Probing $Zb\bar{b}$ couplings at the CEPC

Jiayin Gu (顾嘉荫)

CFHEP, IHEP, CAS

Summer Institute August 5, 2015

based on current work with Stefania Gori and Lian-Tao Wang

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Introduction

Current constraints

Constraints from CEPC

Comparison with ILC, FCC-ee

Conclusion

Jiayin Gu (顾嘉荫)

Overview

Introduction

- ▶ Hadron colliders: directly search for heavy new particles.
- Lepton colliders: probe new physics indirectly by measuring couplings and parameters very precisely.
- ▶ What a future e^+e^- collider (such as the CEPC) can do
 - ▶ Higgs precision measurement (~ 240 GeV)
 - Electroweak precision measurements (Z-pole)
 - and more...
- (Future) electroweak precision measurements
 - Oblique corrections (S and T parameters) (see e.g. 1411.1054 by Fan, Reece, Wang)
 - Non-oblique corrections, e.g. the $Zb\bar{b}$ coupling.

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Introduction

What is the Zbb coupling(s)? (theory side)

▶ The $Zb\bar{b}$ couplings correspond to the following term in the Lagrangian

$$\mathcal{L} \supset \frac{g}{c_W} Z_{\mu} (g_{Lb} \bar{b}_L \gamma^{\mu} b_L + g_{Rb} \bar{b}_R \gamma^{\mu} b_R) , \qquad (1)$$

where we parameterize the possible modifications in terms of δg_{lb} and δg_{Rh} as

$$g_{Lb} = g_{Lb}^{SM} + \delta g_{Lb}, \quad g_{Rb} = g_{Rb}^{SM} + \delta g_{Rb}, \qquad (2)$$

and the SM values are

$$g_{Lb}^{SM} = -1/2 + s_W^2/3 \simeq -0.42, \quad g_{Rb}^{SM} = s_W^2/3 \simeq 0.077.$$
 (3)

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CAS

What is the Zbb coupling(s)? (experiment side)

- ▶ Three measurements are directly related to the *Zbb* couplings,
 - $ightharpoonup R_b$, the ratio of the $Z \to b\bar{b}$ partial width to the inclusive hadronic width,
 - A_{FR}, the forward-backward asymmetry of the bottom quark (LEP),
 - \triangleright A_b , the bottom quark asymmetry measured with beam polarization (SLC).
- ▶ At tree level, R_b , A_{FB}^b and A_b can be written as

$$R_b = \frac{g_{Lb}^2 + g_{Rb}^2}{\sum_{q} (g_L^2 + g_R^2)},$$
 (4)

$$A_b = \frac{g_{Lb}^2 - g_{Rb}^2}{g_{Lb}^2 + g_{Rb}^2}, \quad A_{FB}^b = \frac{3}{4} A_e A_b = \frac{3}{4} \frac{g_{Le}^2 - g_{Re}^2}{g_{Le}^2 + g_{Re}^2} \frac{g_{Lb}^2 - g_{Rb}^2}{g_{Lb}^2 + g_{Rb}^2}.$$
 (5)

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Why is *Zbb* interesting?

- ▶ Theory side: many new physics models predicts a sizable correction to the Zbb couplings.
 - (t_L, b_L) are in the same EW doublet and new physics that couples to the top quark usually also affects the Zb_lb_l coupling.
- Experiment side: $\sim 2.5 \, \sigma$ discrepancy between the LEP A_{FB}^b measurement and its SM prediction (requires a sizable modification to the $Zb_R\bar{b}_R$ coupling).

	measured value	SM prediction
R_b	0.21629 ± 0.00066	0.21578 ± 0.00011
A_{FB}^{b}	0.0992 ± 0.0016	0.1032 ± 0.0004
$\dot{\mathcal{A}}_b$	0.923 ± 0.020	0.93463 ± 0.00004

Table: From the most recent Gfitter paper (1407.3792).

