The 2nd International Summer School on TeV Experimental Physics 2015

超出标准模型之外的新物理

A faked experimentalist's perspective

北京大学物理学院

2015年8月16日于山东大学

- 1)标准模型回顾
- 2)为什么寻找标准模型之外的新物理?
- 3) 如何探测新物理粒子? 探测器简介
- 4) 中微子质量
- 5) 暗物质粒子起源
- 6) 新物理粒子、模型及其对撞机信号

粒子物理的标准模型

已知的基本粒子谱

标准模型中相互作用

量子力学中的自旋轨道角动量耦合

 $\begin{pmatrix} \uparrow \\ \downarrow \end{pmatrix}_1 \otimes \begin{pmatrix} \uparrow \\ \downarrow \end{pmatrix}_2 = \begin{pmatrix} \uparrow_1 \uparrow_2 \\ \frac{1}{\sqrt{2}} (\uparrow_1 \downarrow_2 + \downarrow_1 \uparrow_2) \\ \frac{1}{\sqrt{2}} \downarrow_1 \downarrow_2 \end{pmatrix}$ $\oplus \frac{1}{\sqrt{2}} \left(\uparrow_1 \downarrow_2 - \downarrow_1 \uparrow_2 \right)$ $2 \otimes 2 = 3 \oplus 1$ $2\otimes \overline{2} = 3\oplus 1$

Anti-quarks and Mesons (u and d)

★The u, d quarks and u , d anti-quarks are represented as isospin doublets

<u>Subtle point:</u> The ordering and the minus sign in the anti-quark doublet ensures that anti-quarks and quarks transform in the same way (see Appendix I). This is necessary if we want physical predictions to be invariant under $u \leftrightarrow d$; $\overline{u} \leftrightarrow d$

• Consider the effect of ladder operators on the anti-quark isospin states

e.g
$$T_{+}\overline{u} = T_{+}\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}0&1\\0&0\end{pmatrix}\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix} = -\overline{d}$$

• The effect of the ladder operators on anti-particle isospin states are:

$$T_{+}\overline{u} = -\overline{d} \qquad T_{+}\overline{d} = 0 \qquad T_{-}\overline{u} = 0 \qquad T_{-}\overline{d} = -\overline{u}$$
$$T_{+}u = 0 \qquad T_{+}d = u \qquad T_{-}u = d \qquad T_{-}d = 0$$

Compare with

Light ud Mesons

Can now construct meson states from combinations of up/down quarks \overline{u} \overline{u} $-\overline{d}$

• Consider the $q\overline{q}$ combinations in terms of isospin

$$|1,+1\rangle = |\frac{1}{2},+\frac{1}{2}\rangle \overline{|\frac{1}{2},+\frac{1}{2}\rangle} = -u\overline{d}$$
$$|1,-1\rangle = |\frac{1}{2},-\frac{1}{2}\rangle \overline{|\frac{1}{2},-\frac{1}{2}\rangle} = d\overline{u}$$

The bar indicates this is the isospin representation of an anti-quark

► I3

To obtain the $I_3 = 0$ states use ladder operators and orthogonality $T_-|1,+1\rangle = T_-[-u\overline{d}]$ $\sqrt{2}|1,0\rangle = -T_-[u]\overline{d} - uT_-[\overline{d}]$ $= -d\overline{d} + u\overline{u}$ $\implies |1,0\rangle = \frac{1}{\sqrt{2}} (u\overline{u} - d\overline{d})$ • Orthogonality gives: $|0,0\rangle = \frac{1}{\sqrt{2}} (u\overline{u} + d\overline{d})$

★To summarise:

• To show the state obtained from orthogonality with $~|1,0\rangle~$ is a singlet use ladder operators

$$T_+|0,0\rangle = T_+\frac{1}{\sqrt{2}}(u\overline{u}+d\overline{d}) = \frac{1}{\sqrt{2}}\left(-u\overline{d}+u\overline{d}\right) = 0$$

similarly $T_{-}|0,0
angle=0$

★ A singlet state is a "dead-end" from the point of view of ladder operators

标准模型中相互作用:费曼图

 Interaction of gauge bosons with fermions described by SM <u>vertices</u>
 Properties of the gauge bosons and nature of the interaction between the bosons and fermions determine the properties of the interaction

为什么寻找新物理? (标准模型有什么不妥之处吗?)

