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Outline 
Lecture 1:  Introduction and review of fundamentals 

 Probability, random variables, pdfs 
 Parameter estimation, maximum likelihood 
 Statistical tests for discovery and limits 

Lecture 2:  Multivariate methods 
 Neyman-Pearson lemma 
 Fisher discriminant, neural networks 
 Boosted decision trees 

Lecture 3:  Systematic uncertainties and further topics 
 Nuisance parameters (Bayesian and frequentist) 
 Experimental sensitivity 
 The look-elsewhere effect 
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Resources on multivariate methods 

C.M. Bishop, Pattern Recognition and Machine Learning, 
Springer, 2006 

T. Hastie, R. Tibshirani, J. Friedman, The Elements of 
Statistical Learning, 2nd ed., Springer, 2009 

R. Duda, P. Hart, D. Stork, Pattern Classification, 2nd ed., 
Wiley, 2001 
A. Webb, Statistical Pattern Recognition, 2nd ed., Wiley, 2002. 

Ilya Narsky and Frank C. Porter, Statistical Analysis 
Techniques in Particle Physics, Wiley, 2014. 

朱永生 （编著），实验数据多元统计分析， 科学出版社，  
北京，2009。 
 
 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 2 4 

statpatrec.sourceforge.net 

Future support for project not clear. 
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A simulated SUSY event in ATLAS 

high pT 
muons 

high pT jets  
of hadrons 

missing transverse energy 

p p 
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Background events 
This event from Standard  
Model ttbar production also 
has high  pT jets and muons, 
and some missing transverse 
energy. 

→ can easily mimic a SUSY event. 
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Defining a multivariate critical region 
For each event, measure, e.g., 

 x1 =  missing energy, x2 = electron pT, x3 = ... 

Each event is a point in n-dimensional x-space; critical region 
is now defined by a ‘decision boundary’ in this space. 
What is best way to determine the boundary? 

W 
H1    (s) 

H0    (b) Perhaps with ‘cuts’: 
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Other multivariate decision boundaries 
Or maybe use some other sort of decision boundary: 

W 
H1 

H0 

W 
H1 

H0 

linear or nonlinear 

Multivariate methods for finding optimal critical region have 
become a Big Industry (neural networks, boosted decision trees,...), 
benefitting from recent advances in Machine Learning. 
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Test statistics 
The boundary of the critical region for an n-dimensional data 
space x = (x1,..., xn) can be defined by an equation of the form 

We can work out the pdfs 

Decision boundary is now a 
single ‘cut’ on t, defining 
the critical region. 

So for an n-dimensional 
problem we have a 
corresponding 1-d problem. 

where t(x1,…, xn) is a scalar test statistic. 
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Test statistic based on likelihood ratio  
How can we choose a test’s critical region in an ‘optimal way’? 

 Neyman-Pearson lemma states: 

To get the highest power for a given significance level in a test of 
H0, (background) versus H1, (signal) the critical region should have 

inside the region, and  ≤ c outside, where c is a constant chosen 
to give a test of the desired size. 

Equivalently, optimal scalar test statistic is 

N.B. any monotonic function of this is leads to the same test. 
G. Cowan  



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 2 11 

Classification viewed as a statistical test 

Probability to reject H0 if true (type I error): 

α = size of test, significance level, false discovery rate 

Probability to accept H0 if H1 true (type II error): 

1 - β = power of test with respect to H1  

Equivalently if e.g. H0 = background, H1 = signal, use efficiencies: 
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Purity / misclassification rate 
Consider the probability that an event of signal (s) type 
classified correctly (i.e., the event selection purity),  

Use Bayes’ theorem: 

Here W is signal region 
prior probability 

posterior probability = signal purity  
                                  = 1 – signal misclassification rate 

Note purity depends on the prior probability for an event to be 
signal or background as well as on s/b efficiencies. 
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Neyman-Pearson doesn’t usually help 
We usually don’t have explicit formulae for the pdfs f (x|s), f (x|b), 
so for a given x we can’t evaluate the likelihood ratio 

Instead we may have Monte Carlo models for signal and 
background processes, so we can produce simulated data: 

 generate x ~ f (x|s)     →     x1,..., xN 

 generate x ~ f (x|b)     →     x1,..., xN 
 
This gives samples of “training data” with events of known type. 