CFHEP, IHEP, CAS

Current constraints on the $Zb\bar{b}$ coupling

Global fit with EW precision data (similar to what Gfitter did).

liayin Gu (顾嘉荫) CFHEP, IHEP, CF

Current constraints on the $Zb\bar{b}$ coupling

Individual constraints from R_b and A_{FB}^b , A_b combined, setting other parameters to best fit values.

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Discrepancy?

- SM predictions just outside 95% CL. Simultaneous modifications in both g_{Ib} and g_{Bb} are preferred.
- Statistical fluctuation? Systematic error? New physics?
- Possible new physics: the Beautiful Mirror Model (hep-ph/0109097, Choudhury, Tait, Wagner)
- ▶ Can only be resolved by the next e^+e^- collider!

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CAS

- Circular Electron Position Collider
- Reference: the preliminary conceptual design report (preCDR).
- Large statistics ($\sim 10^{10}~Z$ events or at least $\sim 2 \times 10^9~Z$ events, compared with $\sim 2 \times 10^7~Z$ events at LEP).
- We assume there will be no longitudinal beam polarization (but it could be a potential option).
- We consider 2 scenarios:
 - ▶ CEPC with conservative estimations (assuming $\sim 2 \times 10^9~$ Zs as in the preCDR);
 - ▶ CEPC+ with more optimistic estimations (assuming $\sim 10^{10}~$ Zs and the systematic uncertainties are reduced by half).
- We consider both the case that the results are SM-like and the one that the LEP A^b_{FB} discrepancy stays.

iayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Key observables

- ▶ Which observables are most important for the improvement of the Zbb coupling constraints?
- $ightharpoonup R_b$, A_{ER}^b , (no A_b).
- Leptonic asymmetry observables, A_{FB}^{\prime} , $A_{I}(\mathcal{P}_{\tau})$,
 - ightharpoonup assuming lepton universality, $e \mu \tau \rightarrow I$,
 - needed as an independent determination of the effective weak mixing angle,
 - $A_{EP}^b = \frac{3}{4} A_e A_b$.
- \triangleright R_{l} , the ratio of the total hadronic Z decay width to the Z decay width to one lepton species,
 - is sensitive to the coupling combination $g_{Ib}^2 + g_{Rb}^2$
 - relies more on the model assumption,
 - has relatively conservative estimation at CEPC?

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Input values

	Precision			
Observable	LEP	CEPC	CEPC+	
R_b	0.00066	0.00017	0.00008	
R_{l}	0.025	0.007	0.003	
A_{FB}^{b}	0.0016	0.00015	0.00007	
A_{FB}^{\prime}	0.0010	0.00014	0.00007	
$\mathcal{A}_l(\mathcal{P}_{ au})$	0.0033	0.0006	0.0003	
# of <i>Z</i> s	$\sim 2 \times 10^7$	$\sim 2 \times 10^9$	$\sim 10^{10}$	

Table: The numbers highlighted with color cyan are our own estimations.

- Systematic uncertainties dominate.
- Other observables are less important (updated to CEPC values but not shown here).
- We have checked that the theoretical uncertainties have little impact on the $Zb\bar{b}$ coupling constraints, assuming the relevant loop corrections will be calculated with one more order in the future.

iayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Assuming the results are SM-like

- ▶ What constraints can we set on new physics models?
- A bad case: Natrual SUSY (loop correction from stop and Higgsino), less constraining than current LHC bounds (see e.g. 1412.3107 by Fan, Reece, Wang).

iayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Two Higgs-doublet model

- Type II 2HDM
- Most constraining in the region with small $\tan \beta$, where the loop contribution involving the charged Higgs dominates.
- ▶ Small $\tan \beta \rightarrow \text{large } H^{\pm} \bar{b}_L t_R \text{ coupling}$ \rightarrow large δg_{lb} .

