Particle Identification

Huaqiao ZHANG (IHEP)

Some materials from Roger Forty's lecture

1

Example of high energy physics detectors

Example of high energy physics detectors

Example of high energy physics detectors

What particle to identify

• Long life time (Stable)

2015-8-14

Interaction with detectors => signals

Hadrons

- Instead of making do with jet reconstruction, often the physics under study requires the identification of *individual* hadrons
- Most are unstable, and decay into a few long-lived particles:

Particle	<i>m</i> [MeV]	Quarks	Main decay	L	ifetime	<i>с</i> т [ст]
π^{\pm}	140	ud	μv_{μ}	2.6	10-8 s	780
K±	494	us	$\mu \nu_{\mu}, \pi \pi^0$	1.2	10 ⁻⁸ s	370
K _S ⁰	498	ds	ππ	0.9	10 ⁻¹⁰ s	2.7
K _L ⁰	498	ds	πππ, π <i>l</i> ν	5	10 ⁻⁸ s	1550
р	938	uud	stable	> 10 ²	²⁵ years	
n	940	udd	pev _e		890 s	2.7
Λ	1116	uds	рπ	2.6	10 ⁻¹⁰ s	10 ¹³ 7.9

6

Outline

- General principle for particle identification
- Examples of High Energy physics detector
 - CMS detector
 - Photons/Electrons ID
 - Muons ID
 - Taus/jets ID
 - Others ID

例子: 光子的探测

• 每个人都有的光子探测器

电磁波: 收音机 可见光: 眼睛 红外,紫外探测器等

8

高能物理探测的光子能量: keV, MeV, GeV, even TeV

All particle ID are under certain conditions!!

General principle for particle identification

Use interactions

	电磁相互作用	弱相互作用	强相互作用	引力相互作用
源	电荷	弱荷	色荷	质量
作用强度	$rac{e^2}{\hbar c} \simeq rac{1}{137}$	$(rac{m_pc}{\hbar})^2 rac{G}{\hbar c} \sim 10^{-5}$	$\frac{g^2}{\hbar c} \simeq 10$	$rac{Gm_p^2}{\hbar c} \sim 10^{-38}$
力程	长程	短程	短程	长程
(m)	∞	$\sim 10^{-18}$	10^{-15}	∞
传递者	光子	中间玻色子	胶子	引力子(尚未发现)
	γ	W^{\pm}, Z^0	g	G
自旋宇称	1-	1?	1-	2+
质量(GeV)	$M_\gamma=0$	$M_{W^{\pm}} = 80.4$ $M_{Z^0} = 91.2$	$M_g = 0$	$M_G = 0$
理论描述	电弱统一理论		量子色动力学	几何动力学
	(EW)		(QCD)	(广义相对论)

表 1.1: 四种相互作用的性质

How to Identify particles?

- The signature of these particles
 - Interactions with material
 - Masses
 - Lifetime
 - C,P,S... quantum numbers
- Methodology
 - For charged particles:
 - Measurement of their mass
 - Interaction with absorbers
 - For neutral and stable particle
 - Interaction with absorbers
 - For unstable particles
 - Study the decay products

Charged particles ID

- **Everyone has charge**
 - Determinate their **mass** to ID particles
- $p = \gamma m v$
 - momentum is measured by the check the curving in the magnet field of tracking system: pT = q B R
 - Then need to know the **velocity**

- Velocity measured by 4 main processes :
 - 1. Time Of Flight (TOF) of the particles over a fixed distance
 - 2. Alternatively one can look at the detail of their interaction with matter The main source of energy loss is via **lonization** (dE/dx)
 - 3. If the velocity of the particle changes compared to the local speed of light it will radiate photons, detected as Transition radiation
 - 4. If a particle travels at *greater* than the local speed of light, it will radiate **Cherenkov** radiation 2015-8-14

Time Of Flight

- Simple concept: measure the time difference between two detector planes $\beta = d/c\Delta t$
- At high energy, particle speeds are relativistic, closely approaching to *c*
- For a 10 GeV K, the time to travel 12 m is 40.05 ns, whereas for a π it would be 40.00 ns, so the difference is only 50 ps

$$\delta t = L\left(\frac{1}{v_1}-\frac{1}{v_2}\right) \approx \frac{Lc}{2p^2}(m_1^2-m_2^2)$$

 Moderr have reso for the LH

have resolution $\sigma_t \sim 10$ ns, fast enough for the LHC (bunch crossings 25 ns apart) but need $\sigma_t < 1$ ns to do useful TOF

