

The just-so story: why the mass term takes the specific value in the fundamental
theory. But there is no preferred value.
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This is a beautiful property not only of spin-1/2 particles, but of spin-1 particles
as well. In the case of vector bosons, in the limit where the mass term

m2AµA
µ

goes to zero, there is an enhanced symmetry – gauge invariance under Aµ →
Aµ + ∂µα. This likewise guarantees that radiative corrections to gauge boson masses
are proportional to the mass itself.

We call these custodial symmetries.

The same does not hold for scalar mass terms. As we noted earlier, the mass
term

m2H†H

is a complete invariant under any gauge or global symmetry. In particular, no
symmetry is enhanced when the mass is zero. Thus we are without any argument to
justify the stability of the Higgs mass parameter against radiative corrections.

You usually see this phrased as something terrible like “there is a hierarchy prob-
lem because the Higgs mass is quadratically divergent in the Standard Model, and
the contribution at one loop up to a cutoff Λ is

δm2
H =

Λ2

16π2

(
−6y2

t +
9

4
g2 +

3

4
g′2 + 6λ

)

and the cutoff runs all the way up to the Planck scale.” Here the loops are loops
of top quarks, electroweak gauge bosons, and the Higgs itself.

This poses a Naturalness Problem because the UV contributions to the Higgs
mass greatly exceed its observed value; there must be large cancellations between
contributions, which are non-generic.

But you should be very suspicious of this argument. The RHS depends on a hard
cutoff, but we should be able to compute physical quantities in any renormalization
scheme. If we repeated this calculation in MS, all of the divergent 1/ε pieces would
be soaked up into the counterterm. We would be left only with finite terms like

δm2
H(MS) = − 6

16π2
m2
t log(µ/mt)
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which does not look frightening at all; this is a correction that is numerically of
order tens of GeV.

There is also nothing wrong with running over large energy hierarchies in the
Standard Model. You can compute the beta function for the Higgs mass in the
Standard Model, and at one loop you find in MS

βm2
H

=
m2
H

16π2

[
6y2

t −
9

4
g2 − 3

4
g′2 − 6λ

]

Again, there is nothing here to suggest a hierarchy problem. The Higgs mass in
the Standard Model runs proportional to itself, and given a renormalized mass at
one scale µ1, we can find the renormalized mass at another scale µ2 with corrections
that are merely of the form

δm2
H ∼

6y2
t

16π2
m2
H log(µ1/µ2)

These corrections are parametrically small with respect to m2
H , so there is no

problem apparent in the Standard Model.

So where is the hierarchy problem? Our goal in these lectures is to answer this
question and explore its implications.

2 The Hierarchy Problem

We encounter infinities all the time in quantum field theory all the time. Accom-
modate them by adopting a suitable form of regularization, and we liberate physical
quantities from dependence on the regulator by adopting a renormalization scheme.

Various ways of accommodating these infinities. Simplest is to add counterterms
to the Lagrangian which are formally infinite and contribute to physical processes.
The form of the counterterms is fixed by a renormalization condition which defines
couplings in the renormalized theory in terms of an observable. Then use QFT to
relate observables at different energies and make predictions.

Concretely, consider as a toy model a scalar coupled to a Dirac fermion,

L = −1

2
φ(�+m2)φ+ λφψ̄ψ + ψ̄(i 6∂ −M)ψ (7)
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We can go ahead and compute radiative corrections to the scalar mass in pertur-
bation theory from diagrams of the form

φ

ψ

ψ

φ

which gives a correction to the scalar self-energy of the form

iΣ2(p2) = −4λ

∫
d4k

(2π)4

∫ 1

0

dx

[
1

k2 −∆
+

2∆

[k2 −∆]2

]
(8)

where ∆ = M2 − p2x(1− x). Now first we notice that this integral is divergent.
We tame the divergence by picking a regulator. For example, we could pick a hard
cutoff Λ on the Euclidean momentum. Then we would find

Σ2(p2) =
3λ2

4π2

∫ 1

0

dx

(
[M2 − p2x(1− x)] log

(
M2 − p2x(1− x)

Λ2

)
+ Λ2

)
+finite (9)

where the finite terms are functions of M and p. But this is just a parame-
terization of the divergence. We could pick another regularization scheme, such as
dimensional regularization. In the hard cutoff we deformed the theory in the UV
to make integrals finite, whereas in dim reg we deform the theory by non-integer
dimension (e.g. d = 4− ε) to tame divergences.

In dim reg we instead obtain something that looks like

Σ2(p2) =
3λ2

4π2

(
−2M2

ε
+
p2

3ε
+

∫ 1

0

dx

(
[M2 − p2x(1− x)] log

(
M2 − p2x(1− x)

4πµ2e−ΓE

)))

(10)
Gone is explicit dependence on the cutoff, but the divergences are present in 1/ε

poles.
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In both cases, we next obtain physical predictions by introducing counterterms
in the form of field strength and mass renormalization for the scalar. That is to say,
we define the renormalized theory by the addition of counterterms,

L = −1

2
φ�φ− 1

2
δφφ�φ+m2

Rφ
2 + (δφ + δm)m2

Rφ
2 + . . . (11)

which introduce new Feynman rules,

i(p2δφ − (δm + δφ)m2
R) (12)

that we also need to include in computing the self-energy. Now we fix the form of
the counterterms by some renormalization scheme. A convenient one is an on-shell
scheme, where we have measured the pole mass of the scalar and we set the pole
of the propagator at the renormalized mass with residue 1. The resummed scalar
propagator takes the form

iG(p2) =
i

p2 −m2 + Σ(p2)
(13)

with Σ(p2) = Σ2(p2) + p2δφ− (δm + δφ)m2
R. The on-shell conditions are Σ(m2

P ) =
Σ′(m2

P ) = 0 at mR = mP . Then

δm =
1

m2
P

Σ2(m2
P ) δφ = − dΣ2(p2)

dp2

∣∣∣∣
p2=m2

P

(14)

We then use this to work out the counterterms, which will differ for the two dif-
ferent regulators but in both cases will cancel all of the divergences, whether a cutoff
Λ or a 1/ε pole. The result is, for example, a perfectly finite self-energy.

Of course, this uses a measured pole mass to soak up divergences, so perhaps you
are concerned that we are sweeping something under the rug. However, we could
pick a different scheme. A good choice is dimensional regularization with modified
minimal subtraction. Can talk about an MS mass which is a Lagrangian parameter,
and study how loops relate this to a pole mass.

The difference between the pole mass and the MS mass is finite – the scheme
still subtracts out divergences – but nonzero, and keeps track of the sorts of radiative
corrections we just computed.

The pole and MS masses differ by an amount
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m2
P −m2

MS
(µ) =

λ2

4π2
M2 + . . . (15)

This is perfectly finite, but notably it’s proportional to the mass of the fermion.
The analogue of this in the SM is the correction to the Higgs mass proportional to
the top yukawa.

