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Introduction to MgB,

MgB,
- metallic high-T_ superconductor (40 K)

- transparent GBs, high J_ current @~20 K
in randomly oriented polycrystal

Good for applications

- easy wire fabrication
>1 km multi-filamentary wires by PIT

- low cost for materials and processing
- lig.He-free operation by cryocooler
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Bulk magnet as prototype of SC coil
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Temporal uniformity of field
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Negligible decay of field (2.9 T at 19 K) over the first week!
Macroscopic SC current loop in polycrystalline MgB, can be very stable .
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MgB, : applicable for high field magnet?

MgB, could provide (spatial & temporal uniformity)
H_//%P(0K): wires~30T vs films >50 T
V. Braccini, A. Gurevich et al., 2003
J_(20 K): wires 10°-10° A/cm? vs films 107-10° A/cm?

C. G. Zhuang, X. X. Xi et al., M. Naito et al. 2008-
Very nice potential of MgB,, demonstrated by thin film study, has not

yet realized in polycrystalline wire forms, issues for high field magnets:

=> Higher H_,
=> Higher in-field J,
— Connectivity
-2 Flux pinning
- Multi-band
=2 Mechanical strength?
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Standard MgB, wire fabrication techniques

MgB, matrix

X porous (~50%

)

©
@ strong intergrain coupling X
O higher K, J.

GW\
I\ |/

dense (~75%), uniform

weak intergrain coupling/
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Structural control of GBs

O Pressure-less, low-temperature self-sintering of ex situ MgB,

O Connectivity largely increased x3
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Stage I: before sintering Stage II: formation of necks Stage IlI: evolution of necks and GBs Stage IV: isolation of pores
and elimination of pores

A. Yamamoto et al., Jpn. J. Appl. Phys. 51, 010105 1-6 (2012); H. Tanaka et al., SuST 25, 115022 1-7 (2012);
S. Mizutani et al., Supercond. Sci. Technol. 27, 044012 1-7 (2014); SuST 27, 114001 1-8 (2014).
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Electromagnetic modification of GBs for higher fields

Single-grain bulk Polycrystalline bulk
Introducing artificial defects Flux pinning at natural defects

SC matrix Artificial defects (non-SC)  SC matrix GBs (weak-SC)

s Ll

LPZ
Order parameter /]\ /]\
Flux pinning at non-SC precipitates Flux pinning at natural GBs
by saving condensation energy by modulation of coherence length &

due to electron scattering *

Our approach: Increase GB area (grain refinement) + Enhance e scattering near GBs

(*) T. Matsushita et al., Supercond. Sci. Technol. 21, 015008 (2008); A. Yamamoto et al., Appl. Phys. Lett. 88, 212505 (2005).
G. Zerweck, Appl. Phys. Lett. 42, 1 (1981); W. E. Yetter et al., Philos. Mag. B 46, 523 (1982).
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Experimental procedure

Mg, B powder (in situ, Mg :B=1:2)

Milling energy
Planetary ball milling Et/m=66(wprp)3t/rv
(0-600rpm) Eo/m: ERRETERES 0 (C
il % 5N 3 TRILE—
Interface purification process g R )L & ERESEDESH,
l wprp : R—ILZILONIREERE
.. . t: R—ILZ)LEFR]
Uniaxial pressing to form r: R—)LS)LERDHIR
disk shape (30 mmg, 10mm) W. HaRler et al.,
I Supercond. Sci. Technol. 26 (2013) 025005.
Heating 850°C, 3 h (pressureless, Ar)

MgB, bulk

Magnetization by field-cooling (FC)

Cutting & Evaluation ’
SEM, XRD, SQUID, PPMS Trapped field measurements
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Magnetization and trapped field measurement

MgB, bulk

Heat insulating

Field-cooling (FC)
to 5-20 K by a cryocooler under 6 T

MgB, bulk magnet

Hall sensor

Temperature
sensor

Maghnetizing
by a superconducting magnet (6—0 T)

Cold stage

Cryocooler

Trapped field measurement

by a hall sensor at center of surface
from 5 to 40 K
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Influence of milling on grain size & microstructure

: 500 nm, * §o, SR o« MR

D; ~1400 nm ~400 nm ~300 nm

THE UNIVERSITY OF TOKYO S. Sugino et al., Supercond. Sci. Technol. 28 (2015) 055016.



Flux pinning forceF, (10°N m?)
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Flux pinning strength & trapped field

Macroscopic pinning strength vs. external field
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Flux pinning enhancement: x2 in low field, >x10 under high field
30% increase in trapped field (3.72 Tesla at 5 K)
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S. Sugino et al., Supercond. Sci. Technol. 28 (2015) 055016.




Discussion: grain size, disorder & scattering

Milling effects on transport

Milling effects on grains
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Trapped field of bulk pair MgB,

6 ' | ' | ' |

|
/5.03 Tesla!

GB tuned bulk pair

(30 mm dia, 20 mm thick
Bulk pair geometry)

(*)APL2014
center

MgB, bulk
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5 Tesla at 7 K. The highest field among pressureless bulk MgB,

- v THE UNIVERSITY OF TOKYO (*) AY et al., Appl. Phys. Lett. 105, 032601 (2014).




Summary

Polycrystalline MgB, could produce with...
v 5 Tesla
v uniform field distribution
v excellent magnet stability up to ~20 K

owing to natural/nano-scale flux pinning centers (GBs).

More works needed:
v processing needs to be improved for dense, better Jc(B).

Thank you for your attentions!
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