Can be expensive (1 fully simulated LHC event ~ 1 CPU minute). 
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Approximate LR from histograms 
Want t(x) = f (x|s)/ f(x|b) for x here 

N (x|s) ≈ f (x|s) 

N (x|b) ≈ f (x|b) 

N
(x
|s
)

N
(x
|b
)

One possibility is to generate 
MC data and construct 
histograms for both 
signal and background. 
 
Use (normalized) histogram  
values to approximate LR: 

x

x

Can work well for single  
variable. 
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Approximate LR from 2D-histograms 
Suppose problem has 2 variables.  Try using 2-D histograms: 

Approximate pdfs using N (x,y|s), N (x,y|b) in corresponding cells. 
But if we want M bins for each variable, then in n-dimensions we 
have Mn cells; can’t generate enough training data to populate. 

 → Histogram method usually not usable for n > 1 dimension. 

signal back- 
ground 
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Strategies for multivariate analysis 

Neyman-Pearson lemma gives optimal answer, but cannot be 
used directly, because we usually don’t have f (x|s), f (x|b). 

Histogram method with M bins for n variables requires that 
we estimate Mn parameters (the values of the pdfs in each cell), 
so this is rarely practical. 

A compromise solution is to assume a certain functional form 
for the test statistic t (x) with fewer parameters; determine them 
(using MC) to give best separation between signal and background. 

Alternatively, try to estimate the probability densities f (x|s) and  
f (x|b) (with something better than histograms) and use the  
estimated pdfs to construct an approximate likelihood ratio. 
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Linear test statistic 

Suppose there are n input variables:  x = (x1,..., xn).   
 

Consider a linear function: 

For a given choice of the coefficients w = (w1,..., wn) we will 
get pdfs f (y|s) and f (y|b) : 
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Linear test statistic 

Fisher:  to get large difference between means and small widths  
for f (y|s) and f (y|b),  maximize the difference squared of the 
expectation values divided by the sum of the variances: 

Setting ∂J / ∂wi = 0 gives for w = (w1, ... wn): 

, 
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The Fisher discriminant 

The resulting coefficients wi define a Fisher discriminant. 

Coefficients defined up to multiplicative constant; can also 
add arbitrary offset, i.e., usually define test statistic as 

Boundaries of the test’s 
critical region are surfaces  
of constant y(x), here linear  
(hyperplanes): 
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Fisher discriminant for Gaussian data 

Suppose the pdfs of the input variables, f (x|s) and f (x|b), are both  
multivariate Gaussians with same covariance but different means: 

f (x|s)  = Gauss(µs, V) 

f (x|b)  = Gauss(µb, V) 
Same covariance  
Vij = cov[xi, xj] 

In this case it can be shown  
that the Fisher discriminant is 

i.e., it is a monotonic function of the likelihood ratio and thus 
leads to the same critical region.  So in this case the Fisher 
discriminant provides an optimal statistical test. 
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The activation function 
For activation function h(·) often use logistic sigmoid: 
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Network architecture 
Theorem:  An MLP with a single hidden layer having a sufficiently 
large number of nodes can approximate arbitrarily well the optimal 
decision boundary. 
 
Holds for any continuous non-polynomial activation function 
Leshno, Lin, Pinkus and Schocken (1993) Neural Networks 6, 861-867 

However, the number of required nodes may be very large; cannot 
train well with finite samples of training data. 

Recent advances in Deep Neural Networks have shown important 
advantages in having multiple hidden layers. 

For a particle physics application of Deep Learning, see e.g.  
Baldi, Sadowski and Whiteson, Nature Communications 5 (2014);  arXiv:1402.4735. 
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Overtraining 
Including more parameters in a classifier makes its decision boundary  
increasingly flexible, e.g., more nodes/layers for a neural network. 

A “flexible” classifier may conform too closely to the training points;  
the same boundary will not perform well on an independent test  
data sample (→ “overtraining”). 

training sample independent test sample 
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Monitoring overtraining 
If we monitor the fraction of misclassified events (or similar, e.g.,  
error function E(w)) for test and training samples, it will usually  
decrease for both as the boundary is made more flexible: 

error 
rate 

flexibility (e.g., number  
of nodes/layers in MLP) 

test sample 
training sample 

optimum at minimum of 
error rate for test sample 

increase in error rate 
indicates overtraining 
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Neural network example from LEP II 
Signal:  e+e- → W+W-    (often 4 well separated hadron jets) 
Background:  e+e- → qqgg  (4 less well separated hadron jets) 

←  input variables based on jet 
structure, event shape, ... 
none by itself gives much separation. 