Already, though, something important is clear. Consider scalar loop corrections
to fermions in our Yukawa toy model:

iΣ2( 6 p) = λ2

∫
d4k

(2π)4

6 p+ 6 k +M

[(p− k)2 −m2][k2 −M2]
(16)

= λ2

∫
dx

∫
d4`

(2π)4

(1 + x) 6 p+M

[`2 −∆]2
(17)

where ∆ = xm2 + (1 − x)M2 − x(1 − x)p2. If we evaluate this integral with
dimensional regularization, we obtain

iΣ2(6 p) ∝ iλ2

16π2

M

ε
+ . . . (18)

Now the counterterm that absorbs this divergence is proportional to M , the
physical source of chiral symmetry breaking. Alternately, we could do this integral
with a hard cutoff, in which case we obtain terms of the form

iΣ2( 6 p) ∝ iλ2

16π2

Λ2

M
+ . . . (19)

Now we can absorb this divergence with our renormalization procedure, via a
ounterterm that is not strictly proportional to the physical source of chiral symme-
try breaking. Made the mistake of choosing a regulator that violated a symmetry
of the theory. Can still make sensible predictions, but only at the price of adding
counterterms that compensate for our mistake. In general, much easier and wiser to
simply choose a regulator that preserves the symmetries of the quantum action in
the first place.

In this case, can also compute difference between pole mass and MS mass like
we did for the scalar. Difference here is

MP −MMS =
λ2

16π2
M + . . . (20)

9



i.e., proportional to fermion mass, not scalar mass.

At this point, you should be very skeptical about the hierarchy problem. If we are
only allowed to speak about observables, and we construct our perturbation theory
in such a way as to absorb all divergences, then it is not at all clear that a hierarchy
problem exists.

2.1 Two hierarchy problems

But can see two senses in which there is a problem.

1. Physical states correct Higgs mass proportional to their own mass, e.g. δm2 ∝
M2. Independent of regularization and renormalization scheme. Threshold
corrections. Long way from weak scale to Planck scale, lots of reasons to
expect new physics. In fact, forced upon you. SM is an incomplete theory,
must have more physics.

2. Higgs mass is incalculable in SM. Just a parameter. Can’t predict it, only
measure it and relate it. Expect instead in fundamental theory it is finite,
calculable. What then?

Two problems often related but different in nature. First problem is clear. We
saw that particles with mass M give δm2 ∝ M2, independent of how we regularize
theory. Given Clear that we can compute in lots of different ways if we know the
specific physics.

Second problem also pretty clear. We can extend the SM to include symmetries
that make the Higgs mass calculable in terms of fundmental parameters. Requires
new particles, and will have δm2 ∝M2. Implies hierarchy problem in any calculable
framework.

Original line of thinking (Wilson): if theory is finite, cutoff Λ has physical meaning
(i.e., lattice spacing). Then no need for counterterms to avoid infinities; all cutoff-
dependent terms are physical. Then it is physically meaningful to compute

δm2
H =

Λ2

16π2

(
−6y2

t +
9

4
g2 +

3

4
g′2 + 6λ

)
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Don’t absorb this into counterterms; it’s a physical correction from high-momentum
modes probing the physical cutoff.

But if you know the detailed physics, can do even better; compute in dim reg or
in mass-dependent scheme; new states at the cutoff contribute in the same way.

So cutoff picture is a good way to parameterize our ignorance. Gives the same
answer as a physical calculation in other regularization schemes. Only subtlety is
that in general the cutoff Λ varies from loop to loop.

Makes clear that the Naturalness Problem is robust: new physics gives con-
tributions to the Higgs mass, typically from different sources, and these must cancel
to fine precision to give observed Higgs mass.

2.2 Three reasons

Two senses of hierarchy problem. Will address the latter sense (calculability) when
we get to custodial symmetries. But in the meantime, first we can explore how much
of a challenge is posed by physical contributions from different possible states beyond
the Standard Model.

Three categories:

• things we want to believe (hints of BSM physics);

• things we should believe (very probable consequences of physics at Planck
scale);

• things we must believe (problem of SM even if gravity does not provide cutoff).

2.2.1 Things we want to believe

We have lots of reasons to expect field-theoretic scales above the weak scale. When
do these introduce hierarchy problems? Focus on four things: unification, neutrino
masses, flavor, and dark matter.

Unification One of the first concrete settings in which the hierarchy problem
became apparent was that of grand unification. In grand unified theories there are
heavy gauge bosons associated with the scale of unification that interact with the
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Higgs boson.

Details depend on the precise model of unification, and the representation into
which the Higgs is embedded. For example, in SU(5) unification the SM gauge bosons
are embedded into the 24 of SU(5), which decomposes into the SM gauge bosons plus
X gauge bosons transforming in the (3, 2)−5/6 + conjugate representation. Moreover,
the Higgs is embedded in a 5̄ of SU(5). In this case there are loops involving a triplet
scalar Higgs and X boson of the form

H

T

X

H

In general, these loops of heavy bosons give corrections of order

δm2
H ∼

αGUT
4π

M2
GUT (21)

The original apparent scale of unification in nonsupersymmetric theories was
O(1015) GeV, while bounds on proton decay now imply MGUT & 1016 GeV. So
grand unification implies a huge hierarchy problem.

Hierarchy problems can be even worse than the one we see in quantum effects;
it can be classical. For example, in SUSY GUT models there are Higgs multiplets
in the 5 and 5̄ of SU(5), and the triplet states must be heavy (on the order of the
GUT scale) to avoid dimension-5 proton decay. Problem is unified mass term 5̄†5̄.

Moreover, now the symmetries of the theory admit couplings to the heavy scalar
Φ that breaks the SU(5) unified symmetry, i.e. 5̄Φ5, and Φ acquires a GUT-scale
vev to break the unified symmetry. This generically implies the masses of doublet
and triplet Higgs bosons are on the order of the GUT scale from tree-level effects!1

1This can be ameliorated in more complicated GUT models such as SO(10) via the Dimopoulos-
Wilczek mechanism, or in orbifold GUTs.
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So classical naturalness problems are often even more of a threat than quantum
ones. More generally, this implies that any scalars acquiring large vevs must have
tremendously small couplings to the Higgs in order to avoid introducing new fine-
tuning problems.

Let’s now turn to the effects of new fermions. Very generally, consider adding a
new fermion Ψ to the Standard Model, charged under SU(2)L×U(1)Y . Even before
trying to include Yukawa couplings to the Higgs, it gives corrections to the Higgs
mass at two loops via diagrams of the form

which corrects the Higgs mass by an amount

δm2
H ∼

( α
4π

)2

× g
(
m2
W

m2
Ψ

)
×m2

Ψ (22)

where g is a O(1) dimensionless function. Such states, if they exist, should be
lighter than about 10 TeV in order to avoid introducing a fine-tuning problem.

