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Outline 
Lecture 1:  Introduction and review of fundamentals 

 Probability, random variables, pdfs 
 Parameter estimation, maximum likelihood 
 Statistical tests for discovery and limits 

Lecture 2:  Multivariate methods 
 Neyman-Pearson lemma 
 Fisher discriminant, neural networks 
 Boosted decision trees 

Lecture 3:  Systematic uncertainties and further topics 
 Nuisance parameters (Bayesian and frequentist) 
 Experimental sensitivity 
 The look-elsewhere effect 
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Systematic uncertainties and nuisance parameters 
In general our model of the data is not perfect: 

x  

L 
(x

|θ
) 

model:   

truth: 

Can improve model by including  
additional adjustable parameters. 

Nuisance parameter ↔ systematic uncertainty. Some point in the 
parameter space of the enlarged model should be “true”.   

Presence of nuisance parameter decreases sensitivity of analysis 
to the parameter of interest (e.g., increases variance of estimate). 
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Example:  fitting a straight line 

Data: 
 
Model:  yi independent and all follow yi  ~ Gauss(µ(xi ), σi ) 

  

 

assume xi and σi known. 

Goal:  estimate θ0  

Here suppose we don’t care  
about θ1 (example of a  
“nuisance parameter”) 
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Maximum likelihood fit with Gaussian data 

In this example, the yi are assumed independent, so the 
likelihood function is a product of Gaussians: 

Maximizing the likelihood is here equivalent to minimizing 

i.e., for Gaussian data, ML same as Method of Least Squares (LS) 
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θ1 known a priori 

For Gaussian yi, ML same as LS 
 
Minimize χ2 → estimator 

Come up one unit from      

to find  
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Correlation between 

             causes errors 

to increase. 

Standard deviations from 

tangent lines to contour 

 

ML (or LS) fit of θ0 and θ1 
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The information on θ1 

improves accuracy of 

 

If we have a measurement t1 ~ Gauss (θ1, σt1) 
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Bayesian method 

We need to associate prior probabilities with θ0 and θ1, e.g., 

Putting this into Bayes’ theorem gives: 

posterior    ∝                  likelihood         ✕       prior 

← based on previous  
     measurement 

‘non-informative’, in any 
case much broader than 
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Bayesian method (continued) 

Usually need numerical methods (e.g. Markov Chain Monte 
Carlo) to do integral. 

We then integrate (marginalize)  p(θ0, θ1 | x) to find p(θ0 | x): 

In this example we can do the integral (rare).  We find 
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Digression: marginalization with MCMC 
Bayesian computations involve integrals like 

often high dimensionality and impossible in closed form, 
also impossible with ‘normal’ acceptance-rejection Monte Carlo. 

Markov Chain Monte Carlo (MCMC) has revolutionized 
Bayesian computation.   

MCMC (e.g., Metropolis-Hastings algorithm) generates  
correlated sequence of random numbers: 

 cannot use for many applications, e.g., detector MC; 
 effective stat. error greater than if all values independent . 

Basic idea:  sample multidimensional  
look, e.g., only at distribution of parameters of interest.  
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MCMC basics:  Metropolis-Hastings algorithm 
Goal:  given an n-dimensional pdf  
generate a sequence of points  

1)  Start at some point  

2)  Generate   

Proposal density 
e.g. Gaussian centred 
about 

3)  Form Hastings test ratio 

4)  Generate 

5)  If 

else 

move to proposed point 

old point repeated 

6)  Iterate 
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Metropolis-Hastings (continued) 
This rule produces a correlated sequence of points (note how  
each new point depends on the previous one). 

For our purposes this correlation is not fatal, but statistical 
errors larger than if points were independent. 

The proposal density can be (almost) anything, but choose 
so as to minimize autocorrelation.  Often take proposal 
density symmetric: 

Test ratio is (Metropolis-Hastings): 

I.e. if the proposed step is to a point of higher           , take it;   
if not, only take the step with probability  
If proposed step rejected, hop in place. 
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Although numerical values of answer here same as in frequentist 
case, interpretation is different (sometimes unimportant?) 

