
G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 1 1 

Statistical Methods for Particle Physics 
Lecture 1:  intro, parameter estimation, tests 

iSTEP 2015 
Shandong University, Jinan 
August 11-19, 2015 

Glen Cowan (谷林·科恩） 
Physics Department 
Royal Holloway, University of London 
g.cowan@rhul.ac.uk 
www.pp.rhul.ac.uk/~cowan 

TexPoint fonts used in EMF.  
Read the TexPoint manual before you delete this box.: AAAA 

http://indico.ihep.ac.cn/event/4902/ 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 1 2 

Outline 
Lecture 1:  Introduction and review of fundamentals 

 Probability, random variables, pdfs 
 Parameter estimation, maximum likelihood 
 Statistical tests for discovery and limits 

Lecture 2:  Multivariate methods 
 Neyman-Pearson lemma 
 Fisher discriminant, neural networks 
 Boosted decision trees 

Lecture 3:  Systematic uncertainties and further topics 
 Nuisance parameters (Bayesian and frequentist) 
 Experimental sensitivity 
 The look-elsewhere effect 
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Some statistics books, papers, etc.  
G. Cowan, Statistical Data Analysis, Clarendon, Oxford, 1998 
R.J. Barlow, Statistics: A Guide to the Use of Statistical Methods in 
the Physical Sciences, Wiley, 1989 
Ilya Narsky and Frank C. Porter, Statistical Analysis Techniques in 
Particle Physics, Wiley, 2014.   
L. Lyons, Statistics for Nuclear and Particle Physics, CUP, 1986 
F. James., Statistical and Computational Methods in Experimental 
Physics, 2nd ed., World Scientific, 2006 
S. Brandt, Statistical and Computational Methods in Data 
Analysis, Springer, New York, 1998 (with program library on CD) 
K.A. Olive et al. (Particle Data Group), Review of Particle Physics, 
Chin. Phys. C, 38, 090001 (2014).; see also pdg.lbl.gov sections 
on probability, statistics, Monte Carlo 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 1 4 

More statistics books （中文） 

朱永生，实验物理中的概率和统计（第二版），科学出版社，
北京， 2006。 

朱永生 （编著），实验数据多元统计分析， 科学出版社，  
北京，2009。 
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Theory ↔ Statistics ↔ Experiment 

+ simulation 
of detector 
and cuts 

Theory (model, hypothesis): Experiment: 

+ data 
selection 
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Data analysis in particle physics  
Observe events (e.g., pp collisions) and for each, measure 
a set of characteristics: 

 particle momenta, number of muons, energy of jets,... 

Compare observed distributions of these characteristics to  
predictions of theory.  From this, we want to: 

   Estimate the free parameters of the theory: 

   Quantify the uncertainty in the estimates: 

   Assess how well a given theory stands in agreement  
   with the observed data: 

 
To do this we need a clear definition of PROBABILITY 
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A definition of probability  
Consider a set S with subsets A, B, ... 

Kolmogorov 
axioms (1933) 

Also define conditional  
probability of A given B: 

Subsets A, B independent if: 

If A, B independent, 
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Interpretation of probability 
I.  Relative frequency 

 A, B, ... are outcomes of a repeatable experiment  

cf. quantum mechanics, particle scattering, radioactive decay... 

II.  Subjective probability 
 A, B, ... are hypotheses (statements that are true or false)  

•   Both interpretations consistent with Kolmogorov axioms. 
•   In particle physics  frequency interpretation often most useful, 
but subjective probability can provide more natural treatment of  
non-repeatable phenomena:   
     systematic uncertainties, probability that Higgs boson exists,... 
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Bayes’ theorem 
From the definition of conditional probability we have, 

and 

but , so 

Bayes’ theorem 

First published (posthumously) by the 
Reverend Thomas Bayes (1702−1761) 

An essay towards solving a problem in the 
doctrine of chances, Philos. Trans. R. Soc. 53 
(1763) 370; reprinted in Biometrika, 45 (1958) 293. 
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The law of total probability 

Consider a subset B of  
the sample space S, 

B ∩ Ai 

Ai 

B 

S 

divided into disjoint subsets Ai 
such that ∪i Ai = S, 

→ 

→ 

→ law of total probability 

Bayes’ theorem becomes 



iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 1 11 

An example using Bayes’ theorem 
Suppose the probability (for anyone) to have a disease D is: 

← prior probabilities, i.e., 
     before any test carried out 

Consider a test for the disease:  result is + or -

← probabilities to (in)correctly 
     identify a person with the disease 

← probabilities to (in)correctly 
     identify a healthy person 

Suppose your result is +.  How worried should you be?

G. Cowan  
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Bayes’ theorem example (cont.) 
The probability to have the disease given a + result is 

i.e. you’re probably OK! 