CFHEP, IHEP, CAS

- Large correction to $Zb_L\bar{b}_L$ unless protected by an O(4) symmetry $(SU(2)_L \otimes SU(2)_R + P_{LR})$.
- Several P_{LR} breaking effects in realistic models.
- Contribution from fermion loops:

$$rac{\delta g_{Lb}}{g_{Lb}^{
m SM}} \simeq rac{y_t^2}{16\pi^2} \xi \log \left(rac{m_
ho^2}{m_4^2}
ight)$$

- CEPC Higgs measurement could constrain $f \gtrsim 2.8 \text{ TeV } (95\%\text{CL}).$
- Zbb strongly model dependent (can be useful for model discrimination).

CFHEP, IHEP, CAS

- If the LEP A^b_{FB} discrepancy does come from new physics, how well can we discriminate it from SM?
- ► True value: $\delta g_{Lb}^0 = 0.0030$, $\delta g_{Rb}^0 = 0.0176$ (current best fit values).
- ▶ SM is easily ruled out with > 99.9999% CL.

iayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Assuming new physics modifies $Zb\bar{b}$

- The true values probably do not exactly equal the current best fit values due to statistical fluctuation!
- Assuming δg_{Lb}^0 and δg_{Rb}^0 are closer to 0 while still being consistent with the current measurements within 68%CL.
- Choose $\delta g_{Lb}^0 = 0.0009$ and $\delta g_{Rb}^0 = 0.0075$.
- SM is still ruled out with 99.9999% CL.

liayin Gu (顾嘉荫) CFHEP, IHEP, CAS

- ▶ M_1 is the mass of the exotic quark (with charge -4/3).
- ► To explain the LEP A^b_{FB} discrepancy without violating constraints on T parameter, M₁ can not be too large.
- \blacktriangleright Current LHC bound ~ 912 GeV, expected to reach 2 to 2.5 TeV at LHC-14.
- Modification to $Hb\bar{b}$ coupling ($\sim 4\%$) can be probed at the Higgs factory.

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Comparison with ILC, FCC-ee

- References
 - The International Linear Collider Technical Design Report Volume 2: Physics (arXiv:1306.6352)
 - First Look at the Physics Case of TLEP (arXiv:1308.6176)
- Key differences
 - statistics: $\sim 10^9$ Zs for ILC. $\sim 10^{12}$ Zs for FCC-ee.
 - systematic uncertainties,
 - \triangleright (longitudinal) beam polarization: A_b can be directly measured.
- ▶ How good could longitudinal beam polarization been implemented at circular colliders?

Observable	ILC	FCC-ee
R_b	0.00014	0.000060
R_{I}	0.007	0.0010
\mathcal{A}_{b}	0.001	0.00021
A_{LR}	0.0001	0.000021

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CAS

▶ beam polarization $\rightarrow \mathcal{A}_b$ well measured $\rightarrow \delta g_{Rb}$ better constrained, correlation reduced.

liayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Current constraints Constraints from CEPC Comparison with ILC, FCC-ee Conclusion

Conclusion

- ▶ We estimated constraints on the $Zb\bar{b}$ couplings that can be obtained at the CEPC.
- ▶ The measurements of the $Zb\bar{b}$ couplings at CEPC can
 - ightharpoonup rule out SM, if the LEP A_{FB}^b discrepancy does come from new physic;
 - provide strong constraints on new physics, if the results are SM-like;
 - be complementary to the constraints from oblique corrections, Higgs precision measurements, direct searches at hadron colliders and results from B-factories;
 - help discriminate different models.
- Our results are preliminary but can hopefully serve as a guidance for the future prospectives of Zbb coupling constraints.
- Our results could further motivate the construction of CEPC.

liayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Conclusion

Thank you!

Jiayin Gu (顾嘉荫) _______CFHEP, IHEP, CA

Conclusion

backup slides

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CA

Current constraints Constraints from CEPC Comparison with ILC, FCC-ee Conclusion

g_{Rb} flip sign

Figure: from hep-ph/0109097

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CA

Including $\alpha_S(M_Z^2)_{\text{w.a.}}$

 $\alpha_{\rm S}({\it M}_{\rm Z}^2)_{\rm w.a.}=0.1185\pm0.0005$ (world average w/o EWPT result) .