Example:  posterior pdf from MCMC 
Sample the posterior pdf from previous example with MCMC: 

Summarize pdf of parameter of 
interest with, e.g., mean, median, 
standard deviation, etc. 
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Bayesian method with alternative priors 
Suppose we don’t have a previous measurement of θ1 but rather,  
e.g., a theorist says it should be positive and not too much  greater 
than 0.1 "or so", i.e., something like 

From this we obtain (numerically) the posterior pdf for θ0: 

This summarizes all  
knowledge about θ0. 

Look also at result from  
variety of  priors. 
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Large sample distribution of the profile 
likelihood ratio (Wilks’ theorem, cont.) 

Suppose problem has likelihood L(θ, ν), with 

← parameters of interest 

← nuisance parameters 

Want to test point in θ-space.  Define profile likelihood ratio: 

,   where  

and define qθ = -2 ln λ(θ). 

Wilks’ theorem says that distribution f (qθ|θ,ν) approaches the 
chi-square pdf for N degrees of freedom for large sample (and  
regularity conditions), independent of the nuisance parameters ν. 

“profiled” values of ν 
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p-values in cases with nuisance parameters 
Suppose we have a statistic qθ that we use to test a hypothesized 
value of a parameter θ, such that the p-value of θ is 

Fundamentally we want to reject θ only if pθ < α for all ν. 
 → “exact” confidence interval 

Recall that for statistics based on the profile likelihood ratio, the 
distribution f (qθ|θ,ν) becomes independent of the nuisance 
parameters in the large-sample limit. 

But in general for finite data samples this is not true; one may be 
unable to reject some θ values if all values of ν must be 
considered, even those strongly disfavoured by the data (resulting 
interval for θ “overcovers”). 
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Profile construction (“hybrid resampling”) 

Approximate procedure is to reject θ if pθ ≤ α where 
the p-value is computed assuming the profiled values of the  
nuisance parameters: 

“double hat” notation means 
value of parameter that maximizes 
likelihood for the given θ. 

The resulting confidence interval will have the correct coverage 
for the points  (θ, ˆ̂ν(θ)) . 

Elsewhere it may under- or overcover, but this is usually as good 
as we can do (check with MC if crucial or small sample problem). 
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Prototype search analysis  
Search for signal in a region of phase space; result is histogram 
of some variable x giving numbers: 
 
 
Assume the ni are Poisson distributed with expectation values 

signal 

where 

background 

strength parameter 
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Prototype analysis (II) 
Often also have a subsidiary measurement that constrains some 
of the background and/or shape parameters: 
 
 
Assume the mi are Poisson distributed with expectation values 

nuisance parameters (θs, θb,btot) 
Likelihood function is 
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The profile likelihood ratio 
Base significance test on the profile likelihood ratio: 

maximizes L for 
Specified µ

maximize L

The likelihood ratio of point hypotheses gives optimum test   
(Neyman-Pearson lemma). 

 The profile LR hould be near-optimal in present analysis  
 with variable µ and nuisance parameters θ. 
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Test statistic for discovery 
Try to reject background-only (µ = 0) hypothesis using 

Here data in critical region (high q0) only when estimated 
signal strength     is positive. 

Could also want two-sided critical region, e.g., if presence of 
signal process could lead to suppression (and/or enhancement) 
in number of events. 

Note that even if physical models have µ ≥ 0, we allow  
to be negative.  In large sample limit its distribution becomes 
Gaussian, and this will allow us to write down simple  
expressions for distributions of our test statistics. 