1)标准模型的粒子谱具有非常大的质量差异和 中微子质量起源

2) 暗物质的粒子物理起源

标准模型中没有暗物质候选者

标准模型的不足之处

标准模型的不足之处 3) 大统一理论:标准模型三种作用力无法统一

$$\alpha^{-1} : \alpha_W^{-1} : \alpha_S^{-1} \approx 128 : 30 : 9$$
$$\left[\alpha_i(q^2)\right]^{-1} = \left[\alpha_i(\mu^2)\right]^{-1} + \beta \ln\left(\frac{q^2}{\mu^2}\right)$$

标准模型的不足之处

4) 等级性问题(精细调节问题)

If SM valid up to GUT scale, the theory has extreme fine-tuning !

$$m_h^2 = m_0^2 - \delta m_h^2$$

bare

 $\Lambda^2/52$

下面,我们将重点讨论 各种新物理模型以及它们在 对撞机上的实验信号

大型强子对撞机 质心系能量14TeV

Sec.

7

LHC ring: 27 km circumference

大型强子对撞机 质心系能量I4TeV

LHC ring: 27 km circumference

不可见粒子: 丢失动量

中微子和暗物质候选者粒子都不参与电磁相互作用和强相互作用,因此不会在探测器内留下痕迹。

极短的寿命,例如顶夸克

生活在不同的不同时空维度中

 $\sigma(pp \to A \to XY) \approx \sigma(pp \to A) \times BR(A \to XY)$ 估计新物理信号大小的关键公式

新物理的可能扩充方式

物质和辐射

物质和辐射 新费米子 (新夸克、新轻子) 新规范玻色子(带电的和中性的) 新标量粒子(带电的和中性的) 高自旋粒子(引力子?) 高激发态 (复合粒子)

27

0 0 0

理论家的贡献

Supersymmetry Excited quark

NMSSM

Fourth Generation

MSSM

Extra dimension

Techicolor

Composite Higgs

> Little Higgs Model

> > 28

Dark Matter

Twin Higgs

Grand Unification

NMSSM MSSM Techicolor Composite Higgs Supersymmetry 理论家的贡献 Little Higgs Model Twin Higgs nd Unification

新物理模型的组分

- 1) 中微子质量: 味物理
- 2) 暗物质: 粒子宇宙学、超对称模型
- 3) 新费米子: 第四代, 新夸克, 新轻子
- 4) 新规范玻色子:新的对称性(新的力)
- 5) 新标量粒子: 电弱对称性破缺机制
- 6) 额外时空维度(如果时间允许)

1) 中微子质量起源

—— 跷跷板机制 See-Saw Mechanics

有质量的中微子

中微子不能以光速运动 —> 螺旋度不再是好量子数 洛伦兹不变性要求:右手中微子 ν_R $m\bar{\psi}_L\psi_R$ 最小标准模型中

 $\nu_R? \leftarrow \sigma \sigma \sigma$

New particle ν_R (Dirac)

ν_L^T old anti-neutrino (Majorana)

没有右手中微子

* Dirac型中微子

* Majorana型中微子

 $m\bar{\psi}_L\psi_R$

 $m\bar{\psi}_L^c\psi_L$

不需要引入新的物质场

No fundamental distinction between neutrinos and anti-neutrinos

为何中微子质量如此之小?

跷跷板机制——简单优雅的解决方案

1) 加入一个新的 ν_R , (SM + ν_R) SM neutral not gauged under SU(2)xU(1)

2) 对角化中微子质量矩阵

 $\begin{pmatrix} \nu_L & \nu_R \end{pmatrix} \begin{pmatrix} 0 & m_D \\ m_D & M \end{pmatrix} \begin{pmatrix} \nu_L \\ \nu_R \end{pmatrix}$

$$M_{\nu} = \frac{m_D^2}{M} \sim \frac{\text{TeV}^2}{M} \sim \text{ev}$$

$$M \sim \frac{\text{TeV}^2}{\text{eV}} = \frac{(10^3 \text{GeV})^2}{10^{-9} \text{GeV}} = 10^{15} \text{GeV}$$
跷跷板机制的种类 探测新物理的强力工具—有效场论

BSM (A) $\mathcal{L} = \mathcal{L}_{SM}^{(4)} + \frac{O^{(5)}}{\Lambda} + \frac{O^{(6)}}{\Lambda^2} + \cdots$ High dimensional operator $O^{(5,6,\cdots)}$ SM (m_W) are made of SM fields with respect to the SM symmetry