We could further imagine that this new fermion couples to the Higgs directly
with a Yukawa interaction. For example, there could be fermions Ψ, ψ such that the
coupling

yψHΨ (23)

is allowed, or Ψ could be a new fermion with electroweak quantum numbers and
ψ could be an existing SM chiral fermion. In this case there is a one-loop diagram
feeding into the Higgs mass, with

δm2
H ∼ C

y2

16π2
m2
ψ (24)

Avoiding fine-tuning from this requires ymψ . TeV.
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Neutrino masses Now we can have a perfectly consistent universe without new
electroweak fermions, but there are scenarios that favor the existence of new fermions.
For example, the generation of neutrino masses may strictly be due to a dimension-
five operator,

L ⊃ (LiH)(LjH))

M
+ h.c. (25)

without further ado. However, we expect that if the theory is genuinely renor-
malizable, this interaction arose from integrating out heavier states with mass ∼M .
In particular, the Type-I seesaw entails right-handed neutrinos N with couplings

L ⊃ −M
ij
R

2
NiNj − yijLiN jH + h.c. (26)

This provides a very concrete example of new fermions coupling to the Higgs.
The leading one-loop correction to the Higgs mass is

δm2
H = − 1

4π2

∑

ij

|yij|2M2
j (27)

If all the RH neutrinos have a common mass M , the bound will be dominated
by the combination of yukawas giving the heaviest SM neutrinos. In this case the
naturalness bound is M . 104 TeV. This has amusing implications because thermal
leptogenesis requires much higher values of M , on the order of M & 106 TeV. So in
this case naturalness would rule out thermal leptogenesis in a Type 1 see-saw.

Of course, people are infinitely clever, and there are other models for neutrino
masses. Possible to generate Type II or Type III masses. All in tension with thermal
leptogenesis.

Flavor New physics is also implied by flavor. A canonical example is the Froggatt-
Nielsen mechanism which employs charges under a global U(1) to generate viable
flavor textures. The U(1) is spontaneously broken by a scalar vev which, after inte-
grating out some heavy fermions, leads to effective Yukawa interactions.

Concretely, the top and bottom masses can be generated by

L ⊃ iD̄ 6 ∂D −MDD̄D + y1Q̄3DH + y2D̄bRφ+ h.c. (28)

where φ is the scalar breaking the U(1), and D, D̄ is a vector-like set of quarks. The
charges [Q3] = +1, [tR] = +1, [D] = +1, [bR] = 0, [H] = 0, [φ] = +1 allow us to write
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down the top yukawa as a marginal interaction, while the bottom yukawa is only
generated once we integrate out D, D̄, giving a bottom yukawa of order

yb = y1y2
〈φ〉
MD

(29)

The same procedure can be repeated to generate yukawa couplings for lighter
generations. The y1 yukawa means we have new contributions to the Higgs mass at
one loop, giving a correction

δm2
H = − 6

8π2
|y1|2M2

D (30)

which requires y1MD . TeV. Can do it, but suggests new physics associated with
flavor enters at a low scale.

Dark matter Know there is dark matter! Lots of possibilities. Minimal option
is for new electroweak multiplet, gives conventional WIMP abundance. Now con-
tributes to Higgs mass at least via two loops.

Quantum numbers DM could DM mass mDM± � mDM Finite naturalness �SI in
SU(2)L U(1)Y Spin decay into in TeV in MeV bound in TeV 10�46 cm2

2 1/2 0 EL 0.54 350 0.4 ⇥
p
� (0.4 ± 0.6) 10�3

2 1/2 1/2 EH 1.1 341 1.9 ⇥
p
� (0.3 ± 0.6) 10�3

3 0 0 HH⇤ 2.0 ! 2.5 166 0.22 ⇥
p
� 0.12 ± 0.03

3 0 1/2 LH 2.4 ! 2.7 166 1.0 ⇥
p
� 0.12 ± 0.03

3 1 0 HH, LL 1.6 ! ? 540 0.22 ⇥
p
� 0.001 ± 0.001

3 1 1/2 LH 1.9 ! ? 526 1.0 ⇥
p
� 0.001 ± 0.001

4 1/2 0 HHH⇤ 2.4 ! ? 353 0.14 ⇥
p
� 0.27 ± 0.08

4 1/2 1/2 (LHH⇤) 2.4 ! ? 347 0.6 ⇥
p
� 0.27 ± 0.08

4 3/2 0 HHH 2.9 ! ? 729 0.14 ⇥
p
� 0.15 ± 0.07

4 3/2 1/2 (LHH) 2.6 ! ? 712 0.6 ⇥
p
� 0.15 ± 0.07

5 0 0 (HHH⇤H⇤) 5.0 ! 9.4 166 0.10 ⇥
p
� 1.0 ± 0.2

5 0 1/2 stable 4.4 ! 10 166 0.4 ⇥
p
� 1.0 ± 0.2

7 0 0 stable 8 ! 25 166 0.06 ⇥
p
� 4 ± 1

Table 1: Minimal Dark Matter. The first columns define the quantum numbers of the possible
DM weak multiplets. Next we show the possible decay channels which need to be forbidden; the
DM mass predicted from thermal abundance (the arrows indicate the effect of taking into ac-
count non-perturbative Sommerfeld corrections, which have not been computed in all cases); the
predicted splitting between the charged and the neutral components of the DM weak multiplet;
the bound from finite naturalness and the prediction for the Spin-Independent direct detection
cross section on protons �SI.

• For a generic fermionic multiplet with hypercharge Y and dimension n under SU(2)L

we find

�m2 =
cnM2

(4⇡)4

✓
n2 � 1

4
g4
2 + Y 2g4

Y

◆✓
6 ln

M2

µ̄2
� 1

◆
(21)

where c = 1 for Majorana fermions (Y = 0 and odd n) and c = 2 for Dirac fermions
(Y 6= 0 and/or even n). For n = 3 and Y = 0 we recover the type-III see-saw result of
eq. (12).

• For a scalar multiplet we find

�m2 = � nM2

(4⇡)4

✓
n2 � 1

4
g4
2 + Y 2g4

Y

◆✓
3

2
ln2 M2

µ̄2
+ 2 ln

M2

µ̄2
+

7

2

◆
. (22)

For n = 3 and Y = 0 we recover the type-II see-saw result of eq. (17).

We then show in table 1 the finite naturalness upper bounds on M for the various possible
MDM multiplets. Furthermore, table 1 shows the predictions for the DM mass M suggested
by the hypothesis that DM is a thermal relic with cosmological abundance

⌦DMh2 = 0.1187 ± 0.0017 [27]. (23)

(Such results differ from the analogous table of [24] because M has been recomputed taking
into account Sommerfeld effects [28], which lead to the change indicated by the arrows in

8

In some cases, agreement between thermal abundance and naturalness bounds,
though very constraining for larger SU(2)L multiplets.

Already we see that vanilla field theory candidates for new physics are strongly
constrained by naturalness arguments.
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2.2.2 Things we should believe

But maybe we are willing to give up on all of these things. Neutrino masses could
be dim-5 operator, dark matter a total SM singlet, unification an illusion, flavor a
fact about matrices.