Your viewpoint:  my degree of belief that I have the disease is 3.2%. 

Your doctor’s viewpoint:  3.2% of people like this have the disease.

← posterior probability 

G. Cowan  
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Frequentist Statistics − general philosophy  
In frequentist statistics, probabilities are associated only with 
the data, i.e., outcomes of repeatable observations (shorthand:     ). 

 Probability = limiting frequency 

Probabilities such as 

 P (Higgs boson exists),  
 P (0.117 < αs < 0.121),  

etc. are either 0 or 1, but we don’t know which. 
The tools of frequentist statistics tell us what to expect, under 
the assumption of certain probabilities, about hypothetical 
repeated observations. 

A hypothesis is is preferred if the data are found in a region of 
high predicted probability (i.e., where an alternative hypothesis 
predicts lower probability). 
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Bayesian Statistics − general philosophy  
In Bayesian statistics, use subjective probability for hypotheses: 

posterior probability, i.e.,  
after seeing the data 

prior probability, i.e., 
before seeing the data 

probability of the data assuming  
hypothesis H (the likelihood) 

normalization involves sum  
over all possible hypotheses 

Bayes’ theorem has an “if-then” character:  If your prior 
probabilities were π(H), then it says how these probabilities 
should change in the light of the data. 

 No general prescription for priors (subjective!) 
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Random variables and probability density functions 
A random variable is a numerical characteristic assigned to an 
element of the sample space; can be discrete or continuous. 

Suppose outcome of experiment is continuous value x  

→ f (x) = probability density function (pdf) 

Or for discrete outcome xi with e.g. i = 1, 2, ... we have 

x must be somewhere 

probability mass function 

x must take on one of its possible values 

G. Cowan  
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Other types of probability densities 
Outcome of experiment characterized by several values, 
e.g. an n-component vector, (x1, ... xn)  

Sometimes we want only pdf of some (or one) of the components 

→  marginal pdf  

→  joint pdf  

Sometimes we want to consider some components as constant 

→  conditional pdf  

x1, x2 independent if  

G. Cowan  
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Expectation values 
Consider continuous r.v. x with pdf  f (x).   

Define expectation (mean) value as 

Notation (often):                         ~ “centre of gravity” of pdf.  

For a function y(x) with pdf g(y),  

(equivalent) 

Variance: 

Notation: 

Standard deviation: 

σ ~ width of pdf, same units as x. 

G. Cowan  
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Covariance and correlation 
Define covariance cov[x,y] (also use matrix notation Vxy) as   

Correlation coefficient (dimensionless) defined as 

If x, y, independent, i.e.,  ,   then 

→ x and  y, ‘uncorrelated’ 

N.B. converse not always true. 

G. Cowan  
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Correlation (cont.)  

G. Cowan  
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Review of frequentist parameter estimation 
Suppose we have a pdf characterized by one or more parameters: 

random variable 

Suppose we have a sample of observed values: 

parameter 

We want to find some function of the data to estimate the  
parameter(s): 

←  estimator written with a hat 

Sometimes we say ‘estimator’ for the function of x1, ..., xn; 
‘estimate’ for the value of the estimator with a particular data set. 
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Properties of estimators 
If we were to repeat the entire measurement, the estimates 
from each would follow a pdf: 

biased large 
variance 

best 

We want small (or zero) bias (systematic error): 
→  average of repeated measurements should tend to true value. 

And we want a small variance (statistical error): 
→  small bias & variance are in general conflicting criteria 
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Distribution, likelihood, model 
Suppose the outcome of a measurement is x. (e.g., a number of  
events, a histogram, or some larger set of numbers). 

The probability density (or mass) function or ‘distribution’ of x, 
which may depend on parameters θ, is: 

P(x|θ)       (Independent variable is x; θ is a constant.) 

If we evaluate P(x|θ) with the observed data and regard it as a 
function of the parameter(s), then this is the likelihood: 

We will use the term ‘model’ to refer to the full function P(x|θ) 
that contains the dependence both on x and θ. 

L(θ) = P(x|θ)         (Data x fixed; treat L as function of θ.) 
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Bayesian use of the term ‘likelihood’ 
We can write Bayes theorem as 

where L(x|θ) is the likelihood.   It is the probability for x given 
θ, evaluated with the observed x, and viewed as a function of θ. 

Bayes’ theorem only needs L(x|θ) evaluated with a given data  
set (the ‘likelihood principle’). 

For frequentist methods, in general one needs the full model. 

