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Outline

Wire development: 2212 as a HEP-grade magnet
conductor

® J_ history, its processing, and industrial development
® J_-stress-strain relationships

® Quench (degradation) behaviors and its dependence on
stress

Building accelerator dipoles using 2212: challenges
and a roadmap
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2212 wire J_ history, milestones, and
implications

Getting high J_ in long-
length wire is not
easy.

Overpressure
processing in 2012

® 2212 20T J. now on
par with Nb;Sn 12 T J.

Industry hasn’t made
significant progress
for 10 years

2212 now <= Nb;Sn in
1990

® Still learn to build
solenoids

® Need to walk the road

that Nb;Sn colleagues
have been walking.
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Industrial development, wire
cost, and Rutherford cables

® Wire manufacturers - OST as the leader.

® Need more participants (Supercon, Supermagnetics, Showa, WST/
NIN, Innost...)

® Billet length - <1 km, going up with the support of the U.S. CDP

® Cost-$50-70/m for 0.8 mm wire

® $3-6 for silver; cost dominated by labor.

® Powder sources and cost
® Nexans’ 521 composition powder - industrial standard since 2003.
® Nexans dropped 2212 powder production in 2015.

® Cost on bar with silver

® Rutherford cables successfully made with suitable insulation

® 100 - 150 um thick mullite sleeve - $20/m.
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Je of commercial/research billets produced in
the last decade - 1 bar standard processing
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PMM101108-1, PMMI101111,
PMM120928

® 37x18,0.8 mm, 521 comp.

PMM120209-2, PMM140416
® 85x18,1.2 mm, 521 comp.

PMM130411
® 19x36, 0.8 mm, 521 comp.

PMMO070214
® 37x18, 0.8 mm, not 521

NINO805
® 37x18, 1.0 mm, 521



Je-T,.. Of these strands - 25
bar overpressure processing

® 25 OP increases I_ by
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Overpressure processing brings
high J¢ to long-length conductor

® For 1 bar processing, long-length wire has leakage
and degraded ], due to internal gases

—m—1 bar processing, 8 cm open ends
—%—25 bar processing, 1 m ITER barrel
1500 - —0—1 bar processing, 1 m ITER barrel

300 4 Shen et al, 2013 J. Appl. Phys. 113 213901
Larbalestier et al. 2014 Nat. Mater. 13 275




I. uniformity: +/-5% J_ variation
along 800 m conductor heat
treated in an one-year period

[ [PMM101108-1 and PMM101108-2 over 2014-2015
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$88) 25 bar OP 2212 wire J, vs Nb-Ti
and Nb,Sn
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What can be expected - 4-6 T accelerator dipoles
based on 2212 can be built

® Would be the world’s first HTS accelerator magnet.

® Of course, many challenges are ahead of us.
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Reality check - Godeke’s 2
layers-6-turns/layer racetrack coils

—%— OP_FNAL-150213_25bar_PMM101108-1
—0— 1bar_FNAL _43B

= | 0ad line, LBNL sub-scale racetrack coils
based on 17-strand Rutherford cable

B =313 T,1=7873 A
generated o

=1.62T,1 =4118 A
generated o

2 4 6 8 10 12 14

® Godeke - HTS-
SCO08: 2600 A,
65% of SSL (with
internal gas
effects
considered)
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I-T. .- the challenge of
precise heat treatment control

® |I-T, ., depends on powder,
perhaps also wire design
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, Q/j I -stress-strain of Bi-2212 wires:
axial direction
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® |_-axial-strain of 2212 wires - similar to that of MgB,
and Bi-2223, and different from Nb-Ti and Nb;Sn.
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Are we doomed by the

transverse pressure?
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Figure 2. Variation of critical current (4 T, 4.2 K)
with stress for a cable that was face loaded.

® 100 MPa reduced J_
by 3%.

® 160 MPa reduces J,
by 8% irreversibly.

Dietderich et al., Physica C, 341-348, 2599 (2000)
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Quench - a potential elephant in the room - A
quench may not be detected soon enough, though
well-built 2212/YBCO magnets may never quench

at 4.2 K except in extraordinary situations

Shen, Ye, Yurrioni, Li, 2015 Supercon. Sci. Technol. 28 075014
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J;j 20 T dipole with 5 T 2212/REBCO

K insert - many challenges ahead

but now it is the time to invest/
investigate

® Very challenging

® Six layer graded cosine-theta coil or 8/10 layer canted
cosine-theta coil

® Hybrid dipoles/quadrupoles have not been built.
® Stress at 20 T is enormous.

® Magnet is big - the stored energy is high

® But itis time to build and push the technology
frontier.
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Go back to the 4-6 T dipole - our
vision

FY15-16: Demonstrating 5-10 kA class Rutherford
cables with J (20 T) of >500 A/mm? using small-scale
racetrack coils

FY16: Exploring mechanical and quench protection
limits of coils by testing racetrack coils under
common coil or dipole configurations

® With preloads using the Bladder and Key
structures.

FY16-17: Build the world’s first CCT or cosine-theta
accelerator dipoles generating 4-5 T.
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Concluding remarks

2212 is no doubt complicated but also promising

® It is now poising for practical applications

Things to demonstrate/examine:
® High 20 T J, of >500 A/mm? in 5-15 kA Rutherford cable
® Degree to which Rutherford cables can handle transverse pressure

® Further conductor development to bring 20 T J, in strands to 800-1000
A/mm:Z,

® Application of overpressure processing to >1 meter long coils

® Capability of running magnets without quenching, or dealing with the
devil of quench protection

We will build 4-6 T accelerator dipoles in two years using 10 km
conductors

® Work with industry to reduce conductor cost by a factor of 2-3.
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