Neural network output: 

(Garrido, Juste and Martinez, ALEPH 96-144) 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 2 35 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 2 36 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 2 37 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 2 38 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 2 39 

Naive Bayes method 
First decorrelate x, i.e., find y = Ax, with cov[yi, yj] = V[yi] δij . 
Pdfs of x and y are then related by 

where 

If nonlinear features of g(y) not too important, estimate using 
product of marginal pdfs: 

Do separately for the two hypotheses s and b (separate matrices 
As and Ab and marginal pdfs gs,i, gb,i).  Then define test statistic as 

Called Naive Bayes classifier. Reduces 
problem of estimating an n-dimensional pdf 
to finding n one-dimensional marginal pdfs. 
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Kernel-based PDE (KDE) 
Consider d dimensions, N training events, x1, ..., xN,  
estimate f (x) with 

Use e.g. Gaussian kernel: 

kernel 
bandwidth  
(smoothing parameter) 

x where we want  
to know pdf 

x of ith training 
event 
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Gaussian KDE in 1-dimension 
Suppose the pdf (dashed line) below is not known in closed form,  
but we can generate events that follow it (the red tick marks): 

Goal is to find an approximation to the pdf using the generated  
date values. 
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Gaussian KDE in 1-dimension (cont.) 
Place a kernel pdf (here a Gaussian) centred around each  
generated event weighted by 1/Nevent: 
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Gaussian KDE in 1-dimension (cont.) 
The KDE estimate the pdf is given by the sum of  
all of the Gaussians: 
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Choice of kernel width 
The width h of the Gaussians is analogous to the bin width 
of a histogram.  If it is too small, the estimator has noise: 
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If width of Gaussian kernels too large, structure is washed out: 

Choice of kernel width (cont.) 
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Various strategies can be applied to choose width h of kernel 
based trade-off between bias and variance (noise). 

 Adaptive KDE allows width of kernel to vary, e.g., wide where 
target pdf is low (few events); narrow where pdf is high. 

Advantage of KDE:  no training!   

Disadvantage of KDE:  to evaluate we need to sum Nevent terms,  
so if we have many events this can be slow. 

Special treatment required if kernel extends beyond range 
where pdf defined.  Can e.g., renormalize the kernels to unity 
inside the allowed range; alternatively “mirror” the events 
about the boundary (contribution from the mirrored events  
exactly compensates the amount lost outside the boundary). 

Software in ROOT:  RooKeysPdf   (K. Cranmer, CPC 136:198,2001) 

KDE discussion 
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Each event characterized by 3 variables,  x, y, z: 
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Test example (x, y, z) 

no cut on z 

z < 0.5 z < 0.25 

z < 0.75 

x

xx

x

y

y

y

y
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Test example results 

Fisher 
discriminant 

Naive Bayes,  
no decor- 
relation 

Multilayer 
perceptron 

Naive Bayes 
with decor- 
relation 
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Particle i.d. in MiniBooNE 
Detector is a 12-m diameter tank 
of mineral oil exposed to a beam 
of neutrinos and viewed by 1520 
photomultiplier tubes: 

H.J. Yang, MiniBooNE PID, DNP06 

Search for νµ to νe oscillations  
required particle i.d. using  
information from the PMTs. 
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Decision trees 
Out of all the input variables, find the one for which with a 
single cut gives best improvement in signal purity: 

Example by MiniBooNE experiment, 
B. Roe et al., NIM 543 (2005) 577 

where wi. is the weight of the ith event. 

Resulting nodes classified as either 
signal/background. 

Iterate until stop criterion reached 
based on e.g. purity or minimum 
number of events in a node. 
The set of cuts defines the decision 
boundary. 
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Finding the best single cut 
The level of separation within a node can, e.g., be quantified by 
the Gini coefficient, calculated from the (s or b) purity as: 

For a cut that splits a set of events a into subsets b and c, one 
can quantify the improvement in separation by the change in  
weighted Gini coefficients: 

where, e.g.,   

Choose e.g. the cut to the maximize Δ; a variant of this 
scheme can use instead of Gini e.g. the misclassification rate: 
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Decision trees (2) 
The terminal nodes (leaves) are classified a signal or background 
depending on majority vote (or e.g. signal fraction greater than a 
specified threshold). 