For some approximate frequentist methods, the likelihood  
is enough. 
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The likelihood function for i.i.d.*. data 

Consider n independent observations of x:  x1, ..., xn,  where  
x follows f (x; θ).  The joint pdf for the whole data sample is: 

In this case the likelihood function is 

(xi constant) 

* i.i.d. = independent and identically distributed 
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Maximum likelihood 
The most important frequentist method for 
constructing estimators is to take the value of  
the parameter(s) that maximize the likelihood: 

The resulting estimators are functions of  
the data and thus characterized by a sampling  
distribution with a given (co)variance: 

In general they may have a nonzero bias: 

Under conditions usually satisfied in practice, bias of ML estimators 
is zero in the large sample limit, and the variance is as small as 
possible for unbiased estimators.   

ML estimator may not in some cases be regarded as the optimal  
trade-off between these criteria (cf. regularized unfolding). 
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ML example:  parameter of exponential pdf 

Consider exponential pdf, 

and suppose we have i.i.d. data, 

The likelihood function is 

The value of τ for which L(τ) is maximum also gives the  
maximum value of its logarithm (the log-likelihood function): 
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ML example:  parameter of exponential pdf (2) 

Find its maximum by setting  

→ 

Monte Carlo test:   
 generate 50  values 
 using τ = 1: 

 
We find the ML estimate: 
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ML example:  parameter of exponential pdf (3) 

For the ML estimator  

For the exponential distribution one has for mean, variance: 

we therefore find 

→ 

→ 
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Variance of estimators:  Monte Carlo method 
Having estimated our parameter we now need to report its 
‘statistical error’, i.e., how widely distributed would estimates 
be if we were to repeat the entire measurement many times. 

One way to do this would be to simulate the entire experiment 
many times with a Monte Carlo program (use ML estimate for MC). 

For exponential example, from  
sample variance of estimates 
we find: 

Note distribution of estimates is roughly 
Gaussian − (almost) always true for  
ML in large sample limit. 
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Variance of estimators from information inequality 
The information inequality (RCF) sets a lower bound on the  
variance of any estimator (not only ML): 

Often the bias b is small, and equality either holds exactly or 
is a good approximation (e.g. large data sample limit).   Then, 

Estimate this using the 2nd derivative of  ln L at its maximum: 

Minimum Variance 
Bound (MVB)  
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Variance of estimators: graphical method 
Expand ln L (θ) about its maximum: 

First term is ln Lmax, second term is zero, for third term use  
information inequality (assume equality): 

i.e., 

→  to get , change θ away from until ln L decreases by 1/2. 
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Example of variance by graphical method 

ML example with exponential: 

Not quite parabolic ln L since finite sample size (n = 50). 
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Information inequality for n parameters 
Suppose we have estimated n parameters    

The (inverse) minimum variance bound is given by the  
Fisher information matrix: 

The information inequality then states that V - I-1 is a positive 
semi-definite matrix, where                                  Therefore 

Often use I-1 as an approximation for covariance matrix,  
estimate using e.g. matrix of 2nd derivatives at maximum of L. 
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Two-parameter example of ML 
Consider a scattering angle distribution with x = cos θ, 

Data:  x1,..., xn, n = 2000 events. 

As test generate with MC using α = 0.5, β = 0.5 

From data compute log-likelihood: 
 

Maximize numerically (e.g., program MINUIT) 
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Example of ML:  fit result 
Finding maximum of ln L(α, β) numerically (MINUIT) gives 

N.B.  Here no binning of data for fit, 
but can compare to histogram for 
goodness-of-fit (e.g. ‘visual’ or χ2).  

(Co)variances from (MINUIT routine  
HESSE) 
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Variance of ML estimators:  graphical method 
Often (e.g., large sample case) one can 
approximate the covariances using only 
the likelihood L(θ): 

→ Tangent lines to contours give standard deviations. 

→ Angle of ellipse φ related to correlation: 

This translates into a simple 
graphical recipe: 

ML fit result
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Variance of ML estimators:  MC 
To find the ML estimate itself one only needs the likelihood L(θ) . 

In principle to find the covariance of the estimators, one requires 
the full model P(x|θ).  E.g., simulate many times independent data  
sets and look at distribution of the resulting estimates: 
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Frequentist statistical tests  
Consider a hypothesis H0 and alternative H1. 

A test of H0  is defined by specifying a critical region w of the 
data space such that there is no more than some (small) probability 
α, assuming H0 is correct,  to observe the data there, i.e., 

  P(x ∈ w | H0 ) ≤ α 

Need inequality if data are 
discrete. 

α is called the size or  
significance level of the test. 

If x is observed in the  
critical region, reject H0. 

data space Ω 

critical region w 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 1 39 

Definition of a test (2) 
But in general there are an infinite number of possible critical 
regions that give the same significance level α. 

So the choice of the critical region for a test of H0  needs to take 
into account the alternative hypothesis H1. 

