20 T Block Dipole: Features and Challenges

GianLuca Sabbi, Xiaorong Wang, LBNL

Acknowledgment: Daniel R. Dietderich, LBNL Emmanuele Ravaioli and Jonas Blomberg Ghini, CERN

ICFA Mini Workshop on High Field Magnets for Future pp Colliders Shanghai Jiao Tong University, Xuhui Campus June 14-17, 2015

- As requested by the workshop organizer, we performed a preliminary study on the concept
- HD block-coil model dipoles as the starting point
- Conceptual design of a 20 T class hybrid dipole
 - Conductor properties and cable parameters
 - Single aperture design and performance parameters
 - Two-in-one configuration
- Summary

- Achieved 13.8 T at 4.5 K, record field for a dipole with accelerator relevant bore and field quality
 - Solid experience on magnet fabrication, test, analysis
 - See Dr. Sabbi's talk on Monday morning
- A logical basis for the conceptual study of 20 T block dipole (magnetics)

HD2 Design

- 2-layer design, clear-bore aperture is 40 mm
- Nb₃Sn Rutherford cable
- Good field quality

Performance at 16 T	Unit	Ref (1ap)
Operating current	kA	18.6
J _e (insulated cable)	A/mm ²	517
Peak field in the coil	Т	16.9
Horizontal force (I+/I-)	MN/m	6.3/-6.3
Vertical force (I+/I-)	MN/m	-2.9
Inductance	mH/m	5.1
Stored energy	MJ/m	0.85

A block approach to 20 T dipole field

Performance with available Nb₃Sn

Increase bore field with grading

- An example: grading with only Nb₃Sn strands for HD2
 - 1.2 T increase in dipole field at 4.5 K (from 15.5 to 16.7 T)

 To reach 20 T bore field, we use Bi-2212 multi-filamentary round wire

- We use Nb₃Sn strand parameter from HD magnet
- Bi-2212 performance from overpressure reaction
 - Necessary assumption for large dipole coils
 - Optimistic one for operation under high stress

		Nb ₃ Sn	Bi-2212
Wire diameter	mm	0.8	0.85
l _c (15 T, 4.5 K)	Α	490	397
l _c (20 T, 4.5 K)	Α	131	356

Bi-2212 data from http://magnet.fsu.edu/~lee/plot/plot.htm

Rutherford cable

- Nb₃Sn: HD cable parameter is used
- Bi-2212: extrapolation from previous experience
 - Doubling cable aspect ratio
 - Decreasing winding radius
 - Fall-back option: more layers of narrower cable (adds complexity and cost)

	Nb ₃ Sn	Bi-2212
Number of strands	51	48
Cable width (mm)	22	22
Cable thickness (mm)	1.40	1.49
Insulation thickness (mm)	0.11	0.11

20 T class design, single aperture

• Clear bore diameter 40 mm (similar to HD2)

- 2-layer design, similar to HD
- Small minimum bending radius (9.4 mm) for Bi-2212 cable

• Current = 15700 A, assuming no I_c degradation due to stress

 Design balanced to reach short sample at the same current in Bi-2212 and Nb₃Sn

- Whole-wire current density at operation point (20 T, 4.5 K)
 - Nb₃Sn: 530 A/mm², Bi-2212: 500 A/mm²
- Best Bi-2212 performance with overpressure process is a must for this design

Reasonable field quality

• Considers only the geometric and saturation effects

- Stored energy 0.89 MJ/m
 - 9.8 mH/m inductance
- Forces on the centroid of coil blocks

Required conductor amount

rrrr

REDVELEV

Two-in-one configuration

HFMWS, 6/2015

20 T Block Dipole Features and Challenges - G.L. Sabbi, X. Wang

 Maximum dipole field 22.6 T at 14430 A, 11% margin when operating at 20 T

• Further optimization in geometry (separation and yoke radius) and operating margin

Compact configuration for 2-in-1

- The two block coils can be brought (almost) in contact
- Very compact configuration for 2-in-1

- Field increases, but field quality degrades due to leftright asymmetry
 - 32 units of b₂ at 20 T

Asymmetric Coils for Compactness

This effect can be corrected with an asymmetric coil configuration

- Example for a 16 T design: smaller beam separation and similar overall envelope as present LHC
- To be investigated for the 20 T case

Challenges to be addressed

- Best short-sample performance with overpressure
 process is crucial to reach 20 T operation dipole field
- Demonstrate the short-sample performance in cables and coils
- See Dr. Shen's talk on Tuesday

• 270 MPa Lorentz stress at 20 T

Bi-2212: 6.9 MN/m Nb₃Sn: 5.2 MN/m

- Nb₃Sn limit: ~ 200 MPa, H Felice *et al.*, J. Phys.: Conf. Ser. 234, 032010, 2010
- Bi-2212 limit: ~ 60 MPa, Dietderich *et al.*, IEEE TAS, 11(1), p. 3577, 2001
- Critical to pre-load without causing irreversible degradation

- Replace Nb₃Sn in the low field region with NbTi
- Support matrix of ribs and plates (Texas A&M concept)
 - We allocate space between sub-coils for internal structure
 - Potential to reduce stress in half, still too high for Bi-2212

- We have tools to protect the Nb₃Sn part
 - Recently demonstrated CLIQ (Coupling-Loss Induced Quench) technique
 - Can limit maximum temperature within acceptable level (350K)
- Quench detection can be an issue for Bi-2212 insert
 - High stability margin and slow propagation
- The coupling behavior between the insert and outsert requires investigation

Engineering challenges

- Flared ends are required by aperture and field
- Hard-way bends in the cables
 - HD magnet: limiting quenches near the bends

- Demonstrate nested coils
 - Leads/splices, mechanical support, production method, tolerances
 - Flared ends with Bi-2212 cables

Summary

- A block design concept for a 20 T dipole field at 4.5 K
 - Based on experience from HD magnet development
- Conductor
 - Nb₃Sn conductor and cable available today
 - Best Bi-2212 short-sample performance with overpressure reaction to be demonstrated on cable and coil level
- Significant challenges to be addressed
 - Flared ends, fabrication of nested coils
 - Stress management and quench protection
- Significant fundamental and collaborative R&D to do before one could consider building a demonstrator