µ̂

µ̂
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p-value for discovery 
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Large q0 means increasing incompatibility between the data 
and hypothesis, therefore p-value for an observed q0,obs is 

will get formula for this later 

From p-value get  
equivalent significance, 
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Expected (or median) significance / sensitivity 

When planning the experiment, we want to quantify how sensitive 
we are to a potential discovery, e.g., by given median significance 
assuming some nonzero strength parameter µ ′. 
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So for p-value, need f(q0|0), for sensitivity, will need f(q0|µ′),  
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Distribution of q0 in large-sample limit 
Assuming approximations valid in the large sample (asymptotic) 
limit, we can write down the full distribution of q0 as 

The special case µ′ = 0 is a “half chi-square” distribution:  

In large sample limit, f(q0|0) independent of nuisance parameters; 
f(q0|µ′)  depends on nuisance parameters through σ. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Cumulative distribution of q0, significance 

From the pdf, the cumulative distribution of q0 is found to be  

The special case µ′ = 0 is  

The p-value of the µ = 0 hypothesis is 

Therefore the discovery significance Z is simply 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Monte Carlo test of asymptotic formula 
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Here take τ = 1. 

Asymptotic formula is  
good approximation to 5σ
level (q0 = 25) already for 
b ~ 20. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Example of a  p-value 
ATLAS, Phys. Lett. B 716 (2012) 1-29 
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 Back to Poisson counting experiment 
n ~ Poisson(s+b), where 

 s = expected number of events from signal, 

 b = expected number of background events. 

Usually convert to equivalent significance: 

To test for discovery of signal compute p-value of s = 0 hypothesis, 

where Φ is the standard Gaussian cumulative distribution, e.g., 
Z > 5 (a 5 sigma effect) means p < 2.9 ×10-7. 

To characterize sensitivity to discovery, give expected (mean 
or median) Z under assumption of a given s. 
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s/√b for expected discovery significance 
For large s + b, n → x ~ Gaussian(µ,σ) , µ = s + b, σ = √(s + b). 

For observed value xobs, p-value of s = 0 is Prob(x > xobs | s = 0),: 

Significance for rejecting s = 0 is therefore 

Expected (median) significance assuming signal rate s is 
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Better approximation for significance 
Poisson likelihood for parameter s is 

So the likelihood ratio statistic for testing s = 0 is 

To test for discovery use profile likelihood ratio: 

For now  
no nuisance  
params. 
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Approximate Poisson significance (continued) 

For sufficiently large s + b, (use Wilks’ theorem),  

To find median[Z|s], let n → s + b (i.e., the Asimov data set): 

This reduces to s/√b for s << b. 
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n ~ Poisson(s+b),  median significance, 
assuming s, of the hypothesis s = 0 

“Exact” values from MC, 
jumps due to discrete data. 
 
Asimov √q0,A good approx. 
for broad range of s, b. 
 
s/√b only good for s « b. 

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727 
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Extending s/√b to case where b uncertain 
The intuitive explanation of s/√b is that it compares the signal, 
 s, to the standard deviation of n assuming no signal, √b. 

Now suppose the value of b is uncertain, characterized by a  
standard deviation σb. 

A reasonable guess is to replace √b by the quadratic sum of 
√b and σb, i.e., 

This has been used to optimize some analyses e.g. where  
σb cannot be neglected. 
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Adding a control measurement for b 

Measure two Poisson distributed values: 

 n ~ Poisson(s+b)         (primary or “search” measurement) 

 m ~ Poisson(τb)  (control measurement, τ known) 

The likelihood function is 

Use this to construct profile likelihood ratio (b is nuisance 
parmeter): 

(The “on/off” problem:  Cranmer 2005; Cousins,  
Linnemann, and Tucker 2008; Li and Ma 1983,...) 
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Ingredients for profile likelihood ratio 

To construct profile likelihood ratio from this need estimators: 

and in particular to test for discovery (s = 0),  
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Asymptotic significance 
Use profile likelihood ratio for q0, and then from this get discovery 
significance using asymptotic approximation (Wilks’ theorem): 

Essentially same as in: 



Or use the variance of b = m/τ,   
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Asimov approximation for median significance 
To get median discovery significance, replace n, m by their 
expectation values assuming background-plus-signal model: 

 n → s + b 
 m → τb 

,   to eliminate τ: ˆ 
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Limiting cases 
Expanding the Asimov formula in powers of s/b and 
σb

2/b (= 1/τ) gives 

So this “intuitive” formula can be justified as a limiting case 
of the significance from the profile likelihood ratio test evaluated  
with the Asimov data set. 
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Testing the formulae:  s = 5 
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Using sensitivity to optimize a cut 
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Return to interval estimation 
Suppose a model contains a parameter µ; we want to know which 
values are consistent with the data and which are disfavoured. 