Roughly speaking, place the critical region where there is a low  
probability to be found if H0 is true, but high if H1 is true: 
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Type-I, Type-II errors  
Rejecting the hypothesis H0 when it is true is a Type-I error.   

The maximum probability for this is the size of  the test: 

 P(x ∈ W | H0 ) ≤ α

But we might also accept H0 when it is false, and an alternative  
H1 is true. 

This is called a Type-II error, and occurs with probability 

 P(x ∈ S - W | H1 ) = β 

One minus this is called the power of the test with respect to 
the alternative H1: 

 Power = 1 - β 
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p-values 
Suppose hypothesis H predicts pdf  
observations 

for a set of 

We observe a single point in this space: 

What can we say about the validity of H in light of the data? 

Express level of compatibility by giving the p-value for H: 

p = probability, under assumption of H, to observe data with  
equal or lesser compatibility with H relative to the data we got.  

This is not the probability that H is true! 

Requires one to say what part of data space constitutes lesser 
compatibility with H than the observed data (implicitly this 
means that region gives better agreement with some alternative). 
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Significance from p-value 
Often define significance Z as the number of standard deviations 
that a Gaussian variable would fluctuate in one direction 
to give the same p-value. 

1 - TMath::Freq 

TMath::NormQuantile 
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E.g. Z = 5 (a “5 sigma effect”) corresponds to p = 2.9 × 10-7. 
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Using a p-value to define test of H0 

One can show the distribution of the p-value of H, under  
assumption of H, is uniform in [0,1]. 

So the probability to find the p-value of H0, p0, less than α is 

iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 1 

We can define the critical region of a test of H0 with size a as the  
set of data space where p0 ≤ α. 

Formally the p-value relates only to H0, but the resulting test will 
have a given power with respect to a given alternative H1. 
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The Poisson counting experiment 
Suppose we do a counting experiment and observe n events. 

 Events could be from signal process or from background –  
 we only count the total number. 

Poisson model:   

s = mean (i.e., expected) # of signal events 

b = mean # of background events 

Goal is to make inference about s, e.g., 

     test s = 0 (rejecting H0 ≈ “discovery of signal process”) 

     test all non-zero s  (values not rejected =  confidence interval) 

In both cases need to ask what is relevant alternative hypothesis. 
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Poisson counting experiment: discovery p-value 
Suppose b = 0.5 (known), and we observe nobs = 5.   

Should we claim evidence for a new discovery?   

    Give p-value for hypothesis s = 0: 
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Poisson counting experiment: discovery significance 

In fact this tradition should be 
revisited:  p-value intended to 
quantify probability of a signal-
like fluctuation assuming 
background only; not intended to 
cover, e.g., hidden systematics, 
plausibility signal model, 
compatibility of data with signal, 
“look-elsewhere effect”  
(~multiple testing), etc. 

Equivalent significance for p = 1.7 × 10-4:   

Often claim discovery if Z > 5 (p < 2.9 × 10-7, i.e., a “5-sigma effect”) 
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Confidence intervals by inverting a test 
Confidence intervals for a parameter θ can be found by  
defining a test of the hypothesized value θ (do this for all θ):  

 Specify values of the data that are ‘disfavoured’ by θ  
 (critical region) such that P(data in critical region) ≤ α  
 for a prespecified α, e.g., 0.05 or 0.1. 

 If data observed in the critical region, reject the value θ. 

Now invert the test to define a confidence interval as: 

 set of θ values that would not be rejected in a test of 
 size α  (confidence level is 1 - α ). 

The interval will cover the true value of θ with probability ≥ 1 - α. 

Equivalently, the parameter values in the confidence interval have 
p-values of at least α.   

To find edge of interval (the “limit”), set pθ = α and solve for θ. 
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Frequentist upper limit on Poisson parameter 
Consider again the case of observing n ~ Poisson(s + b). 

Suppose b = 4.5, nobs = 5.  Find upper limit on s at 95% CL. 

Relevant alternative is s = 0 (critical region at low n) 

p-value of hypothesized s is P(n ≤ nobs; s, b) 

Upper limit sup at CL = 1 – α found from 
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Frequentist upper limit on Poisson parameter 
Upper limit sup at CL = 1 – α found from ps = α.  

nobs = 5,  

b = 4.5 
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n ~ Poisson(s+b):  frequentist upper limit on s 
For low fluctuation of n formula can give negative result for sup; 
i.e. confidence interval is empty. 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 1 51 

Limits near a physical boundary 
Suppose e.g. b = 2.5 and we observe n = 0.   

If we choose CL = 0.9, we find from the formula for sup 

Physicist:   
 We already knew s ≥ 0 before we started; can’t use negative  
 upper limit to report result of expensive experiment! 

Statistician: 
 The interval is designed to cover the true value only 90% 
 of the time — this was clearly not one of those times. 

