ICFA Mini-workshop on High Field Magnets for pp Colliders

Alternative Approach to ReBCO HTS Magnet Operation and Protection: - Influence of Turn-to-turn Equivalent Resistivity and Coil

Size on Fast-discharge and Ramping of Metallic Insulation HTS Coils

Honghai Song

Yawei Wang, Kent Holland, Ken Schrock, Saravan Chandrasekaran

FRIB/MSU & SJTU

14-17 June 2015, SJTU Xuhui Campus

HEALE ed upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State Only State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Acknowledgement

- KIT/ITEP: F. Grilli, V. R. Zermeno
- MIT: Y. Iwasa, S. Hahn
- NCSU: W.K. Chan, J. Schwartz
- SJTU: Z. Jin, Z. Hong, Y. Li
- FRIB/MSU: E. Burkhardt, A. Zeller, T. Borden
- NMHFL: H. Weijers, J. Lu, D. Larbalestier
- BNL: R. Gupta. P. Wanderer
- NIMS: Y. MIYOSHI
- PolyTech: F. Sirois

MagLab Claims Record with ReBCO Superconducting Magnet

Workshop on pp Collider Magnets

This ReBCO test coil helped the MagLab set a new world record for superconducting

magnets: 27 Tesla. 10 June, 2015

Outline

- Introduction
 - Traditional Insulation
 - Metallic insulation (Stainless steel or Cu insulation)
- Development of small-scale Stainless steel insulated HTS coil
 - Coil design, winding, testing
 - Fast-discharge experimental results and analysis
 - Equivalent resistivity calculation
- Prediction of ramping behaviors of large-scale HTS coils
 - Dependence of ramping rate, coil size, equivalent turn-to-turn resistivity...
- Two applications
 - Multiple small-diameter coils for NMR applications
 - Large coils for accelerator and induction heater applications

ReBCO Conductor (2G) HTS Coil

- Rare Earth-based, second-Generation High-Temperature Superconductor wire
 - Robust wire characteristics due to Hastelloy substrate
 - Wide temperature range (4K<T<65K)

HTS Coils

- React & Wind
- Flexibility in coil winding
- Suitable for a wide variety of applications: energy, industrial, science & research, military & defense, transportation

Workshop on pp Collider Magnets

Challenges in HTS Magnet Protection and Operation

- Voltage across normal zone is too small to detect (Earlier quench stage)
- Normal zone propagation in HTS too slow (Quench)
- Most available test data based on short sample, small coil
 - Large # of stacked HTS coil for NMR (10 20 coils), few test data available
 - Large-scale HTS coil for accelerator dipole or induction heater, no test data available
- Traditional detect-quench-protection approach does not seem to work for the HTS magnet → Alternative approaches
 - Novel winding
 - Better understanding
 - Systematic modeling and simulation
 - Prototyping and extensive tests
 - Great care

Metallic-Insulation HTS Coil and Its Winding

- Traditional insulation used in LTS superconductor wires, Kapton, Fovar
 - Recently proposed ZnO dope polyimide insulation
 - HTS normal zone propagates still slow (~cm/second)
 - High risks for large-scale magnets
- Metallic strip insulation
 - No turn-to-turn insulation, conductors are wound directly
 - » Cu/Cu contact, (even soldered Cu)
 - » Soldered Cu/Cu contact
 - Co-wound with metal strips
 - » Cu strips, similar to the No-insulation contact, but two contact layers
 - » Stainless steel strips, high resistivity

Supercond. Sci. Technol.27(2014) 06501

Fast-discharge Behaviors of HTS Coil Stainless Steel Insulation Coils Needs More Detailed Studies

Kapton Insulation = SS Insulation? (NO)

Workshop on pp Collider Magnets

Stainless Steel Insulated HTS Coil - Coil Design

Workshop on pp Collider Magnets

H. Song – HTS Magnet Ramping and Protection

Slide 9

Stainless Steel Insulated HTS Coil - Coil Winding and Testing

HTS Coil Winding

Splice Fabrication

HTS Coil Instrumentation

Fast-discharge Tests (No dump resistor)

Stainless-Steel Insulated Coil VS Cu Insulation Coil

-	-	Supercond. Sci. Technol. 28 (2015) 045017 (9pp)	
Parameters	Tape1	Tape 2	Tape 3
Thickness	0.1 mm	0.3 mm	0.25 mm
width	4.0 mm	4.75 mm	4.2 mm
Lamination	Electroplated Cu	Copper/Solder	Brass/Solder
Co-wound strip	SS	No	No
Substrate	Hastelloy	Hastelloy	Hastelloy
$I_c @ 77K$, tape	140 A	220 A	170 A