Carry out a test of size α for all values of µ. 

The values that are not rejected constitute a confidence interval 
for µ at confidence level CL = 1 – α. 

 The probability that the true value of µ will be rejected is 
 not greater than α, so by construction the confidence interval  
 will contain the true value of µ with probability ≥  1 – α. 

The interval depends on the choice of the test (critical region). 

If the test is formulated in terms of a p-value, pµ, then the  
confidence interval represents those values of µ for which pµ > α. 

To find the end points of the interval, set pµ = α and solve for µ. 



I.e. when setting an upper limit, an upwards fluctuation of the data  
is not taken to mean incompatibility with the hypothesized µ:   

From observed qµ find p-value: 

Large sample approximation:    

95% CL upper limit on µ is highest value for which p-value is  
not less than 0.05. 
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Test statistic for upper limits 

For purposes of setting an upper limit on µ one can use 

where 

cf. Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554. 
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Monte Carlo test of asymptotic formulae 
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Consider again n ~ Poisson (µs + b), m ~ Poisson(τb) 
Use qµ to find p-value of hypothesized µ values. 

E.g.  f (q1|1) for p-value of µ =1. 

Typically interested in 95% CL, i.e., 
p-value threshold = 0.05, i.e., 
q1 = 2.69 or  Z1 = √q1 =  1.64. 

Median[q1 |0] gives “exclusion 
sensitivity”. 

Here asymptotic formulae good 
for s = 6, b = 9. 

Cowan, Cranmer, Gross, Vitells, arXiv:1007.1727, EPJC 71 (2011) 1554 
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Low sensitivity to µ 
It can be that the effect of a given hypothesized µ is very small 
relative to the background-only (µ = 0) prediction. 

This means that the distributions f(qµ|µ) and f(qµ|0) will be 
almost the same: 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 3 46 

Having sufficient sensitivity 
In contrast, having sensitivity to µ means that the distributions 
f(qµ|µ) and f(qµ|0)  are more separated:  

That is, the power (probability to reject µ if µ = 0) is substantially  
higher than α.  Use this power as a measure of the sensitivity. 
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Spurious exclusion 
Consider again the case of low sensitivity.  By construction the 
probability to reject µ if µ is true is α (e.g., 5%). 

And the probability to reject µ if µ = 0 (the power) is only slightly 
greater than α. 

This means that with 
probability of around α = 5% 
(slightly higher), one excludes 
hypotheses to which one has 
essentially no sensitivity (e.g., 
mH = 1000 TeV). 

“Spurious exclusion” 
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Ways of addressing spurious exclusion 

The problem of excluding parameter values to which one has 
no sensitivity known for a long time; see e.g., 

In the 1990s this was re-examined for the LEP Higgs search by 
Alex Read and others 

and led to the “CLs” procedure for upper limits. 

Unified intervals also effectively reduce spurious exclusion by 
the particular choice of critical region. 
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The CLs procedure 

f (Q|b)     

f (Q| s+b)     

ps+b pb 

In the usual formulation of CLs, one tests both the µ = 0 (b) and 
µ > 0 (µs+b) hypotheses with the same statistic Q = -2ln Ls+b/Lb: 
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The CLs procedure (2) 
As before, “low sensitivity” means the distributions of Q under  
b and s+b are very close: 

f (Q|b)     

f (Q|s+b)     

ps+b pb 
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The CLs solution (A. Read et al.) is to base the test not on 
the usual p-value (CLs+b), but rather to divide this by CLb  
(~ one minus the p-value of the b-only hypothesis), i.e., 

Define: 

Reject s+b  
hypothesis if: Reduces “effective” p-value  when the two 

distributions become close (prevents  
exclusion if sensitivity is low). 

f (Q|b)     f (Q|s+b)     

CLs+b  
= ps+b 

1-CLb 
 = pb 

The CLs procedure (3) 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 3 52 

Setting upper limits on µ = σ/σSM 
Carry out the CLs procedure for the parameter µ = σ/σSM,  
resulting in an upper limit µup. 