But some UV completion is forced upon us. We have already encountered the
physics of quantum gravity at a scale MP ∼ 1019 GeV. Do not have a complete theory
of quantum gravity, although it is likely that the answer lies in string theory. Not yet
able to compute the mass of the Higgs in a complete string theory, the expectation is
that string theory contains heavy states whose masses are close to the Planck scale
that would give corrections to the Higgs mass.

Clear that this is a problem, but make it even more apparent. Even new states
coupling to the Higgs through loops of perturbative gravitons give a large threshold
correction. For example, imagine there is some massive Dirac fermion Ψ with mass
mΨ and it coupled to the Standard Model only gravitationally. Then as long as we
are at energies E � MPl we can compute loop diagrams including gravitons. The
correction to the Higgs mass in this case arises at two loops,

and gives a correction parametrically of order

δm2
H ∼

m2
H

(16π2)2

m4
Ψ

M4
Pl

This correction is small because the graviton coupling to a massless, on-shell par-
ticle at zero momentum vanishes, and so the result is proportional to mH .

However, we could also have a three-loop diagram where the graviton couples to
a loop of top quarks,
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The correction from this diagram is parametrically of the form

δm2
H ∼

6y2
t

(16π2)3

m6
Ψ

M4
Pl

and is much larger because now the gravitons are coupling to off-shell states.

If mΨ ∼ MPl, correction is ∼ 6y2t
16π2

M2
Pl

(16π2)2
. Of course at this point we doubt the

validity of our gravity EFT, but this parametrically validates our naive expectation
from the cutoff argument, now with Λ ∼MPl/16π2. So even gravitational physics is
sufficient to feed through threshold corrections to the Higgs mass.

The conclusion is that if there are any other states out there, even ones that only
couple to the Higgs gravitationally, they give a threshold correction to the Higgs
mass that is proportional to the mass scale of the new states. We can see these
corrections in MS or any other scheme; they are physical threshold corrections and
have unambiguous value. The result using a hard cutoff was merely a placeholder
for threshold corrections, which we could only see in MS if we had actual physical
states in the theory.

2.2.3 Things we must believe

Finally, one might hope that the theory of quantum gravity somehow decouples in
such a way as to avoid inducing new scales for the Standard Model. If we are so for-
tunate as to imagine that gravity does not introduce a physical cutoff at the Planck
scale, then we are faced with another problem.

Now there is nothing to cut off the running of Standard Model couplings as we
go to higher and higher energies. This is problematic because the Standard Model
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contains an abelian gauge factor, hypercharge, whose beta function coefficient can
only be positive. In the SM it is

16π2βgY =
41

10
g3
Y + . . .

Any additional physics simply makes it more positive. Running it up to the
UV, the coupling grows in the ultraviolet and eventually hits a Landau pole around
1041 GeV. The Standard Model is truly an effective theory, and we expect that this
Landau pole is UV completed into some new physics around 1041 GeV. Physical
thresholds at this scale reintroduce a hierarchy problem.

One might hope that the situation is not so dire. We do not know for certain
what a Landau pole implies, so perhaps something innocuous happens here as well.
However, we can study strong coupling in an abelian gauge group on the lattice.

The evidence hep-th/9712244 suggests that strong coupling of hypercharge
leads to confinement and chiral symmetry breaking in the ultraviolet before the nom-
inal Landau pole is reached. This generates both a nonzero fermion mass mf ∼ Λ
and a nonzero chiral condensate 〈ψψ̄〉 ∼ Λ. This would break electroweak symmetry
and give a huge contribution to the Higgs mass. So, indeed, the Landau pole is a
problem, and new physics must enter to avoid it.

How to avoid if Planck scale does not provide a cutoff? Embed hypercharge into
an asymptotically free non-abelian symmetry. Has to happen at low scale since we
know

δm2 ∝ αGUT
4π

M2
GUT

Obvious candidates (SU(5), SO(10), etc.) are in bad trouble as we have seen,
since bounds on proton decay force scale to 1016 GeV.

Other options: to avoid proton decay,

• Pati-Salam, SU(2)L × SU(2)R × SU(4)PS

• Trinification, SU(3)L × SU(3)R × SU(3)C

Need at low scale to avoid fine-tuning. Many pheno consequences. New Higgs
bosons, heavy vector bosons. Flavor constraints force MH & 3 TeV. Precision elec-
troweak forces MZ′ & 4, 2 TeV for Pati-Salam and trinification. Already bumping
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up on limits, naturalness bounds.

If this solves the problem, implies accessible physics near the weak scale. Seem
unable to get around the hierarchy problem giving signs of new physics.

2.3 Naturalness in Nature

At this point it’s reasonable to wonder if this is just wild theoretical prejudice or a
sensible proposition. There are, in fact, many examples in nature where the expec-
tation of naturalness has turned out to be sharp.

Favorite is the mass splitting between the charged and neutral pions, which differ
by about 5 MeV. These states are all goldstones of the spontaneously broken chiral
symmetries of QCD, and these symmetry arguments lead one to expect the pions
to be nearly degenerate. The answer is that we have radiative corrections from the
explicit breaking of chiral symmetries by QED. Charged pions and kaons can get a
mass contribution from electromagnetic loops.

If we compute the photon loop that would give a mass correction, using a hard
cutoff to estimate the threshold correction we get

∼ 3e2

16π2
Λ2 = δm2 (31)

Given the size of the charged-neutral meson splittings, m2
π±−m2

π0
∼ (35.5 MeV)2,

we expect the loop should be cut off around 850 MeV if electromagnetic loops explain
the mass difference.

In fact, the ρ meson enters at 770 MeV, which provides a cutoff for the effective
theory. Thus there is perfect agreement between the size of the mass correction based
on cutoff-based arguments and the scale at which new physics enters.

Another beautiful example is the mass difference between the K0
L and K0

S states.
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Computed in the effective theory at the scale of the kaons, the splitting is

MK0
L
−MK0

S

MK0
L

=
G2
Ff

2
K

6π2
sin2 θcΛ

2 (32)

where fK = 114 MeV is the kaon decay constant and sin θC = 0.22 is the Cabibbo an-
gle. Requiring this correction to be smaller than the measured value (MK0

L
?MK0

S
)/MK0

L
=

7× 10−15 gives Λ < 2 GeV. And lo, the charm quark enters with mass mc ∼ 1.2GeV
to modify the short-distance behavior of the theory by implementing the GIM mech-
anism. Moreover, this is not merely rationalization; this was the actual argument
used by Gaillard and Lee to compute the mass of the charm quark before its discovery.

On the other hand, the cosmological constant is a tremendous failure of natu-
ralness. The observed value of the c.c. is on the order of (2.4 × 10−3 eV)4. The
prediction obtained by simply computing vacuum loops up to a cutoff Λ is propor-
tional to Λ4 itself. There is no apparent new physics at the eV scale related to cutting
off contributions to the vacuum, and even if these loops were cutoff not far above
the Planck scale, there would be many orders of magnitude of unexplained hierarchy.

The successes and failures of naturalness in nature should make clear the fact
that

Naturalness is a strategy, not a principle.