liayin Gu (顾嘉荫) CFHEP, IHEP, CA

Conclusion

fixing *S* & *T* to zero

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CA

	S	T	$\delta { extbf{g}_{ extsf{L}b}}$	$\delta {f g}_{Rb}$
S	-0.047 ± 0.097			
T	0.91	0.015 ± 0.077		
$\delta { extbf{g}_{ extsf{L} extbf{b}}}$	-0.34	-0.23	0.0030 ± 0.0015	
δg_{Rb}	-0.40	-0.30	0.91	0.0176 ± 0.0063

Jiayin Gu (顾嘉荫)

	Precision				
Observable	Current	CEPC	CEPC+	ILC	FCC-ee
R_b	0.00066	0.00017	0.00008	0.00014	0.000060
	(0.00050)	(0.00016)	(8000008)		(0.0000060)
R_{l}	0.025	0.007	0.003	0.007?	0.0010
	(0.007)	(0.006)	(0.003)	(0.007?)	(0.0010)
A_{FB}^b	0.0016	0.00015	0.00007		
1.5	(0.0007)	(0.00014)	(0.00007)		
A_{FB}^{I}	0.0010	0.00014	0.00007		
	(0.0003)	(0.0001)	(0.00005)		
$\mathcal{A}_{l}(\mathcal{P}_{ au})$	0.0033	0.0006	0.0003		
	(0.0015)	(0.0005)	(0.0003)		
\mathcal{A}_b	0.020			0.001	0.00021
	$(\sim 0.014?)$				(0.00015)
A_{LR}	0.0022			0.0001	0.000021
	(0.0011)			(0.0001)	(0.000015)
# of Zs	$\sim 2 \times 10^7$	$\sim 2 \times 10^9$	$\sim 10^{10}$	$\sim 10^{9}$	$\sim 10^{12}$

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Conclusion

results in tables

	δg_{Lb}	δg_{Rb}	ρ	$\delta g_{Lb} \ (\delta g_{Rb} = 0)$	$\delta \mathbf{g}_{Rb} \; (\delta \mathbf{g}_{Lb} = 0)$
current	0.0015	0.0079	0.91	0.00061	0.0032
CEPC	0.00031	0.0016	0.87	0.00015	0.00079
CEPC+	0.00015	0.00078	0.88	0.000072	0.00037
ILC	0.00017	0.00059	0.53	0.00015	0.00050
FCC-ee	0.000044	0.00012	0.42	0.000040	0.00011

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CA

2HDM, diagrams

ayin Gu (顾嘉荫) CFHEP, IHEP, CA

$$\Psi_{L,R} = \begin{pmatrix} B \\ X \end{pmatrix} \sim (3, 2, -5/6),$$
 (6)

$$\hat{B}_{L,R} \sim (3,1,-1/3),$$
 (7)

$$-\mathcal{L} \supset M_1 \bar{\Psi}_L \Psi_R + M_2 \bar{\hat{B}}_L \hat{B}_R + y_1 \bar{Q}_L H b_R + y_L \bar{Q}_L H \hat{B}_R + y_R \bar{\Psi}_L \tilde{H} b_R + \text{h.c.}, \quad (8)$$

$$\delta g_{Lb} pprox rac{Y_L^2}{2M_2^2} \,, \qquad \delta g_{Rb} pprox rac{Y_R^2}{2M_1^2} \,.$$
 (9)

$$T \approx \frac{3}{16\pi^2\alpha v^2} \left[\frac{16}{3} \delta g_{Rb}^2 M_1^2 + 4\delta g_{Lb}^2 M_2^2 - 4\delta g_{Lb} \frac{M_2^2 m_{\rm top}^2}{M_2^2 - m_{\rm top}^2} \log{(\frac{M_2^2}{m_{\rm top}^2})} \right] \ . \quad (10)$$

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CAS

Current constraints Constraints from CEPC Comparison with ILC, FCC-ee Conclusion

Beautiful mirror model

Figure: Left: δg_{Lb} and δg_{Rb} fixed to best fit value.

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CA:

Composite Higgs

Jiayin Gu (顾嘉荫) CFHEP, IHEP, CA