Not uncommon dilemma when testing parameter values for which 
one has very little experimental sensitivity, e.g., very small s. 
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Expected limit for s = 0 

Physicist:  I should have used CL = 0.95 — then sup = 0.496 

Even better:  for CL = 0.917923 we get sup = 10-4 ! 

Reality check:  with b = 2.5, typical Poisson fluctuation in n is 
at least √2.5 = 1.6.  How can the limit be so low? 

Look at the mean limit for the  
no-signal hypothesis (s = 0) 
(sensitivity). 

Distribution of 95% CL limits 
with b = 2.5, s = 0. 
Mean upper limit = 4.44 
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The Bayesian approach to limits 
In Bayesian statistics need to start with ‘prior pdf’ π(θ), this  
reflects degree of belief about θ before doing the experiment. 

Bayes’ theorem tells how our beliefs should be updated in 
light of the data x: 

Integrate posterior pdf  p(θ | x) to give interval with any desired 
probability content.   

For e.g. n ~ Poisson(s+b), 95% CL upper limit on s from 
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Bayesian prior for Poisson parameter 
Include knowledge that s ≥ 0 by setting prior π(s) = 0 for s < 0. 

Could try to reflect ‘prior ignorance’ with e.g.  

Not normalized but this is OK as long as L(s) dies off for large s. 

Not invariant under change of parameter — if we had used instead 
a flat prior for, say, the mass of the Higgs boson, this would  
imply a non-flat prior for the expected number of Higgs events. 

Doesn’t really reflect a reasonable degree of belief, but often used 
as a point of reference; 

or viewed as a recipe for producing an interval whose frequentist 
properties can be studied (coverage will depend on true s).  
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Bayesian interval with flat prior for s 
Solve to find limit sup: 

For special case b = 0, Bayesian upper limit with flat prior 
numerically same as one-sided frequentist case (‘coincidence’).  

where  
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Bayesian interval with flat prior for s 
For b > 0 Bayesian limit is everywhere greater than the (one 
sided) frequentist upper limit. 

Never goes negative.  Doesn’t depend on b if n = 0. 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 1 57 

Priors from formal rules  
Because of difficulties in encoding a vague degree of belief 
in a prior, one often attempts to derive the prior from formal rules, 
e.g., to satisfy certain invariance principles or to provide maximum 
information gain for a certain set of measurements. 

 Often called “objective priors”  
 Form basis of Objective Bayesian Statistics 

The priors do not reflect a degree of belief (but might represent 
possible extreme cases).    

In Objective Bayesian analysis, can use the intervals in a 
frequentist way, i.e., regard Bayes’ theorem as a recipe to produce 
an interval with certain coverage properties.  
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Priors from formal rules (cont.)  
For a review of priors obtained by formal rules see, e.g., 

Formal priors have not been widely used in HEP, but there is 
recent interest in this direction, especially the reference priors 
of Bernardo and Berger; see e.g. 

L. Demortier, S. Jain and H. Prosper, Reference priors for high 
energy physics, Phys. Rev. D 82 (2010) 034002, arXiv:1002.1111. 

D. Casadei, Reference analysis of the signal + background model  
in counting experiments, JINST 7 (2012) 01012; arXiv:1108.4270. 
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Approximate confidence intervals/regions  
from the likelihood function 

G. Cowan  

Suppose we test parameter value(s) θ = (θ1, ..., θn)  using the ratio 

Lower λ(θ) means worse agreement between data and 
hypothesized θ.  Equivalently, usually define 

so higher tθ means worse agreement between θ and the data. 

p-value of θ therefore  

need pdf 
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Confidence region from Wilks’ theorem 

G. Cowan  

Wilks’ theorem says (in large-sample limit and providing  
certain conditions hold...) 

chi-square dist. with # d.o.f. =  
# of components in θ = (θ1, ..., θn). 

Assuming this holds, the p-value is 

To find boundary of confidence region set pθ = α and solve for tθ: 
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Confidence region from Wilks’ theorem (cont.) 

G. Cowan  

i.e., boundary of confidence region in θ space is where 

For example, for 1 – α = 68.3% and n = 1 parameter, 

and so the 68.3% confidence level interval is determined by 

Same as recipe for finding the estimator’s standard deviation, i.e., 

is a 68.3% CL confidence interval. 
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Example of interval from ln L 
For n = 1 parameter, CL = 0.683, Qα = 1. 

Parameter estimate and  
approximate 68.3% CL  
confidence interval: 

Exponential example, now with only 5 events: 
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Multiparameter case 

G. Cowan  

For increasing number of parameters, CL = 1 – α decreases for 
confidence region determined by a given  
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Multiparameter case (cont.) 

