Mechanical Design Study of a 20 T Common-coil Dipole for SppC

Kai Zhang (kaizhang@ihep.ac.cn)

Institute of High Energy Physics (IHEP) Chinese Academy of Sciences (CAS) Beijing, China

Guided by Dr. Xu Qingjin and Prof. Zhu Zian

2015.06.15

Mechanical Design Study of a 20 T Common-coil Dipole for SppC Kai Zhang ICFA-Shanghai ¹

Outline

- ✓ Introduction of the possible 20 T common-coil dipole for SppC
- ✓ Mechanical design and stress analysis of the 20 T common-coil dipole
- \checkmark Further work remain to be done
- ✓ Main challenges

Mechanical Design Study of a 20 T Common-coil Dipole for SppC Kai Zhang ICFA-Shanghai²

Introduction of the Possible 20 T Common-coil Dipole

20-T Nb₃Sn + HTS common coil dipole for SppC Space for beam pipes: 2 * Φ50 mm, with the load line ratio of ~80% @ 1.9 K and the yoke diameter of 800 mm With 10⁻⁴ field quality @ 2/3 aperture

Magnetic design has been carried out by Dr. Xu Qingjin. FCC week 2015.03.26.

Number of apertures	(-)	2
Aperture diameter	(mm)	50
Inter-aperture spacing	(mm)	330
Operating current	(A)	14700
Operating temperature	(K)	1.9
Operating field	(T)	20
Peak field	(T)	20.4
Margin along the loadline	(%)	~20
Stored magnetic energy	(MJ/m)	7.8
Inductance (magnet)	(mH/m)	72.1
Yoke ID	(mm)	260
Yoke OD	(mm)	800
Weight per unit length	(kg/m)	3200
Energy density (coil volume)	(MJ/m³)	738
Winding pack current density	(A/mm²)	400
Force per aperture – X/Y	(MN/m)	23.4/2.4
Peak stress in coil	(MPa)	240
Fringe Field @ r = 750 mm	(T)	0.02

Main Design Parameters

Mechanical Design Study of a 20 T Common-coil Dipole for SppC Kai Zhang ICFA-Sh

ICFA-Shanghai ³

Lorentz force distribution on each coil

Total lorentz force per aperture: Fmag_x=23.4 MN/m Fmag_y=2.38 MN/m

Assuming the preload on the coils after cooling down is 23.4 MN/m, then the average horizontal compressive stress in coils equals to:

 $[\sigma] = \frac{23.4 \, MN/m}{0.121 \, m} = 193.4 \, MPa$

To ensure that the stress in coils is homogeneous, it is necessary to keep the similar average rigidity of the coil from left to right and from top to bottom.

Mechanical Design Study of a 20 T Common-coil

Shell based structure with bladder and key technology

Air delete	Element	Contact pairs	Constraints	Load2:Cooling down
et,2,targe169 et,3,conta172 et,5,conta172 et,6,conta172 type,2	lsclear,all dl,all,,symm !for left and bottom side	tunif,293 tref,293 allsel bfa,all,temp,4.3		
	keyopt,1,1,3 !UX and UY keyopt,3,9,1 !exclude both initial penetration, gap and offset keyopt,5,9,1 keyopt,5,12,5 !bonded (always)	esurf,all lsel,s,,,2411 nsll,s,1 type,5 esurf,all lcontact pairs 1	Loa1:Interference	Load3:Lorentz force
			r,18 rmore,,,,-,	ldread,forc,,,,,,-,rst
2D structural analysis model	keyopt,6,9,3 !include offset only keyopt,6,12,2 !no separation(slide permit)	 !contact pairs38		

Mechanical Design Study of a 20 T Common-coil Dipole for SppC

Kai Zhang ICFA-Shanghai ⁵

where stress concentration occurs.

(The stress concentration disappears after excitation 😁)

The difference of displacement between load 2 and 3 is much larger than 20 μm. Influence the filed uniformity!!

	AL Shell thickness (mm)	Inteference (mm)	Fx1 (x10 ⁷ N/m)	Fx2 (x10 ⁷ N/m)	Fx3 (x10 ⁷ N/m)	$\overline{\sigma_{AL}}$ (MPa)
1	40	5.0	1.9168	2.3978	2.4680	626.3
2	50	4.0	1.8655	2.3821	2.4663	501.0
3	60	3.4	1.8091	2.3954	2.4896	423.4
4	80	2.6	1.6816	2.3888	2.5033	321.6
5	100	2.1	1.5592	2.3654	2.4991	258.8

- Fx1: horizontal force transmitted by h-key after load 1;
- Fx2: horizontal force transmitted by h-key after load 2;
- Fx3: horizontal force transmitted by h-key after load 3;
- $\overline{\sigma_{AL}}$: average von mises stress on AL shell after load 3.

Large interference is required by applying the preload with water pressurized bladder because the AL shell is not that rigid and the horizontal magnetic force is so large.

Mechanical Design Study of a 20 T Common-coil Dipole for SppC Kai Zhang ICFA-Shanghai⁸

Mechanical Design Study of a 20 T Common-coil Dipole for SppC Kai Zhang IC

ICFA-Shanghai⁹

Material	Yield strength (MPa)			Young's modulus	
	300K	77K	4К	(GPa)	
316LN annealed	310	607	815	200	
304L annealed	400	460	550	200	
AL 6061-T6	300	360	380		
AL 7075-T6	502	589	648	63.2-74.4	
AL 7475-T761	460	549	572	66.3-76.4	
AL 2219-T87	397	484	539	67.8-77.9	
AL 2090-T8E41	488	551	614	74.0-84.1	

AL 7075 seems to be a promising material whose yield strength at 4 K is beyond 600 MPa.

Mechanical Design Study of a 20 T Common-coil Dipole for SppC Kai Zhang ICFA-Shanghai¹⁰

Further Work Remain to be Done

9

Mechanical Design Study of a 20 T Common-coil Dipole for SppC

C Kai Zhang

g ICFA-Shanghai¹¹

Main Challenges

- ✓ The outer diameter of the dipole is limited to be 900 mm, however, our present design parameter is 920 mm by setting the shell thickness to be 60 mm;
- \checkmark we need to apply the preload of more than 23.4 MN/m per aperture;
- \checkmark We hope that the preload can be totally applied to the coils;
- The stress in shell is so large that we need to do experiments to judge whether AL 7075 is a promising material;
- ✓ The present peak transverse pressure in coils is 268 MPa; the present peak vonmises stress in coils is 236 MPa. We need to validate whether this magnitude of stress will cause severe Jc degradation of Nb₃Sn rutherford cables;
- The displacement of coils after excitation shall be limited to ensure the uniformity of the magnetic field. (The present analysis results indicate that the maximum horizontal displacement and vertical displacement is respectively 50 μm and 160 μm