In, e.g., a Higgs search, this is done for each value of mH.   

At a given value of mH, we have an observed value of µup, and 
we can also find the distribution f(µup|0): 

±1σ (green) and ±2σ (yellow) 
bands from toy MC; 

Vertical lines from asymptotic 
formulae. 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 3 53 

How to read the green and yellow limit plots 

ATLAS, Phys. Lett. 
B 710 (2012) 49-66 

For every value of mH, find the CLs upper limit on µ. 

Also for each mH, determine the distribution of upper limits µup one 
would obtain under the hypothesis of µ = 0.   

The dashed curve is the median µup, and the green (yellow) bands 
give the ± 1σ (2σ) regions of this distribution. 
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Choice of test for limits (2) 
In some cases µ = 0 is no longer a relevant alternative and we  
want to try to exclude µ on the grounds that some other measure of  
incompatibility between it and the data exceeds some threshold. 

If the measure of incompatibility is taken to be the likelihood ratio 
with respect to a two-sided alternative, then the critical region can  
contain both high and  low data values.   

       → unified intervals, G. Feldman, R. Cousins,  
 Phys. Rev. D 57, 3873–3889 (1998) 

The Big Debate is whether to use one-sided or unified intervals 
in cases where small (or zero) values of the parameter are relevant 
alternatives.  Professional statisticians have voiced support 
on both sides of the debate.  
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Unified (Feldman-Cousins) intervals 
We can use directly 
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as a test statistic for a hypothesized µ. 

where 

Large discrepancy between data and hypothesis can correspond 
either to the estimate for µ being observed high or low relative 
to µ. 

This is essentially the statistic used for Feldman-Cousins intervals 
(here also treats nuisance parameters).   
     G. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873. 

Lower edge of interval can be at µ = 0, depending on data. 
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Distribution of tµ
Using Wald approximation, f (tµ|µ′) is noncentral chi-square 
for one degree of freedom:  
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Special case of µ = µ ′ is chi-square for one d.o.f. (Wilks). 

The p-value for an observed value of tµ is 

and the corresponding significance is 
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Upper/lower edges of F-C interval for µ versus b 
for n ~ Poisson(µ+b) 

Lower edge may be at zero, depending on data. 

For n = 0, upper edge has (weak) dependence on b. 

Feldman & Cousins, PRD 57 (1998) 3873 

G. Cowan  
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Feldman-Cousins discussion 
The initial motivation for Feldman-Cousins (unified) confidence 
intervals was to eliminate null intervals. 

The F-C limits are based on a likelihood ratio for a test of µ  
with respect to the alternative consisting of all other allowed values 
of µ (not just, say, lower values). 

The interval’s upper edge is higher than the limit from the one-
sided test, and lower values of µ may be excluded as well.  A 
substantial downward fluctuation in the data gives a low (but 
nonzero) limit. 

This means that when a value of µ is excluded, it is because 
there is a probability α for the data to fluctuate either high or low 
in a manner corresponding to less compatibility as measured by 
the likelihood ratio. 
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The Look-Elsewhere Effect 

Gross and Vitells, EPJC 70:525-530,2010, arXiv:1005.1891 

Suppose a model for a mass distribution allows for a peak at 
a mass m with amplitude µ.

The data show a bump at a mass m0. 

How consistent is this 
with the no-bump (µ = 0) 
hypothesis? 
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Local p-value 
First, suppose the mass m0 of the peak was specified a priori. 

Test consistency of bump with the no-signal (µ = 0) hypothesis  
with e.g. likelihood ratio  

where “fix” indicates that the mass of the peak is fixed to m0. 

The resulting p-value  

gives the probability to find a value of tfix at least as great as 
observed at the specific mass m0 and is called the local p-value. 
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Global p-value 
But suppose we did not know where in the distribution to 
expect a peak. 