G. Cowan  

Equivalently, Qα increases with n for a given CL = 1 – α. 
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Extra slides 
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Some distributions 
Distribution/pdf  Example use in HEP 
Binomial   Branching ratio 
Multinomial   Histogram with fixed N 
Poisson   Number of events found 
Uniform   Monte Carlo method 
Exponential   Decay time 
Gaussian   Measurement error 
Chi-square   Goodness-of-fit 
Cauchy   Mass of resonance 
Landau   Ionization energy loss 
Beta    Prior pdf for efficiency 
Gamma   Sum of exponential variables 
Student’s t   Resolution function with adjustable tails 
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Binomial distribution 
Consider N independent experiments (Bernoulli trials): 

outcome of each is ‘success’ or ‘failure’, 
probability of success on any given trial is p. 

Define discrete r.v. n = number of successes (0 ≤ n ≤  N). 

Probability of a specific outcome (in order), e.g. ‘ssfsf’ is 

But order not important; there are 

ways (permutations) to get n successes in N trials, total  
probability for n is sum of probabilities for each permutation. 
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Binomial distribution  (2) 
The binomial distribution is therefore 

random 
variable 

parameters 

For the expectation value and variance we find: 
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Binomial distribution  (3) 
Binomial distribution for several values of the parameters: 

Example:  observe N decays of W±,  the number n of which are  
W→µν is a binomial r.v., p = branching ratio. 
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Multinomial distribution 
Like binomial but now m outcomes instead of two, probabilities are 

For N trials we want the probability to obtain: 

n1 of outcome 1, 
n2 of outcome 2, 

 ⠇ 
nm of outcome m. 

This is the multinomial distribution for 
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Multinomial distribution (2) 
Now consider outcome i as ‘success’, all others as ‘failure’. 

→ all ni individually binomial with parameters N, pi 

for all i 

One can also find the covariance to be 

Example:   represents a histogram 

with m bins, N total entries, all entries independent. 
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Poisson distribution 
Consider binomial n in the limit 

→ n follows the Poisson distribution: 

Example:  number of scattering events 
n with cross section σ found for a fixed 
integrated luminosity, with 
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Uniform distribution 
Consider a continuous r.v. x with -∞ < x < ∞ .  Uniform pdf is: 

N.B.  For any r.v. x with cumulative distribution F(x), 
y = F(x) is uniform in [0,1]. 

Example:  for π0 → γγ, Eγ is uniform in [Emin, Emax], with 
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Exponential distribution 
The exponential pdf for the continuous r.v. x is defined by: 

Example:  proper decay time t of an unstable particle 

(τ = mean lifetime) 

Lack of memory (unique to exponential): 



G. Cowan  iSTEP 2015, Jinan / Statistics for Particle Physics / Lecture 1 75 

Gaussian distribution 
The Gaussian (normal) pdf for a continuous r.v. x is defined by: 

Special case: µ = 0, σ2 = 1   (‘standard Gaussian’): 

(N.B. often µ, σ2 denote 
mean, variance of any 
r.v., not only Gaussian.) 

If y ~ Gaussian with µ, σ2, then  x = (y - µ) /σ  follows φ(x). 
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Gaussian pdf and the Central Limit Theorem 
The Gaussian pdf is so useful because almost any random 
variable that is a sum of a large number of small contributions 
follows it.  This follows from the Central Limit Theorem: 

For n independent r.v.s xi with finite variances σi
2, otherwise 

arbitrary pdfs, consider the sum 

Measurement errors are often the sum of many contributions, so 
frequently measured values can be treated as Gaussian r.v.s. 

In the limit n → ∞, y is a Gaussian r.v. with 
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Central Limit Theorem (2) 
The CLT can be proved using characteristic functions (Fourier 
transforms), see, e.g., SDA Chapter 10. 

Good example:  velocity component vx of air molecules. 

OK example:  total deflection due to multiple Coulomb scattering. 
(Rare large angle deflections give non-Gaussian tail.) 

Bad example:  energy loss of charged particle traversing thin 
gas layer.  (Rare collisions make up large fraction of energy loss, 
cf. Landau pdf.) 

For finite n, the theorem is approximately valid to the 
extent that the fluctuation of  the sum is not dominated by 
one (or few) terms.  

Beware of measurement errors with non-Gaussian tails. 
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Multivariate Gaussian distribution 
Multivariate Gaussian pdf for the vector  

are column vectors,  are transpose (row) vectors,  

For n = 2 this is 

where ρ = cov[x1, x2]/(σ1σ2) is the correlation coefficient. 
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Chi-square (χ2) distribution 
The chi-square pdf for the continuous r.v. z  (z ≥ 0) is defined by 

n = 1, 2, ... =  number of ‘degrees of 
                       freedom’ (dof) 

For independent Gaussian xi, i = 1, ..., n, means µi, variances σi
2, 

follows χ2 pdf with n dof. 