This classifies every point in input-variable space as either signal 
or background, a decision tree classifier, with discriminant function 

f(x) = 1 if x in signal region, -1 otherwise 

Decision trees tend to be very sensitive to statistical fluctuations in 
the training sample. 

Methods such as boosting can be used to stabilize the tree. 
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1 

1 
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< 
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Monitoring overtraining  

From MiniBooNE 
example: 
Performance stable 
after a few hundred 
trees. 
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A simple example (2D) 
Consider two variables, x1 and x2, and suppose we have formulas 
for the joint pdfs for both signal (s) and background (b) events (in 
real problems the formulas are usually not available). 

     f(x1|x2) ~ Gaussian, different means for s/b, 
    Gaussians have same σ, which depends on x2, 
    f(x2) ~ exponential, same for both s and b, 
    f(x1, x2) =  f(x1|x2) f(x2): 
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Joint and marginal distributions of x1, x2 

background 

signal 

Distribution f(x2) same for s, b. 

So does x2 help discriminate 
between the two event types? 
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Likelihood ratio for 2D example 
Neyman-Pearson lemma says best critical region is determined 
by the likelihood ratio: 

Equivalently we can use any monotonic function of this as 
a test statistic, e.g., 

Boundary of optimal critical region will be curve of constant ln t, 
and this depends on x2! 
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Contours of constant MVA output 

Exact likelihood ratio Fisher discriminant 
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Contours of constant MVA output 

Multilayer Perceptron 
1 hidden layer with 2 nodes 

Boosted Decision Tree 
200 iterations (AdaBoost) 

Training samples:  105 signal and 105 background events 
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ROC curve 

ROC = “receiver operating  
characteristic” (term from  
signal processing). 
 
Shows (usually) background  
rejection (1-εb) versus  
signal efficiency εs. 
 
Higher curve is better;  
usually analysis focused on 
a small part of the curve. 
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2D Example:  discussion 
Even though the distribution of x2 is same for signal and 
background, x1 and x2 are not independent, so using x2 as an input 
variable helps. 

Here we can understand why:  high values of x2 correspond to a 
smaller σ for the Gaussian of x1.  So high x2 means that the value 
of x1 was well measured. 

If we don’t consider x2, then all of the x1 measurements are 
lumped together.  Those with large σ (low x2) “pollute” the well 
measured events with low σ (high x2). 

Often in HEP there may be variables that are characteristic of how 
well measured an event is (region of detector, number of pile-up 
vertices,...).  Including these variables in a multivariate analysis 
preserves the information carried by the well-measured events, 
leading to improved performance. 
 
 
 
In this example we can understand why x2 is useful, even 
though both signal and background have same pdf for x2. 
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Summary on multivariate methods 
Particle physics has used several multivariate methods for many years: 

 linear (Fisher) discriminant 
 neural networks 
 naive Bayes   

and has in recent years started to use a few more: 

 boosted decision trees 
 support vector machines 
 kernel density estimation 
 k-nearest neighbour 

The emphasis is often on controlling systematic uncertainties between 
the modeled training data and Nature to avoid false discovery. 

Although many classifier outputs are "black boxes", a discovery 
at 5σ significance with a sophisticated (opaque) method will win the 
competition if backed up by, say, 4σ evidence from a cut-based method. 
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Extra slides 
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Example of optimal selection region: 
measurement of signal cross section 

Suppose that for a given event selection region, the expected 
numbers of signal and background events are: 

cross  
section 

efficiency luminosity 

The number n of selected events will follow a Poisson distribution  
with mean value s + b:   
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Optimal selection for measurement of signal rate 
Suppose only unknown is s (or equivalently, σs) and goal is to 
measure this with best possible accuracy by counting the number 
of events n observed in data.  The (log-)likelihood function is 

Set derivative of lnL(s) with respect to s equal to zero and solve 
to find maximum-likelihood estimator: 

Variance of s is: ⌃ 

So “relative precision” of measurement is:   
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Optimal selection (continued) 
So if our goal is best relative precision of a measurement, then  
choose the event selection region to maximize  

In other analyses, we may not know whether the signal 
process exists (e.g., SUSY), and goal is to search for it. 

Then we try to maximize the probability, assuming the signal exists,  
of discovery, i.e., rejecting background-only hypothesis. 

To do this we can maximize, e.g., 

or similar (depending on details of problem;  
more on this later). 

In general, optimal trade-off between efficiency and purity 
will depend on the goals of the analysis. 