What we want is the probability to find a peak at least as  
significant as the one observed anywhere in the distribution. 

Include the mass as an adjustable parameter in the fit, test  
significance of peak using 

(Note m does not appear 
in the µ = 0 model.) 
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Distributions of tfix, tfloat 

For a sufficiently large data sample, tfix ~chi-square for 1 degree 
of freedom (Wilks’ theorem). 

For tfloat there are two adjustable parameters, µ and m, and naively 
Wilks theorem says tfloat ~ chi-square for 2 d.o.f. 

In fact Wilks’ theorem does 
not hold in the floating mass 
case because on of the 
parameters (m) is not-defined 
in the µ = 0 model. 

So getting tfloat distribution is 
more difficult. 

Gross and Vitells 
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Approximate correction for LEE 
We would like to be able to relate the p-values for the fixed and 
floating mass analyses (at least approximately). 

Gross and Vitells show the p-values are approximately related by 

where 〈N(c)〉 is the mean number “upcrossings” of   
tfix = -2ln λ  in the fit range based on a threshold 

and where Zlocal = Φ-1(1 – plocal) is the local significance. 
So we can either carry out the full floating-mass analysis (e.g.  
use MC to get p-value), or do fixed mass analysis and apply a  
correction factor (much faster than MC). 

Gross and Vitells 
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Upcrossings of -2lnL 

〈N(c)〉 can be estimated  
from  MC (or the real  
data) using a much lower  
threshold c0: 

Gross and Vitells 

The Gross-Vitells formula for the trials factor requires 〈N(c)〉, 
the mean number  “upcrossings” of tfix = -2ln λ in the fit range based  
on a threshold c = tfix= Zfix

2. 
  

In this way 〈N(c)〉 can be 
estimated without need of 
large MC samples, even if  
the the threshold c is quite 
high. 
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Multidimensional look-elsewhere effect 
Generalization to multiple dimensions:  number of upcrossings 
replaced by expectation of Euler characteristic: 

Applications:  astrophysics (coordinates on sky), search for 
resonance of unknown mass and width, ... 

Vitells and Gross, Astropart. Phys. 35 (2011) 230-234; arXiv:1105.4355 
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Remember the Look-Elsewhere Effect is when we test a single 
model (e.g., SM) with multiple observations, i..e, in mulitple 
places. 

Note there is no look-elsewhere effect when considering 
exclusion limits.    There we test specific signal models (typically 
once) and say whether each is excluded. 

With exclusion there is, however, the analogous issue of testing  
many signal models (or parameter values) and thus excluding  
some even in the absence of signal (“spurious exclusion”) 

Approximate correction for LEE should be sufficient, and one  
should also report the uncorrected significance. 

 “There's no sense in being precise when you don't even  
 know what you're talking about.” ––  John von Neumann 

Summary on Look-Elsewhere Effect 
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Common practice in HEP has been to claim a discovery if the  
p-value of the no-signal hypothesis is below 2.9 × 10-7,  
corresponding to a significance Z = Φ-1 (1 – p) = 5 (a 5σ effect). 

There a number of reasons why one may want to require such 
a high threshold for discovery: 

 The “cost” of announcing a false discovery is high. 

 Unsure about systematics. 

 Unsure about look-elsewhere effect. 

 The implied signal may be a priori highly improbable 
 (e.g., violation of Lorentz invariance). 

Why 5 sigma? 
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But the primary role of the p-value is to quantify the probability 
that the background-only model gives a statistical fluctuation 
as big as the one seen or bigger. 

It is not intended as a means to protect against hidden systematics 
or the high standard required for a claim of an important discovery. 

In the processes of establishing a discovery there comes a point 
where it is clear that the observation is not simply a fluctuation, 
but an “effect”, and the focus shifts to whether this is new physics 
or a systematic. 

Providing LEE is dealt with, that threshold is probably closer to 
3σ than 5σ. 

Why 5 sigma (cont.)? 
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Partial summary 
Systematic uncertainties can be taken into account by including 
more (nuisance) parameters into the model. 