That is to say, it has often provided the correct guidance for new physics. How-
ever, it has also failed spectacularly in the case of the cosmological constant, and it’s
unclear precisely what lessons we should draw from the failure.

So now we come back to the Higgs mass and naturalness. Using a hard cutoff on
Standard Model loops, we have again

δm2
H =

Λ2

16π2

(
−6y2

t +
9

4
g2 +

3

4
g′2 + 6λ

)

In order for this not to be much larger than the observed mass, we require Λ .
TeV.
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3 Custodial Symmetries

Have now seen two senses of hierarchy problem:

1. Physical states correct Higgs mass proportional to their own mass, lots of room
up to Planck scale and reasons for new physics.

2. Higgs mass is incalculable in SM, expect it is finite in fundamental theory.

Can address both these problems at same time with custodial symmetries.

So far, we have seen that the masses of scalars are special. They are not pro-
tected against radiative corrections by any symmetry, and so they are sensitive to all
of the mass scales to which they are connected. This is in contrast to fermions and
gauge bosons, which enjoy enhanced symmetry when mass is zero, enforcing δm ∝ m.

Idea is to enlarge Standard Model so that Higgs also enjoys a custodial symmetry.
Historically, not the only way to solve hierarchy problem. Could lower cutoff (large
extra dimensions). Could break electroweak symmetry w/ strong condensate (tech-
nicolor). But now we have seen a light, apparently elementary Higgs scalar giving
EWSB. Therefore our focus narrows to UV physics that solves hierarchy problem for
a light, approximately elementary scalar.

What possible symmetries can we use? Coleman-Mandula theorem constrains
options:

The Coleman-Mandula theorem (1967): in a theory with non-trivial inter-
actions (scattering) in more than 1+1 dimensions, the only possible conserved quan-
tities that transform as tensors under the Lorentz group are the energy-momentum
vector Pµ, the generators of Lorentz transformations Mµν, and possible scalar sym-
metry charges Zi corresponding to internal symmetries, which commute with both Pµ
and Mµν . For theories with only massless particles, this can be extended to include
generators of conformal transformations.

Generalizes to include spinorial symmetry charges: SUSY. Golfand and Likht-
man, full set of possible generalizations were identified by Haag, Sohnius, and Lo-
puszanski.

So possible options seem to be: Spinorial internal symmetry (supersymmetry);
scalar internal symmetry (global or gauge symmetry); and conformal symmetry.
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3.1 Supersymmetry

Assume familiarity with SUSY. Idea is to extend Poincare algebra to include con-
served supercharges Qα, Q̃α̇. As a Weyl spinor, the transformation properties of Qα

with respect to the Poincare group are known, namely

[Pµ, Qα] = [Pµ, Q̃
α̇] = 0

[Mµν , Qα] = i(σµν)βαQβ

[Mµν , Qα̇] = i(σ̄µν)α̇
β̇
Q̃β̇

Also need anticommutators {Q, Q̃} and {Q,Q} to close the algebra. As we saw
above, the only option is for {Q, Q̃} to be proportional to Pαβ̇, since this is the only
conserved operator with the appropriate index structure. The choice of normalization
gives us

{Qα, Q̃β̇} = 2Pµ(σµ)αβ̇

Finally, the simplest choice for {Qα, Qβ} is

{Qα, Qβ} = {Q̃α̇, Q̃β̇} = 0

Fields will be arranged into supermultiplets, transforming as irreducible repre-
sentations of super-Poincare.

For example, chiral multiplet contains scalar and fermion related by infinitesimal
SUSY rotation,

φ→ φ+ δφ ψ → ψ + δψ

where

δφ = εαψα (33)

δψα = −i(σνε†)α∂νφ (34)

where εα is a Grassmann variable that you can think of as an infinitestimal pa-
rameter multiplying a SUSY generator; it has mass dimension [ε] = −1/2.

Relates a scalar to a fermion, and so relates a scalar mass to a fermion mass
protected by chiral symmetry.
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Note the Coleman-Mandula theorem told us that all global symmetries (and thus
also all gauge symmetries obtained by gauging them) must commute with the genera-
tors of the Poincare group. However, it is not strictly necessary for them to commute
with all the generators of the super-Poincare group.

Associativity of the super-Poincare algebra implies that in a N = 1 supersym-
metric theory there can be at most one independent Hermitian U(1) generator R
that does not commute with the SUSY generators, with commutation relations

[R,Qα] = −Qα [R,Q
†
α̇] = Q†α̇

I won’t prove this in total generality, but let’s sketch how the argument works.
Imagine there were a global symmetry algebra with hermitian generators T a sat-
isfying [T a, T b] = ifabc T

c (where we are being very general, and not yet assuming
anything about the Killing form) that didn’t commute with supersymmetry,

[T a, Qα] = haQα

for some ha. Now the Jacobi identity

[T a, [T b, Q]] + [T b, [Q, T a]] + [Q, [T a, T b]] = 0

implies fabc h
c = 0. In general, any scalar symmetry algebra is a direct sum of

a semi-simple algebra and an abelian algebra. For a semi-simple Lie algebra we
can go to a basis where the Killing form is diagonal and fabc is antisymmetric, so
0 = fabch

c = f badfabch
c ∝ hd. Then only the components of ha in the Abelian direc-

tions can be non-zero.

Of the abelian directions, we can form a single linear combination having a
nonzero commutator with the Qs, as above. This argument extends to gauge sym-
metries, which we can think of as gauging global symmetries. Consistently gauging
the R-symmetry takes us into supergravity.

For extended supersymmetries with more supercharges, we can have non-abelian
R-symmetries; in 4D we can have an SU(4) R-symmetry for N = 4 theories, and an
SU(2)× U(1) R-symmetry for N = 2. But chiral states only possible for N = 1

Thus we learn that states related by SUSY carry the same gauge quantum num-
bers.
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6
)

(×3 families) u ũ∗R u†R ( 3, 1, −2
3
)

d d̃∗R d†R ( 3, 1, 1
3
)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2
)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2
)

Hd (H0
d H−d ) (H̃0

d H̃−d ) ( 1, 2 , −1
2
)

Table 2: Chiral supermultiplets in the Minimal Supersymmetric Standard Model.
The spin-0 fields are complex scalars, and the spin-1/2 fields are left-handed two-
component Weyl fermions.

Names spin 1/2 spin 1 SU(3)C , SU(2)L, U(1)Y

gluino, gluon g̃ g ( 8, 1 , 0)

winos, W bosons W̃± W̃ 0 W± W 0 ( 1, 3 , 0)

bino, B boson B̃0 B0 ( 1, 1 , 0)

Table 3: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

The supersymmetric extension of the Standard Model is fairly straightforward,
entailing the incorporation of all Standard Model fields into corresponding supermul-
tiplets, with the addition of a second Higgs multiplet. This is necessary on account
of both anomalies and holomorphy.

