Preliminary Study of an Improved Coupling Loss Induced Quench Protection (I-CLIQ) System

Talk Over View

Introduction

•Improvements on the system

•The results of the tests on the system

•Concluding remarks

Hu Yinan(huyn@ihep.ac.cn)

Institute of High Energy Physics(IHEP) Chinese Academy of Science(CAS) Beijing,China

Guided by Zhaoling, Xu Qingjin

14-17 June 2015 SJTU Xuhui Campus Asia/Shanghai

Coupling Loss Influences During Quench

Coupling-loss Induced Quench Protection System(CLIQ)

CLIQ-Coupling-Loss Induced Quench System for Protecting Superconducting Magnets carried out by E.Ravaioli, V.I.Datskov at CERN 02.04.2014

Conventional Heaters Quench Protection System(QHs)

Given the high energy density, high J and minimum coil thickness / mass, the coil must be switched to normal state in typically 30-50 ms in order not to overheat the coils after quench.

Inherently slow process

$$\nu_m c_{p,m}(B,T) \frac{\partial T}{\partial t} = \frac{\partial}{\partial y} \left(k_m(B,T) \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(k_m(B,T) \frac{\partial T}{\partial z} \right) + f_{gen,m}(t,T) \int_{t}^{t} dt$$

Minimize detection time (~10 ms), heater delay time (5-10ms) and adopt many heaters to heat the coil uniformly(10-30ms).

"MQXF Quench Protection" carried out byG.Ambrosio, M.Sorbi at LARP/CM20 HiLumi meeting Napa Valley,CA,USA7&a10 April,2013

G.A.Kirby, B.Auchmann IR Upgrade Nb-Ti, 120mm Aperture Model Quadrupole Test Results at 1.8K

Hybrid Quench Protection System

Temperature distribution after quench corresponding to three different methods

global transition

much faster current decay

significantly lower hot-spot

more homogeneous temperature distribution in the coil

E Ravaioli, VI Datskov "A new hybird protection system for high-field superconducting magnets" ESAS SUPERCONDUCTIVITY NEWS FORUM (global edition), October 2013

Improvements

Improved Coupling Loss Quench Protection(I-CLIQ)

Working Process of the System

Measurement of Induced Energy

I-CLIQ Protection System

10

Lock-in amplifier based on Labview

Data recorder

Tested Coils

Tested Coil	Type of Wire	Inner diameter (mm)	Outer diameter (mm)	turns	electrical inductance
HTS Coil	2GS YBCO	70	98.22	34*2	0.5mH
Copper Coil	red copper	70	120	1600	40mH
LTS Coil	NbTi	100	180	5000	3000mH

Measurement of Induced Energy

The output of AD630

The Effect of CLIQ on the HTS Coil

- The coupling loss induced quench protection system can work well on HTS coil
 - For HTS coils, it may induce more coupling loss, therefore, the quench protection effect could be better
- To apply the I-CLIQ to the high-field superconducting magnets , the following challenges remain to be solved.
 - The reliability
 - High voltage breakdown
 - Responding speed of the system
- The I-CLIQ system is going to test on a larger HTS(Bi2223) coil at the Institute of High Energy Physics(IHEP)

