2015 ICFA Mini-Workshop on High Field Magnets for pp Colliders Shanghai Jiao Tong University, Xuhui Campus, Shanghai, China, June 16 2015

How can we control the formation of grain-boundaries (GBs) towards well connected, high field MgB₂?

A. Yamamoto

Acknowledgement:

- S. Sugino, J. Shimoyama, K. Kishio University of Tokyo
- A. Ishihara, T. Akasaka, M. Tomita Railway Technical Res. Inst.
- Y. Shimada Tohoku University
- S. Hata Kyushu University

Outline

1. What can we expect for upcoming MgB₂ magnet ?

- Introduction to MgB₂
- Magnetic field produced by polycrystalline MgB₂ demonstration using SC bulk as prototype of coil -
- **2.** Issues for high field magnet
- 3. Structural tuning of GBs (ex situ wire)

Challenge for well-connected, mechanically tough GBs

- **4. Electromagnetic tuning of GBs (***in situ* **bulk magnet)** Improving trapped field by modification of GBs
- 5. Summary

Introduction to MgB₂

MgB₂

- metallic high-T_c superconductor (40 K)
- transparent GBs, high J_c current @~20 K in randomly oriented polycrystal

Good for applications

- easy wire fabrication
 - >1 km multi-filamentary wires by PIT
- low cost for materials and processing
- liq.He-free operation by cryocooler

THE UNIVERSITY OF TOKYO

(field produced by the same mechanism)

Temporal uniformity of field

Negligible decay of field (2.9 T at 19 K) over the first week!

Macroscopic SC current loop in polycrystalline MgB_2 can be very stable .

AY et al., Appl. Phys. Lett. <u>105</u>, 032601 (2014).

MgB₂ : applicable for high field magnet?

MgB₂ could provide high quality field (spatial & temporal uniformity)

Н _{c2} ^{//ab} (0 К):	<u>wires ~30 T</u>	VS <u>films >50 T</u> V. Braccini, A. Gurevich <i>et al.,</i> 2003
<mark>Ј_с(20 К):</mark>	<u>wires 10⁵-10⁶ A/cm²</u>	vs <u>films 10⁷-10⁸ A/cm²</u> C. G. Zhuang, X. X. Xi <i>et al.</i> , M. Naito <i>et al.</i> 2008-

Very nice potential of MgB₂, demonstrated by thin film study, has not yet realized in polycrystalline wire forms, issues for high field magnets:

 \rightarrow Higher H_{c2}

\rightarrow Higher in-field J_c

- \rightarrow Connectivity
- \rightarrow Flux pinning
- \rightarrow Multi-band

Mechanical strength?

the University of Tokyo

Outline

1. What can we expect for upcoming MgB₂ magnet ?

- Introduction to MgB₂
- Magnetic field produced by polycrystalline MgB₂ demonstration using SC bulk as prototype of coil -
- **2.** Issues for high field magnet
- 3. Structural tuning of GBs (ex situ wire)

Challenge for well-connected, mechanically tough GBs

- **4. Electromagnetic tuning of GBs (***in situ* **bulk magnet)** Improving trapped field by modification of GBs
- 5. Summary

Standard MgB₂ wire fabrication techniques

Structural control of GBs

Pressure-less, low-temperature self-sintering of *ex situ* MgB₂ Connectivity largely increased x3

A. Yamamoto *et al., Jpn. J. Appl. Phys.* **51**, 010105 1-6 (2012); H. Tanaka *et al., SuST* **25**, 115022 1-7 (2012); S. Mizutani *et al., Supercond. Sci. Technol.* **27**, 044012 1-7 (2014); *SuST* **27**, 114001 1-8 (2014).

THE UNIVERSITY OF TOKYO

Outline

1. What can we expect for upcoming MgB₂ magnet ?

Introduction to MgB₂

Magnetic field produced by polycrystalline MgB₂ - demonstration using SC bulk as prototype of coil -

- **2.** Issues for high field magnet
- 3. Structural tuning of GBs (ex situ wire)

Challenge for well-connected, mechanically tough GBs

4. Electromagnetic tuning of GBs (in situ bulk magnet)

Improving trapped field by modification of GBs

5. Summary

Electromagnetic modification of GBs for higher fields

Our approach: Increase GB area (grain refinement) + Enhance e scattering near GBs

(*) T. Matsushita *et al., Supercond. Sci. Technol.* <u>21</u>, 015008 (2008); A. Yamamoto *et al., Appl. Phys. Lett.* <u>88</u>, 212505 (2005). G. Zerweck, *Appl. Phys. Lett.* <u>42</u>, 1 (1981); W. E. Yetter *et al., Philos. Mag. B* <u>46</u>, 523 (1982).

Experimental procedure

Magnetization and trapped field measurement

Influence of milling on grain size & microstructure

*D*_G ~1400 nm

~400 nm

~300 nm

S. Sugino et al., Supercond. Sci. Technol. 28 (2015) 055016.

Flux pinning strength & trapped field

Flux pinning enhancement: x2 in low field, >x10 under high field 30% increase in trapped field (3.72 Tesla at 5 K)

THE UNIVERSITY OF TOKYO

S. Sugino et al., Supercond. Sci. Technol. 28 (2015) 055016.

Discussion: grain size, disorder & scattering

Density of pinning centers $N_p \propto (\text{grain size})^{-1}$

Elementary pinning strength $f_{\rm p} \propto \Delta \xi_{\rm near \ GB}$

Macroscopic pinning force $F_p^{\text{global}} \propto N_p \times f_p$

⇒ Quantitative and qualitative increase of GB pinning

(※) M. Kodama et al., Supercond. Sci. Technol. <u>27</u>, 055003 (2014); T. Matsushita et al., SuST <u>21</u>, 015008 (2008).

THE UNIVERSITY OF TOKYO

S. Sugino et al., Supercond. Sci. Technol. 28 (2015) 055016.

Trapped field of bulk pair MgB₂

5 Tesla at 7 K. The highest field among pressureless bulk MgB₂

THE UNIVERSITY OF TOKYO

(*) AY et al., Appl. Phys. Lett. <u>105</u>, 032601 (2014).

Summary

Polycrystalline MgB₂ could produce high quality field with...

🗸 5 Tesla

uniform field distribution

✓ excellent magnet stability up to ~20 K

owing to natural/nano-scale flux pinning centers (GBs). More works needed:

✓ processing needs to be improved for dense, better Jc(B).
Thank you for your attentions!