You might be cheeky and try to put the Higgs scalar into a lepton chiral mul-
tiplet, so that the Higgs is effectively a sneutrino. This turns out to have various
problems – lepton number non-conservation is one of them, as well as an unviably
large prediction for (at least one) neutrino mass.

Of course, supersymmetry cannot be an exact symmetry of nature, otherwise
we would have seen selectrons degenerate with electrons. So in general we must
include soft terms, which can be worked out using the generalization of our spurion
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technique; in the case of the MSSM these take the form

LMSSM
soft = −1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + h.c.

)

−
(
ũ au Q̃Hu − d̃ ad Q̃Hd − ẽ ae L̃Hd + c.c.

)

−Q̃†m2
Q Q̃− L̃†m2

L L̃− ũm2
u ũ
† − d̃m2

d
d̃
†
− ẽm2

e ẽ
†

−m2
Hu
H∗uHu −m2

Hd
H∗dHd − (bHuHd + c.c.) . (35)

SUSY accomplishes everything we want from custodial symmetry. Places Higgs
scalar in a supermultiplet with a Higgs fermion, the Higgsino. Mass of the Higgsino
is protected by chiral symmetry. So since δµ ∼ µ for higgsino, same holds from Higgs.

SUSY broken by soft terms, but corrections due to breaking proportional to these
terms.

Still have a just-so problem. Symmetries allow masses

µψuψd + h.c.+ µ2|H2
u|+ µ2|Hd|2

Need to explain value of µ, but once set, protected.

Now Higgs mass is calculable. Lots of ways to see it. Simple way: know particle
content of MSSM, allow also unknown new physics at scale Λ. Assume new physics
respects the symmetry. Then can compute loops up to cutoff as way of parameter-
izing our ignorance.

Relative to SM, now cancellations between loops of opposite statistics, e.g. top-
stop loop

Hu

t

t

Hu
+ Hu

t̃

Hu

And find
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δm2
Hu

= − 6y2
t

16π2
Λ2 +

6y2
t

16π2
Λ2 − 3y2

t

4π2
m2
t̃ ln (Λ/mt̃) + . . . (36)

The quadratic pieces cancel. No UV sensitivity! Key assumption is that Λ is
same for both loops, true for UV physics respecting supersymmetry. Left only with
physical threshold corrections (can compute in any scheme) from hew heavy states.
At most logarithmic sensitivity to Λ. Can fix even this by writing down explicit
theory to break SUSY.

Now that mass is finite, can use naturalness argument to determine where the
new particles should enter. Now we see the hierarchy problem very explicitly. Ren-
dered the Higgs mass calculable; now depends on masses of new partner particles.
Masses can’t be too large!

Two direct sources of concern, tree-level contributions and loop-level contribu-
tions. Both play a role primarily through the relation between the weak scale and
soft parameters, viz.

m2
h = −2(m2

Hu
+ |µ|2) + . . . (37)

Then corrections to Higgs mass come from three places:

• The first is the tree-level potential, which involves certain combinations of soft
masses that set the weak scale vev. At tree-level the naturalness of the weak
scale implies something about the soft parameters m2

Hu
and µ, which itself

controls the higgsino masses. Higgsinos should be light! Naturalness suggests
µ . 200 GeV and correspondingly light Higgsinos.

• The second is immediate loop-level corrections. The soft mass parameter m2
Hu

accumulates one-loop corrections from other soft parameters. By far the largest
is due to the stops, since the top chiral superfields couple most strongly to Hu,
with correction of order

δm2
Hu

= −3y2
t

4π2
m2
t̃ ln (Λ/mt̃) (38)

Naturalness requires stops ∼ 400 GeV with a cutoff Λ ∼ 10 TeV. Other parti-
cles are also tied to naturalness, though less directly. After the SM top loop,
the gauge and Higgs loops drive the mass corrections, so unsurprisingly the
wino and higgsino corrections play a role, with

δm2
Hu

= −3g2

8π2
(m2

W̃
+m2

h̃
) ln (Λ/mW̃ ) (39)
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Having already bounded Higgsinos, for winos this translates to mW̃ . TeV.
Note that sbottoms need not be directly connected to naturalness, but since the
left-handed sbottom gauge eigenstate transforms in the same SU(2) multiplet
as the left-handed stop gauge eigenstate, at least one sbottom is typically found
in the same mass range as the stops.

• The third is two-loop corrections, due to the naturalness of other sparticles.
The stop mass is corrected by the gluino mass due to the size of g3, so it is
hard to separate the gluino substantially from the stops, with

δm2
t̃ =

2g2
s

3π2
m2
g̃ ln (Λ/mg̃) (40)

which ties mg̃ . 2mt̃. Indeed, these corrections typically tie the masses of
the gluino and all squark flavors quite tightly given even a modest amount of
running.

Thus: SUSY provides a custodial symmetry to Higgs by relating mass to fermion.
Makes clear the hierarchy problem in terms of threshold corrections from new scales.
Implies new physics very close to weak scale, with known Standard Model quantum
numbers and interactions fixed by symmetry.

3.2 Global symmetry

Now let’s consider the second possible custodial symmetry, a global symmetry. The
idea here is to make the Higgs boson a PNGB of a spontaneously broken global
symmetry. Then the PNGB shift symmetry protects against a Higgs mass.

Let’s go through a toy model of how the global symmetry story might work.
Consider a triplet ~Φ of real scalar fields, described by the Lagrangian

L =
1

2
∂µ~Φ

T∂µ~Φ− g2
∗
8

(
~ΦT ~Φ− f 2

)2

. (41)

For now, let’s imagine this is a weakly coupled theory. The theory is invariant under
SO(3) transformations acting on ~Φ as

~Φ → g · ~Φ , g = eiαAT
A ∈ SO(3) , (42)
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where the SO(3) generators, normalized to Tr[TATB] = δAB, can be conveniently

chosen as TA = {T, T̂ i}

T =
1√
2




0 −i 0

i 0 0

0 0 0


 , T̂ i =





1√
2




0 0 −i
0 0 0

i 0 0


 ,

1√
2




0 0 0

0 0 −i
0 i 0







,

(43)
with i = 1, 2. Geometrically, the three generators correspond to rotations in the 1-2,
1-3 and 2-3 planes.

When the field ~Φ acquires a VEV, this breaks SO(3) to SO(2). There are 3
and 1 generators in these groups, leaving two broken generators. The tree-level
minimization condition reads 〈~ΦT 〉〈~Φ〉 = f 2, so that the manifold of equivalent vacua
is the two-sphere. We can choose the vacuum to be

~F =




0

0

f


 . (44)

In order to study the fluctuations around the vacuum it is convenient to perform a
field redefinition and to trade the three ~Φ components for one radial coordinate σ
plus two “angular” variables π1,2 (the Goldstone fields) describing the fluctuations
around the broken generators. We write

~Φ = ei
√
2

f
πi(x)T̂i




0

0

f + σ(x)


 , (45)

normalized to give canonical kinetic terms for the πi. The exponential matrix is
the “Goldstone matrix” U [π], which can be defined for any G → H breaking and
appears in composite Higgs models.