Example:  goodness-of-fit test variable especially in conjunction 
with method of least squares. 
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Cauchy (Breit-Wigner) distribution 
The Breit-Wigner pdf for the continuous r.v. x is defined by 

(Γ = 2, x0 = 0 is the Cauchy pdf.) 

E[x] not well defined,   V[x] →∞. 

x0 = mode (most probable value) 

Γ = full width at half maximum 

Example:  mass of resonance particle, e.g. ρ, K*, φ0, ... 

Γ = decay rate (inverse of mean lifetime) 
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Landau distribution 
For a charged particle with β = v /c traversing a layer of matter 
of thickness d, the energy loss Δ follows the Landau pdf: 

L. Landau, J. Phys. USSR 8 (1944) 201; see also 
W. Allison and J. Cobb, Ann. Rev. Nucl. Part. Sci. 30 (1980) 253. 

+ - + - 

- + - + β

d 

Δ
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Landau distribution  (2) 

Long ‘Landau tail’ 
     →  all moments ∞ 

Mode (most probable  
value) sensitive to β , 
     →  particle i.d. 
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Beta distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
between finite limits.  
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Gamma distribution 

Often used to represent pdf  
of continuous r.v. nonzero only 
in [0,∞]. 

Also e.g. sum of n exponential 
r.v.s or time until nth event 
in Poisson process ~ Gamma 
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Student's t distribution 

ν = number of degrees of freedom 
      (not necessarily integer) 

ν = 1 gives Cauchy, 

ν → ∞ gives Gaussian. 
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Student's t distribution (2) 
If x ~ Gaussian with µ = 0, σ2 = 1, and  
    z ~ χ2 with n degrees of freedom, then 
    t = x / (z/n)1/2  follows Student's t with ν = n. 

This arises in problems where one forms the ratio of a sample  
mean to the sample standard deviation of Gaussian r.v.s. 

The Student's t provides a bell-shaped pdf with adjustable 
tails, ranging from those of a Gaussian, which fall off very 
quickly, (ν → ∞, but in fact already very Gauss-like for  
ν =  two dozen),  to the very long-tailed Cauchy (ν = 1).  

Developed in 1908 by William Gosset, who worked under 
the pseudonym "Student" for the Guinness Brewery. 
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What it is:  a numerical technique for calculating probabilities 
and related quantities using sequences of random numbers. 

The usual steps: 

(1)  Generate sequence r1, r2, ..., rm uniform in [0, 1]. 

(2)  Use this to produce another sequence x1, x2, ..., xn 
       distributed according to some pdf  f (x)  in which 
       we’re interested (x can be a vector). 

(3)   Use the x values to estimate some property of  f (x), e.g., 
       fraction of x values with a < x < b gives 

 →  MC calculation = integration (at least formally) 

MC generated values = ‘simulated data’ 
 →  use for testing statistical procedures 

The Monte Carlo method 
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Random number generators 
Goal:  generate uniformly distributed values in [0, 1]. 

 Toss coin for e.g. 32 bit number... (too tiring). 
 →  ‘random number generator’  

        = computer algorithm to generate r1, r2, ..., rn. 

Example:  multiplicative linear congruential generator (MLCG) 
 ni+1 = (a ni) mod m ,    where 
 ni = integer 
 a = multiplier 
 m = modulus 
 n0 = seed (initial value) 

N.B.  mod = modulus (remainder), e.g. 27 mod 5 = 2. 
This rule produces a sequence of numbers n0, n1, ... 
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Random number generators  (2) 
The sequence is (unfortunately) periodic! 

 Example (see Brandt Ch 4):  a = 3, m = 7, n0 = 1 

←  sequence repeats 

Choose a, m to obtain long period (maximum = m - 1); m usually  
close to the largest integer that can represented in the computer. 

 Only use a subset of a single period of the sequence. 
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Random number generators  (3) 
are in [0, 1] but are they ‘random’? 

Choose a, m so that the ri pass various tests of randomness: 
 uniform distribution in [0, 1], 
 all values independent (no correlations between pairs), 

e.g. L’Ecuyer, Commun. ACM 31 (1988) 742 suggests 
 
    a = 40692 
    m = 2147483399 

Far better generators available, e.g. TRandom3, based on Mersenne 
twister algorithm, period = 219937 - 1 (a “Mersenne prime”). 
See F. James, Comp. Phys. Comm. 60 (1990) 111; Brandt Ch. 4 
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The transformation method 
Given r1, r2,..., rn uniform in [0, 1], find x1, x2,..., xn 
that follow  f (x) by finding a suitable transformation  x (r). 

Require: 

i.e. 

That is,       set and solve for  x (r). 
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Example of the transformation method 
Exponential pdf: 

Set and solve for  x (r). 