TOF gives good ID at low momentum
 Very precise timing required for p > 5 GeV

Example usage

TOF在ALICE实验上的运用 2015-8-14

对于远处的闪电 先看到闪电:光波(光子) 后听到雷声:声波(声子)

对于太近的闪电,人耳可能无法 区分闪电和雷声的先后

Ionization

- Charged particles passing through matter can knock out electrons from atoms of the medium: *ionization*
- Energy loss described by the Bethe-Bloch formula, which gives the universal velocity dependence: $dE/dx \propto \log(\beta^2 \gamma^2) / \beta^2$
- This can be used to identify particles, particularly at low momentum where *dE/dx* varies rapidly
- Advantage: uses existing detectors needed for tracking (but requires the accurate measurement of the charge)
- Note: these techniques all provide signals for charged *leptons* e, μ as well as π, K, p
 But m_μ ≈ m_π, so they are not well separated (dedicated detectors do a better job)

Examples

Transition radiation

- Local speed of light in a medium with refractive index n is $c_p = c/n$
- If its relative velocity v/c_p changes, a particle will radiate photons:
 - 1. Change of direction \mathbf{v} (in magnetic field) \rightarrow Synchrotron radiation
 - Change of |v| (passing through matter) 2.
 - Change of refractive index *n* of medium 3.
- Transition radiation is emitted whenever a relativistic charged particle traverses the border between two media with different dielectric constants ($n \sim \sqrt{\varepsilon}$)
- The energy emitted is proportional to the boost γ of the particle
 - Particularly useful for electron ID
 - Can also be used for hadrons at high energy

- \rightarrow Bremsstrahlung radiation
- \rightarrow Transition radiation

Example usage: ATLAS TRT

- Transition Radiation Tracker
 - Electron has faster velocity than other hadrons for same momentum

Cherenkov light

- Named after the Russian scientist P. Cherenkov who was the first to study the effect in depth (he won the Nobel Prize for it in 1958)
- From Relativity, nothing can go faster than the speed of light *c* (in vacuum)
- However, due to the refractive index *n* of a material, a particle *can* go faster than the *local* speed of light in the medium $c_p = c/n$
- This is analogous to the bow wave of a boat travelling over water or the sonic boom of an aeroplane travelling faster than the speed of sound

Huaqiao ZHANG (IHEP)

• A stationary boat bobbing up and down on a lake, producing waves

- Now the boat starts to move, but slower than the waves
- No coherent wavefront is formed

- Next the boat moves faster than the waves
- A coherent wavefront is formed

- Finally the boat moves even faster
- The angle of the coherent wavefront changes

Speed calculation

- Using this construction, we can determine (roughly) the boat speed:
 - θ 70°, $v_{wave} = 2$ km/h on water $\rightarrow v_{boat} = v_{wave}/\cos \theta$ 6 km/h
- Cherenkov light is produced when charged particle $(v_{boat} = \beta c)$ goes faster than the speed of light $(v_{wave} = c/n)$

 $\rightarrow \cos \theta_{\rm C} = 1 / \beta n$

- Produced in three dimensions, so the wavefront forms a *cone* of light around the particle direction
- Measuring the opening angle of cone
 → particle velocity can be determined

Stable particle identification

Examples: CMS detector

Unstable particle ID: two body decay

• $E^2 = p^2 + m^2$

- The full expression is $E^2 = p^2c^2 + m^2c^4$ but factors of *c* are often dropped
- Consider a particle that decays to give two daughter particles:

- The *invariant mass* of the two particles from the decay:
- $M^2 = m_1^2 + m_2^2 + 2(E_1E_2 p_1p_2\cos\theta)$
- \rightarrow to reconstruct the parent mass a precise knowledge of the momentum and the angle θ of decay products is needed, from the tracking system, as well as their particle type, which determines their masses m_1 and m_2

2015-8-14

Huaqiao ZHANG (IHEP)

26

V⁰ 2-prong decay reconstruction

• V^os can be reconstructed from the kinematics of their positively and negatively charged decay products, without needing to identify the π or p

• $M^2 = (E_1 + E_2 + ... + E_n)^2 - (p_1 + p_2 + ... + p_n)^2$

e/γ identification (1)