Explicitly,

U [π] = ei
√
2

f
πi(x)T̂ i

=


 1−

(
1− cos π

f

)
~π ~πT

π2 sin π
f
~π
π

− sin π
f

~πT

π
cos π

f


 , (46)
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where π =
√
~πT~π. In this parameterization we have

~Φ = (f + σ)


 sin π

f
~π
π

cos π
f


 . (47)

The new variables furnish a full one-to-one parametrization of the field space, pro-
vided the Goldstones are restricted to the region π ∈ [0, πf). Expanding out the
Lagrangian we obtain

L =
1

2
∂µσ∂

µσ − (g∗f)2

2
σ2 − g2

∗f

2
σ3 − g2

∗
8
σ4 (48)

+
1

2

(
1 +

σ

f

)2 [
f 2

π2
sin2 π

f
∂µ~π

T∂µ~π +
f 2

4π4

(
π2

f 2
− sin2 π

f

)
∂µπ

2∂µπ2

]
.

Unsurprisingly, the Lagrangian contains an infinite set of two-derivative local in-
teractions. In analogy with the theory of QCD pions, where the role of f is played
by the pion decay constant fπ, we will sometimes refer to f as the “Higgs decay
constant”. In agreement with the Goldstone theorem the π’s describe two massless
bosons associated with the two broken generators T̂ 1,2.

The σ field has a mass
m∗ = g∗f . (49)

In analogy with a strongly coupled sector, which we would like to mimic by our
example, the σ particle is called a “resonance”.

Now the goldstone Lagrangian has an SO(2) symmetry under which ~π forms a
doublet and transforms as

~π → eiασ2~π . (50)

This is a “linearly realized” symmetry as it acts in a linear and homogeneous way
on the field variables. We can switch to more suggestive notation by writing

H =
π1 − i π2√

2
, (51)

which we identify with the (abelian) Higgs field, with unit charge under U(1) = SO(2).
Obviously, the linearly realized SO(2) invariance comes from an SO(3) rotation along
the unbroken generator T

~π → eiασ2~π ⇔ ~Φ→ ei
√

2αT ~Φ . (52)
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The goldstones also nonlinearly realize the symmetry of the broken generators,

~π → ~π + π cot
π

f
~α +

(
f

π
− cot

π

f

)(
~αT~π

) ~π
π
, (53)

m
~Φ→ ~Φ + iαiT̂

i~Φ .

These symmetries of the goldstone Lagrangian forbid the generation of a mass
term.

We can see that the goldstones are protected against SO(3)-symmetric UV cor-
rections directly. In terms of the field Φ, cutoff-dependent corrections could give it
a mass of the form

Λ2~ΦT ~Φ→ Λ2(f + σ)2

i.e., independent of the π fields. As goldstones, the potential of the π is indepen-
dent of any SO(3) symmetric potential.

Now that a NGB Higgs scalar has been obtained the last ingredient to construct
the Abelian Higgs model is a U(1) gauge field. We do this by gauging the unbroken
U(1) subgroup, namely by replacing in the original Lagrangian

∂µ~Φ → Dµ
~Φ =

(
∂µ − i

√
2eAµT

)
~Φ , (54)

where Aµ is a U(1) gauge field with canonical kinetic term. The gauging, since it
selects one generator among three, breaks SO(3) explicitly to SO(2). The composite
Higgs has now became a pNGB.

We can finally write down our Abelian composite Higgs theory. The only effect
of the gauging is to turn ordinary derivatives into covariant ones in Eq. (48), with

Dµ~π = (∂µ − i eAµσ2)~π . (55)

In terms of H the Lagrangian is

1

2

(
1 +

σ

f

)2
[
f 2

|H|2 sin2

√
2|H|
f

DµH
†DµH (56)

+
f 2

4|H|4

(
2
|H|2
f 2
− sin2

√
2|H|
f

)
(
∂µ|H|2

)2

]
.
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while the σ field Lagrangian remains unchanged.

Now that the Goldstone symmetry has been broken by the gauging two new
important features emerge. The explicit breaking of the global symmetry by gauging
the U(1) means that the PNGB can now obtain a radiative potential. In particular,
now it can obtain mass from gauge loops up to the cutoff of the form

δm2
H ∼

e2

16π2
Λ2

This is because the gauge coupling violates the SO(3) symmetry explicitly.

Second, the Higgs can acquire a vev and break the U(1). By setting the Higgs to
its VEV

H = 〈H〉 ≡ V√
2
, (57)

the first term in the square bracket of Eq. (57) gives to the gauge field a mass

mA = ef sin
V

f
≡ e v . (58)

In the second equality of the above equation we have defined the scale v of U(1)
symmetry breaking in analogy with the ordinary elementary Abelian Higgs mass
formula. In the latter case the scale v is directly provided by the Higgs field VEV
while in the composite case

v = f sin
V

f
⇒ ξ =

v2

f 2
= sin2 V

f
. (59)

Of course, this is just a toy model. If we want the SM Higgs doublet to be a
PNGB, we need four broken generators. We also need the unbroken group to contain
SU(2)×U(1). A nice possibility is SO(5)→ SO(4) ' SU(2)L× SU(2)R, which has
four broken and six unbroken generators. Our whole argument goes through in a
natural generalization.

Moreover, we have just written down a linear sigma model. You should worry
that the Φ fields are elementary scalars and they have a hierarchy problem of their
own. There are many possible solutions. One is for supersymmetry to enter at some
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scale to protect the mass of the Φ.

The other, most common, is to actually assume that the global symmetry is bro-
ken by strong dynamics that become important at the scale Λ. Typically then we
require Λ ∼ 4πf . There is no elementary scalar Φ. There is still a set of goldstones
parameterizing the vacuum manifold, with interactions given by the NLSM.

There is a final problem, however. We have written down a model in which we
identify the Higgs boson with a goldstone of a spontaneously broken global symmetry.
As such, its mass is protected against corrections respecting the global symmetry,
but not against corrections breaking it. In the Standard Model we have yukawa and
gauge couplings that manifestly violate the SO(5) symmetry.

So even if the Higgs is a PNGB, if the theory has a cutoff Λ, then loops of SM
states probing the cutoff still give

δm2
H =

Λ2

16π2

(
−6y2

t +
9

4
g2 +

3

4
g′2 + 6λ

)

and we have not made much progress relative to the Standard Model. We have
made some progress – if the theory grows strong at a scale Λ, we have explained how

to generate a light Higgs-like scalar at m2
H ∼ y2t

16π2 Λ2.

But this is not actually good enough. At the scale Λ, compositeness introduces
lots of new resonances with Standard Model quantum numbers. These are strongly
constrained by precision electroweak constraints, which force Λ & 5 TeV. Now there
is a problem – if the cutoff is this high, loop corrections to the Higgs are too large.