→ works too.) 
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The acceptance-rejection method 

Enclose the pdf in a box: 

(1)  Generate a random number x, uniform in [xmin, xmax], i.e. 
r1 is uniform in [0,1]. 

(2)  Generate a 2nd independent random number u uniformly 
       distributed between 0 and  fmax, i.e. 
(3)  If u <  f (x), then accept x.  If not, reject x and repeat. 
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Example with acceptance-rejection method 

If dot below curve, use  
x value in histogram. 
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Improving efficiency of the  
acceptance-rejection method 

The fraction of accepted points is equal to the fraction of 
the box’s area under the curve. 

 For very peaked distributions, this may be very low and 
 thus the algorithm may be slow. 

Improve by enclosing the pdf f(x) in a curve C h(x) that conforms  
to f(x) more closely, where h(x) is a pdf from which we can  
generate random values and C is a constant. 

Generate points uniformly  
over C h(x). 

If point is below f(x),  
accept x. 
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Monte Carlo event generators 

Simple example:  e+e- → µ+µ-

Generate cosθ and φ: 

Less simple:  ‘event generators’ for a variety of reactions:  
  e+e- → m+m-, hadrons, ... 
  pp → hadrons, D-Y, SUSY,... 

e.g. PYTHIA, HERWIG, ISAJET... 

Output = ‘events’, i.e., for each event we get a list of 
generated particles and their momentum vectors, types, etc. 
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A simulated event 

PYTHIA Monte Carlo 
pp → gluino-gluino 
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Monte Carlo detector simulation 
Takes as input the particle list and momenta from generator. 

Simulates detector response: 
 multiple Coulomb scattering (generate scattering angle), 
 particle decays (generate lifetime), 
 ionization energy loss (generate Δ), 
 electromagnetic, hadronic showers, 
 production of signals, electronics response, ... 

Output = simulated raw data →  input to reconstruction software: 
 track finding, fitting, etc.  

Predict what you should see at ‘detector level’ given a certain  
hypothesis for ‘generator level’.  Compare with the real data. 

Estimate ‘efficiencies’ = #events found / # events generated. 

Programming package:  GEANT 



data 
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Data analysis in particle physics: 
testing hypotheses  

Test the extent to which a given model agrees with the data: 

spin-1/2 quark  
model “good” 

spin-0 quark  
model “bad” 

ALEPH, Phys. Rept. 294 (1998) 1-165 

In general need tests 
with well-defined properties  
and quantitative results. 
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Choosing a critical region 
To construct a test of a hypothesis H0, we can ask what are the  
relevant alternatives for which one would like to have a high power. 

 Maximize power wrt H1 = maximize probability to 
            reject H0 if H1 is true. 

Often such a test has a high power not only with respect to a  
specific point alternative but for a class of alternatives.   
E.g., using a measurement x ~ Gauss (µ, σ) we may test 

 H0 : µ = µ0 versus the composite alternative H1 : µ > µ0 

We get the highest power with respect to any µ > µ0  by taking  
the critical region x ≥ xc where the cut-off xc is determined by  
the significance level such that  

   α = P(x ≥xc|µ0). 
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Τest of µ = µ0 vs. µ > µ0  with  x ~ Gauss(µ,σ) 

Standard Gaussian quantile 

Standard Gaussian 
cumulative distribution 
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Choice of critical region based on power (3) 

But we might consider µ < µ0 as 
well as µ > µ0 to be viable 
alternatives, and choose the 
critical region to contain both 
high and low x (a two-sided test). 

New critical region now  
gives reasonable power  
for µ < µ0, but less power  
for µ > µ0 than the original  
one-sided test. 
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No such thing as a model-independent test 
In general we cannot find a single critical region that gives the 
maximum power for all possible alternatives (no “Uniformly 
Most Powerful” test).  

In HEP we often try to construct a test of 

 H0 : Standard Model (or “background only”, etc.) 

such that we have a well specified “false discovery rate”, 

 α = Probability to reject H0 if it is true, 

and high power with respect to some interesting alternative,  

 H1 : SUSY, Z′, etc. 

But there is no such thing as a “model independent” test.  Any 
statistical test will inevitably have high power with respect to 
some alternatives and less power with respect to others. 
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Rejecting a hypothesis 
Note that rejecting H0 is not necessarily equivalent to the 
statement that we believe it is false and H1 true.  In frequentist 
statistics only associate probability with outcomes of repeatable 
observations (the data). 

In Bayesian statistics, probability of the hypothesis (degree 
of belief) would be found using Bayes’ theorem: 

which depends on the prior probability π(H).  

What makes a frequentist test useful is that we can compute 
the probability to accept/reject a hypothesis assuming that it 
is true, or assuming some alternative is true. 