- When incident on matter at high energy, photons convert to e⁺e⁻ pairs Since the electrons (and positrons) produce more photons by Bremsstahlung, a shower develops of e[±] and γ, until the energy of the incident particle has been used up
 - Special shower profile
- Such showers are similar for electrons and photons
 Distinguished by the existence (or not) ²⁰¹⁵⁻⁸⁻¹⁴ of a track associated to the shower

37

e/γ identification (2)

- Radiation length X₀ = mean distance to reduce energy by 1/e
 eg X₀ = 1.76 cm for Fe, so these electromagnetic showers are compact
- Distinguish electron/photon by the existence (or not) of a track associated to the shower
- For the electron, *E* (energy measured in EM calorimeter) and *p* (momentum from tracker) should be equal: *E/p* = 1
- Not the case for other charged particles

Muons

- Muons act like heavier versions of the electron, with mass 105.7 MeV
- They decay to electrons $\mu^- \rightarrow e^- v_e v_\mu$ with (proper) lifetime τ_μ = 2.2 µs
- Distance they travel (on average) before decay: $d = \beta \gamma c \tau_{\mu}$ where velocity $\beta = v/c$ boost $\gamma = E/m = 1/\sqrt{(1-\beta^2)}$
- So a 10 GeV muon flies ~ 60 km before decay
 >> detector size
- effectively stable
- Since mass is large, Bremsstrahlung radiation is small, and as a lepton it does not feel the strong interaction

most penetrating charged particle

Tau leptons

- Taus are heavier still, $m_{\tau} = 1.78 \text{ GeV}$
- Heavy enough that can decay to many final states: $\tau^- \rightarrow \mu^- \nu_\mu \nu_\tau$, $\pi^- \nu_\tau$, $\pi^- \pi^0 \nu_\tau$, $\pi^- \pi^- \pi^+ \nu_\tau$, ...
- Lifetime τ_{τ} = 0.29 ps (ps = 10⁻¹² s) so a 10 GeV tau flies ~ 0.5 mm
- This is typically too short to be seen directly in the detectors
 - Instead the decay products are seen
- Accurate vertex detectors can detect that they do not come exactly from the interaction point

Quarks

- Quarks feel the strong interaction, mediated by gluons
- Not seen in the detector, due to confinement property of QCD
- Instead, they-hadronize into mesons (qq) or baryons (qqq)
- At high energy >> m_q initial quark (or gluon) produces a "jet" of hadrons
- Gluon and quark jets are difficult to distinguish: gluon jets tend to be wider, and have a softer particle spectrum

Jet reconstruction

- Jets are reconstructed by summing up the particles assigned to the jet
- Typically check within a cone size around the direction of a "seed" particle, or by iteratively adding up pairs of particles that give the lowest invariant mass
- Different quark flavours can be separated (at least statistically) by looking for displaced tracks from b- and c-hadron decays
- The jet properties can be used to approximate the quark or gluon
- Special alg. Used to ID b-jets: life time

Boost objects

- Highly boosted W/Z/H/t...
 - Typical Pt > ~500 GeV
 - Form a big fat jet
 - With several energy centers
 - Invariant mass
 - b-jets inside
- Very interesting for higher energy colliders (> ~13TeV)

Neutrinos

- Neutral (i.e. no track) and only weak interaction
 - pass though matter easily
- Interaction length $\lambda_{int} = A / (\rho \sigma N_A)$, cross section $\sigma \sim 10^{-38} \text{ cm}^2 \times E \text{ [GeV]}$
 - a 10 GeV neutrino can pass through > million km of rock
- Neutrinos are usually detected in HEP experiments through *missing energy* (applying *E* conservation to rest of the event, usually in transverse plane E_{T})
- Dedicated experiments can also identify neutrinos

$$\bar{\nu}_{e} + p \rightarrow e^{+} + n$$

良好的屏蔽去掉其他粒子信号的可能 正负电子湮灭+液闪捕获中子:光子 光子探测器阵列探测到光子信号

Neutrino flavours

- Can even determine the neutrino flavour (v_e , v_μ , v_τ) from their charged-current interaction: $v_\mu N \rightarrow \mu^- X$, etc
- OPERA searches for v_{τ} created by neutrino oscillation from a v_{μ} beam (sent 730 km from CERN to Italy)
- Tau decay seen as track kink in a high precision emulsion detector, interleaved with lead sheets to provide the high mass of the target

First observation of ν_{τ} (DONUT)

 ν_{μ}

W

μ

Summary

 General principle for particle ID

- Example of how CMS identify particles
 - Photons/Electrons/Muons/T aus/jets/boost objects

• Enjoy