A solution is to extend the Standard Model sector so that some or all of its
couplings respect the global symmetry. Consider the analog of the top quark sector
in our toy model. A yukawa coupling of the form

L ⊃ −ytHtLt†R
explicitly breaks the SO(3) symmetry and gives mass to H at one loop. In-

stead, we can imagine extending the theory so that there is an SO(3) triplet of
top quarks, χL = (σ2tL, TL), an extra right-handed top multiplet TR, and SO(3)
invariant Yukawas of the form

L ⊃ −y1(~Φ · χL)t†R − y2fTLT
†
R
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Expanding out in terms of the goldstones, diagonalizing fermion masses, and
integrating out the heavy mode σ, we end up with leading terms of the form

L = −yttRHtL +
y2
t

mT

H†HT †RTL + . . .

Now the TL and TR play the role of heavy fermionic top partners, much like the
scalar top partners in SUSY. The specific form of their couplings is dictated by the
pattern of spontaneous symmetry breaking.

Now if we compute loops up to the cutoff there is again a cancellation, since these
terms have opposite signs:

H

t

t

H + H

T

H

which gives us

δm2
H = − 6y2

t

16π2
Λ2 +

6y2
t

16π2
Λ2 − 3y2

t

4π2
m2
T ln (Λ/mT ) + . . . (60)

in exact analogy with the SUSY case, except now with fermionic top partners.
This occurs because now the yukawas respect the global symmetry.

The story is now very parallel to SUSY. We can compute the mass of the Higgs,
and in general we find that we require new partner particles that should be close to
the weak scale.

3.3 Scale invariance?

Finally, let’s turn to the last possibility, scale invariance (I will not distinguish be-
tween conformal symmetry and scale invariance.)

It has often been proposed that scale invariance might also serve to protect the
Higgs. The general idea is that now it is invariance under scale transformations

xµ → eσxµ φ→ e−σ∆φ
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that protects the Higgs, where ∆ is the scaling dimension. Classically, a QFT is
scale invariant if only marginal operators appear in the Lagrangian. Quantum me-
chanically, scale invariance is typically broken by quantum effects unless the theory
is at a conformal fixed point.

Classical scale invariance can’t do anything useful. It’s almost a completely vac-
uous proposition. If the SM is a classically scale invariant sector, other scales can
still feed in to the Higgs mass. If gravity doesn’t give a scale, we hit the hypercharge
Landau pole.

The sensible possibility is quantum scale invariance. Of course, the SM is not
conformally invariant, so it must undergo a transition to a conformal fixed point at
some scale.

There are two possibilities. The first is that the Standard Model and gravitational
physics all merge into a conformal fixed point in the ultraviolet. In this case there are
no physical thresholds associated with the gravitational sector. The second is that
just the mundane non-gravitational physics of the Standard Model (plus potential
other field theory states) merge into a CFT before the Planck scale, and assume that
the unspecified physics of quantum gravity respects this conformal symmetry. This
is an assumption.

This conformal fixed point should be interacting, rather than free, because both
hypercharge and gravitational couplings grow large in the ultraviolet.

Either way, we do not have a concrete model. But we know general features.
If this transition involves additional heavy states, then these new states will give
threshold corrections to the Higgs and must enter near the weak scale to avoid rein-
troducing a hierarchy problem.

Alternately, perhaps the physics involed in the transition to an interacting fixed
point in the UV is nonperturbative, and there are no apparent threshold corrections.
This raises the question of how such a transition might impact the Higgs mass, if at
all. This was studied beautifully by Schmaltz, Skiba, and Marquez-Tavares.

To study this, they computed corrections to the Higgs mass coming from loops
in position space.
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δm2
h = −iy2

tµ
4−d
∫
ddx〈0|TO†(x)O(0)|0〉 (61)

For example, this reproduces the usual momentum-space result for top quark
loops upon plugging in the normal-ordered operator O = t̄PLt, contracting fields
with propagators, and doing the integral over x:

∫
ddx〈0|T (t̄PRt)(x)(t̄PLt)(0)|0〉

= −Nc

∫
ddxtr

[∫
ddp̃eipxPL

i(6 p+mt)

p2 −m2
t + iε

PR

∫
ddq̃e−iqx

i(6 q +mt)

q2 −m2
t + iε

]
(62)

= 2Nc

∫
ddp̃

p2

(p2 −m2
t + iε)2

where ddp̃ = ddp
(2π)d

.

Now we are in a position to consider theories that transition between two different
scaling behaviors.

The Standard Model is a theory that is IR free. For conformal invariance to offer
any help, we want to flow to an interacting UV fixed point. In this case the two-point
function is of the form

〈0|TO†(x)O(0)|0〉 =

(
1

−x2

)d−1

f(−x2M2) (63)

where we are able to fix the factor of (−x2)1−d by dimensional analysis, coinciding
with the free two-point function. Then the dimensionless function f contains all the
information about the interacting dynamics. In the conformal regime, f reproduces
the power law of the anomalous dimension of O, and it should interpolate between
the free and interacting limits:

f(−x2M2)→





1 as −x2M2 →∞ (IR)

(−x2M2)−γUV as −x2M2 → 0 (UV)
(64)

The important part is that the two-point function depends in some way on the
scale M . Pushing forward the calculation, we have in general
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δm2
h = −iy2

tµ
4−d
∫
ddx

(
1

−x2

)d−1

f(−x2M2) = −M2 y
2
t π

d/2

Γ(d/2)

(
µ2

M2

)2−d/2 ∫
dy

yd/2
f(y)

(65)
where we have carried out a change of variables to y = −x2M2 to make the M

dependence more transparent.

In general, the precise form of f is unknown, but we can try various test functions
with the desired asymptotic behavior. For example,

f(y) =





1 for y > 1

y−γUV for 1 > y > 0
(66)

This leads to a UV divergent integral that we can regularize to preserve scale
invariance (e.g. with dimensional regularization), giving the result

δm2
H = −M2π2y2

t

γUV
1 + γUV

(67)

The Higgs mass is dominated by the scale M at which the transition occurs. Of
course, this example is quite abrupt and unphysical. A more realistic test example
might be one of the form

f(y) =

(
1

ynγUV + ynγIR

)1/n

(68)

where γUV < γIR ≤ 0 and n controls the smoothness of the transition. The larger n,
the more abrupt the transition.

In the case of γIR = 0 corresponding to an IR free theory, we have

δm2
H = −M2y2

t π
2
Γ
(

1
n

+ 1
nγUV

)
Γ
(

1− 1
nγUV

)

Γ(1/n)
(69)

Here the functional dependence is a bit more complicated, but the result is the
same. The correction to the Higgs mass is dominated by the scale M .

The lesson here is that even if conformal symmetry is argued to protect the Higgs,
the Standard Model must transition to a conformal fixed point. The transition to
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a conformal fixed point gives rise to new scales, even if they do not correspond to
perturbative states, and so must be close to the weak scale to avoid generating a
hierarchy problem.

Thus we conclude that the Higgs mass can be rendered calculable and sensitivity
to UV physics eliminated by introducing custodial symmetries. In each case, this
involves new states that give physical threshold corrections to the Higgs mass and
should lie near the weak scale.

37