 Reduces sensitivity to the parameter of interest 

Treatment of nuisance parameters: 
 Frequentist:  profile 
 Bayesian:  marginalize 

Asymptotic formulae for profile likelihood ratio statistic 
 Independent of nuisance parameters for large sample 

Experimental sensitivity 
 Discovery:  expected (median) significance for test of  
 background- only hypothesis assuming presence of signal. 
 Limits:  expected limit on signal rate assuming no signal. 

Other topics:  CLs, Look-elsewhere effect, ... 
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Extra slides 
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Bayesian model selection (‘discovery’) 

no Higgs 

Higgs 

The probability of hypothesis H0 relative to an alternative H1 is  
often given by the posterior odds: 

Bayes factor B01 prior odds 

The Bayes factor is regarded as measuring the weight of  
evidence of the data in support of H0 over H1. 

Interchangeably use B10 = 1/B01 
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Assessing Bayes factors 
One can use the Bayes factor much like a p-value (or Z value). 

The Jeffreys scale, analogous to HEP's 5σ rule: 
 
B10   Evidence against H0 
-------------------------------------------- 
1 to 3   Not worth more than a bare mention 
3 to 20  Positive 
20 to 150  Strong 
> 150   Very strong 

Kass and Raftery, Bayes Factors, J. Am Stat. Assoc 90 (1995) 773. 
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Rewriting the Bayes factor 
Suppose we have models Hi, i = 0, 1, ..., 

each with a likelihood 

and a prior pdf for its internal parameters  

so that the full prior is 

where                         is the overall prior probability for Hi.  

The Bayes factor comparing Hi and Hj can be written  
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Bayes factors independent of P(Hi) 

For Bij we need the posterior probabilities marginalized over 
all of the internal parameters of the models: 

Use Bayes 
theorem 

So therefore the Bayes factor is 

The prior probabilities pi = P(Hi) cancel. 

Ratio of  marginal 
likelihoods 
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Numerical determination of Bayes factors 
Both numerator and denominator of Bij are of the form 

‘marginal likelihood’ 

Various ways to compute these, e.g., using sampling of the 
posterior pdf (which we can do with MCMC). 

 Harmonic Mean (and improvements) 
 Importance sampling 
 Parallel tempering (~thermodynamic integration) 
 Nested Samplying (MultiNest), ... 
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Priors for Bayes factors 
Note that for Bayes factors (unlike Bayesian limits), the prior  
cannot be improper.  If it is, the posterior is only defined up to an 
arbitrary constant, and so the Bayes factor is ill defined  

 Possible exception allowed if both models contain same 
 improper prior;  but having same parameter name (or Greek 
 letter) in both models does not fully justify this step. 

If improper prior is made proper e.g. by a cut-off, the Bayes factor 
will retain a dependence on this cut-off. 

In general or Bayes factors, all priors must reflect “meaningful” 
degrees of uncertainty about the parameters.  
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Harmonic mean estimator 
E.g., consider only one model and write Bayes theorem as: 

π(θ) is normalized to unity so integrate both sides, 

Therefore sample θ from the posterior via MCMC and estimate m  
with one over the average of 1/L (the harmonic mean of L). 

posterior 
expectation 
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Improvements to harmonic mean estimator 
The harmonic mean estimator is numerically very unstable; 
formally infinite variance (!).  Gelfand & Dey propose variant: 

Rearrange Bayes thm; multiply  
both sides by arbitrary pdf f(θ): 

Integrate over θ : 

Improved convergence if tails of f(θ) fall off faster than L(x|θ)π(θ) 

Note harmonic mean estimator is special case f(θ) = π(θ). 
. 
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Importance sampling 
Need pdf f(θ) which we can evaluate at arbitrary θ and also 
sample with MC. 

The marginal likelihood can be written 

Best convergence when f(θ) approximates shape of L(x|θ)π(θ). 

Use for f(θ) e.g. multivariate Gaussian with mean and covariance 
estimated from posterior (e.g. with MINUIT). 


