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Motivation
●  The Standard Model can explain most of the 

experimental results. However, there are many 
undetermined parameters and issues → BSM

● The flavor puzzle is one of the main unresolved 
problems of particle physics

● Neutrino oscillations = Neutral lepton flavour 
violation.

→ Why not have charged 
lepton flavour violation 
(cLFV) ?

● If observed:
➢ Probe the origin of lepton mixing
➢ Probe the origin of new physics



  

Motivation
Indeed, many well-motivated new physics scenarios 
predict large flavour violations in the charged lepton 
sector:



  

Motivation
Indeed, many well-motivated new physics scenarios 
predict large flavour violations in the charged lepton 
sector:

SUSY Model

Extra Dimension



  

Motivation
Neutrino-mediated LFV is un-observably small 



  

Motivation
Neutrino-mediated LFV is un-observably small 



  

Motivation
Neutrino-mediated LFV is un-observably small 

Could there be other
mechanisms for LFV?



  

Motivation

Such processes have been discussed in a generic 
fashion in EW νR Model (arXiv:0711.0733 [hep-ph], P. 
L. B. 659, 585 (2008)) 
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The EW νR Model [PQ Hung 2007]

What is it?

Model in which right-handed neutrinos have 
Majorana masses of the order of Λ

EW
 naturally.
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The EW νR Model

Quarks

Mirror particles are totally different from the SM 
particles!
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The EW νR Model

Higgs Sector: Triplets

➢ Y/2 = 1 triplet → gives an electroweak-scale 
Majorana mass to the right-handed neutrino 

If <χ0> = v
M 

 ~ Λ
EW 

 → Majorana mass M
R
= g

M
.v

M
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The EW νR Model

Higgs Sector: Triplets
➢ Y/2 = 0 triplet

  

➢ In order to restore the Custodial Symmetry (ρ = 
1) (Chanowitz, Golden and Georgi, Machacek)
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Higgs Sector: One Singlet (in original Model)

With <Φ
S
> = v

S,
 → gives the Dirac mass mD = g

Sl
 v

S
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The EW νR Model

Higgs Sector: Singlets (in extended model) P. Q. 
Hung and T. Le, arXiv:1501.02538 [hep-ph].

By using the A4 symmetry we obtain four Higgs Singlet: an 
A4 singlet Φ

0S
 and A4-triplets {Φ

iS
} (i = 1, 2, 3). With the 

VEVs v
0
 and v

i
 respectively 

The Yukawa interactions

Obtain the neutrino 
mass matrix



  

The EW νR Model

Some works done on this Model:
✔ EW precision
V. Hoang, P. Q. Hung and A. S. Kamat, Nucl. Phys. B 877, 190 
(2013) [arXiv:1303.0428 [hep-ph]].

✔ Implications of the 125-GeV SM-like scalar: Dr Jekyll 
(SM-like) and Mr Hyde (very different from SM) V. Hoang, P. Q. 
Hung and A. S. Kamat, arXiv:1412.0343 [hep-ph] (To appear in 
Nuclear Physics B).
 

✔ Signals of mirror fermions (Paper in preparation)
P.Q. Hung, Trinh Le (UVA); Nandi, Chakdar, Gosh
(Oklahoma State University).

✔ On neutrino and charged lepton masses and 
mixings: A view from the electroweak-scale right-
handed neutrino model P. Q. Hung and T. Le, 
arXiv:1501.02538 [hep-ph].
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The Lorentz-invariant amplitude for the process l
i 
(p) 

→ l
j 
(p') + γ(q) is

li → lj + γ



  

The Lorentz-invariant amplitude for the process l
i 
(p) 

→ l
j 
(p') + γ(q) is

Where P
R,L

= 1/2 (1 ± γ5) and 

li → lj + γ



  

The partial width

li → lj + γ



  

The magnetic dipole moment anomaly for 
lepton l

i



  

The electric dipole moment for lepton l
i
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approach:

● For the masses of the Higgs singlets, we take

● For the masses of the mirror lepton, we take

 

with a fixed common mass M
S
 = 10 MeV.

● We assume all the Yukawa couplings g
0S

, g
1S

, g
2S

, g'
S0

, g'
S1

, and 
g'

S2
 to be all real and we also take g

0S
 = g'

S0
, g

1S
 = g'

S1, 
g

S2
 = 

(g
1S

)* and g'
S2

 = (g'
S1

)* 

Analysis and Discussion



  

For the three unknown mixing matrices, we consider 2 scenarios

Analysis and Discussion

Where the Cabibbo-Wolfenstein 
matrix



  

And PMNS matrix: 

For Normal Hierarchy (NH)

For Inverted Hierarchy (IH)



  

● Limit on B(μ → eγ) from MEG experiment:

B(μ → eγ) ≤ 5.7 × 10 −13 (90 C.L.)[MEG, 2013]

B(μ → eγ)  ∼ 4 × 10 −14 [Projected Sensitivity]

● ∆a
 μ
 from E821 experiment



  

Scenario 1
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From these plots, we observe the following:

1. The LFV process μ → e + γ is more sensitive to the couplings 
by almost two order of magnitudes as compared with the 
anomalous magnetic moment of the muon

2. For scenario 1, both the branching ratio of μ → e + γ and the 
muon anomalous magnetic moment do not depend sensitively 
on the normal or inverted neutrino mass hierarchies for the 
cases of the couplings. 

3. However, for Scenario 2, there is slightly different between 
normal and inverted cases. These differences depend on these 
couplings, for g1S ≥ 0.5 × g0S , these differences diminish.

4.The sensitivity of the couplings in the B(μ → e + γ) has been 
weakened by one to two order of magnitudes for scenario 2, 
while for the muon anomalous magnetic moment it stays more 
or less the same.   



  

Contour plots of Log10B(μ → e + γ) on the (Log10 g
0S

;M
mirror

) plane for 
normal (left panel) and inverted (right panel) hierarchy in Scenario 1 (red) 
and 2 (blue) with g

0S
 = g'

0S
 and g

1S
 = g'

1S
 = 10-2  g

0S
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Summary
✔ Search for CLFV would provide one of the best 

opportunities to find new physics beyond the Standard 
Model

✔ The Electroweak-scale Right-handed neutrino Model has a 
number of phenomenological implications which could be 
explored experimentally in the near future.

✔ We calculated the LFV processes (μ → e + γ) as well as 
anomalous magnetic dipole moment in framework of an 
extended of Electroweak-scale Right-handed neutrino 
Model

✔ By the recent and future expectation data  at MEG we 
figured out some interesting constraints on the model  
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