Table 2.Specifications of thetest NI coils

 Table 1.Specifications of thetest ReBCO tapes

Parameters	Coil 3	Coil 2	Coil 1
Coil type	DP	SP	DP
Таре	Tape 1	Tape 2	Tape 3
Number of turns	130*2	27	62*2
Inner diameter	102 mm	100 mm	245 mm
Tension	~5 kg	7 kg	4 kg
Total length of wire	98 m	9.1 m	101 m
Inductance, L_{coil} , cal.	12.1 mH	150µH	8.11 mH
B_z per amp, <i>cal</i> .	2.64 mT	0.3 mT	0.59 mT
I_c , coil @77K	~120A@40K	133A@77K	97A@77K

Stainless-Steel Insulated Coil VS Cu Insulation Coil Fast-discharge V(I) Curve \rightarrow Time constant \rightarrow Equivalent

Workshop on pp Collider Magnets

Ramping Behaviors of Metallic Insulation HTS Coil

- Benefits of contact resistance for fast-discharge protection becomes disadvantage during charge ramping
- To clarify one of the most critical concerns → Will the metallic insulation HTS coils have settle-off problems?
- Apply equivalent insulation resistivity from small coils → predict ramping behaviors in larger coils
- HTS coil modeling a hybrid modeling (<u>Critical State + Metallic</u> <u>Insulation</u>)

2D Critical State Current density profile

Equivalent circuit grid model

Workshop on pp Collider Magnets

▼ -3.865°×10

Circuit Node

Independent Circuit Mesh

Current input

Current

Ramping Behaviors Characterization in Metallic Insulation HTS Coils

• Magnetic field B lags coil zzimuthally flowing current!

Workshop on pp Collider Magnets

Dependence of Ramping Rate if = 70 μ ·cm² (Typical Cu Strip Co-Winding)

Diameter Becomes Larger...

Workshop on pp Collider Magnets

H. Song – HTS Magnet Ramping and Protection

Slide 16

Influence of Turn-to-turn Resistivity

For smaller coils ID=0.1 m, increasing equivalent resistivity reducing ramping time, but the maximum time is \sim 400 s.

 \rightarrow Cu insulation may be OK for 0.1 ID coil

For larger coils, similar increment in resistivity, but ramping times decreases from 25 hours \rightarrow 2 hours.

 \rightarrow SS insulation becomes necessary!

Application I: Stacked Small ID Coils in NMR Similar to the SS Insulated Test Coil, 295 mH

Minimum ramping time versus # of DP coils.

Vpeak VS #of the DP coils.

Workshop on pp Collider Magnets

NMR Applications: Stacked Small ID Coils

- 1) Ramping rate=1 A/s, magnet with 7 DP coils,
- 2) Time resolved distribution of tangentialcomponent current,
- 3) Difference exits between top and middle coils

- Total transport current (power supply)
- 2) Tangential current in coils 1 3
- 3) Radial current in coils 1 -3

Application II – HTS DC Induction Heater

- Magnet:
 - DP coil: ID = 2 m, 130*2 turns
 - Magnet: 10 DP coils
 - Operation: I_{op} =80A, B=0.4 T (air gap)
 - Self-inductance: 31 H (without iron), 132 H (with iron)
 - Preliminary design only for this analysis use (single conductor winding)

Application B – HTS DC Induction Heater Cu VS SS Co-winding

If the coils is wound with Cu strips Rampig time will be up to 200 hours If the coils is wound with SS strips Rampig time will be below 2 hours

Current Flow Comparison Between (Cu VS SS)

Although in the same pattern, but 100 times shorter in ramping time!

Workshop on pp Collider Magnets

H. Song – HTS Magnet Ramping and Protection

Slide 22

Conclusions

- Metallic insulation is an effective approach for HTS coil protection during quench and other unpredicted accidents
- Although metallic insulation becomes disadvantage during charge ramping
 - Cu insulation is still ok for small diameter coil application (like NMR)
 - But for large-scale applications, Cu insulation results in much more time (up to 100 hours) in ramping,

» Thus, SS insulation becomes necessary

More studies further needed

- Thermal behaviors due to radial current component → increased temperature during charge ramping
- Thermal management during fast-discharge needs more complete modeling, other than MITTs function prediction
- Conductors cabling to reduce the magnet inductance
- HTS magnet technology needs more R&D as it positively progresses towards broader applications – particularly high energy physics.

Thank-You

Three Dimensional Critical –State Current Density in a 1/8 model of a HTS Coil - On-going Effort

Appendix Definition of Minimum Ramping Time