 $SU(2)\times U(1)_{Y}$

温伯格中微子质量算符

1979年温伯格指出标准模型中存在唯一一个量纲为5的算符 可以给中微子质量

 $\frac{(L\Phi)^2}{\Lambda} \qquad L = \begin{pmatrix} \nu \\ e \end{pmatrix} \qquad [L] = \frac{3}{2}$ $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} \qquad [\Phi] = 1$

$$\mathcal{L}_{m_{\nu}} = -\frac{f_{ij}}{2\Lambda} \left(\nu_i \phi^0 - \ell_i \phi^+ \right) \left(\nu_j \phi^0 - \ell_j \phi^+ \right) + h.c.$$
$$(m_{\nu})_{ij} = \frac{f_{ij} \left\langle \phi^0 \right\rangle^2}{\Lambda} = \frac{f_{ij} v^2}{\Lambda}$$

温伯格中微子质量算符

1979年温伯格指出标准模型中存在唯一一个量纲为5的算符 可以给中微子质量

 $\mathcal{L}_{m_{\nu}} = -\frac{f_{ij}}{2\Lambda} \left(\nu_i \phi^0 - \ell_i \phi^+\right) \left(\nu_j \phi^0 - \ell_j \phi^+\right) + h.c.$ $(m_{\nu})_{ij} = \frac{f_{ij} \left\langle \phi^0 \right\rangle^2}{\Lambda} = \frac{f_{ij} v^2}{\Lambda}$ $|\phi| = 1$ $[\nu] = 3/2$ · \$\$ ϕ^0 ${
u}_L$ u_L $\mathcal{V}_{\mathcal{I}}$ \mathcal{V}_{L} 什么样的

36

标准模型 SU(2)xU(1)

$$(L\Phi) = \begin{pmatrix} \nu \\ \ell \end{pmatrix} \otimes \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix} = \begin{pmatrix} \sqrt{2}\nu\phi^+ \\ \frac{\nu\phi^0 + \ell\phi^+}{\sqrt{2}\ell\phi^0} \end{pmatrix} \oplus (\underline{\nu\phi^0} - \ell\phi^+)$$

$$2 \otimes 2 = 3 \oplus 1$$

 $\vec{J} = \vec{L}_1 + \vec{L}_2$ $|J| = |L_1 - L_2|, \cdots, L_1 + L_2$

中微子跷跷板模型的对撞机信号

第1类和第3类树图跷跷板模型:

- 困难: 跷跷板能标非常高,~10¹⁵GeV 右手中微子非常重,耦合微弱,难以探测
- 方法之一:引入U(1)_{B-L}的超对称扩充模型, 将跷跷板能标压低到TeV

中微子跷跷板模型的对撞机信号

第2类树图跷跷板模型:

* 轻的标量三重态粒子

* 重标量三重态粒子唯象学依赖于衰变分支比

2. 暗物质 (粒子宇宙学)

Astro particle

ŽÍK TA K

暗物质 (Dark Matter)

已知信息:

不发光物质(无电磁相互作用) 寿命非常长或绝对稳定 非重子

<u>未知信息</u>: 质量和自旋 相互作用形式 种类和数目

更糟的是,我们甚至不知道 "什么是我们不知道的"

Dark matter halo

Halo

暗物质候选者之一

作用力微弱的大质量粒子 (Weakly interacting massive Particle)

1) 宇宙早期暗物质和可见物质处于热力学平衡态

2) 宇宙膨胀(温度降低,暗物质变为非相对论性)

48

WIMP奇迹

Weakly interacting massive particles at the weak scale! 神奇的巧合!理论家的最爱!

暗物质直接探测

自旋无关的散射 $\bar{\chi}\gamma_{\mu}\chi\bar{q}\gamma^{\mu}q$

自旋相关的散射 $\bar{\chi}\gamma_{\mu}\gamma_{5}\chi\bar{q}\gamma^{\mu}\gamma_{5}q$

World Wide Dark Matter Searches

暗物质在宇宙中湮灭产生正反电子,正反质子,光子,中微子

Cosmic Gamma-Ray

$\eta\eta ightarrow WW, ZZ, \cdots$ in the Galactic halo

暗物质对撞机信号

暗物质对撞机信号示例

Minimal
 Supersymmetric extension of the
 Standard Model
 (MSSM)

$$g \underbrace{00000}_{\tilde{t}} \underbrace{\tilde{t}}_{\tilde{t}} \underbrace{\tilde{\chi}_{0}}_{\tilde{t}} t$$

spin 0

- Little Higgs Model with T-parity (LHT)
- Universal Extra Dimension Model (UED)

spin 1/2

暗物质的稳定性 (示例:超对称模型)

暗物质的稳定性

通常通过引入离散对称性(例如 Z2)来保证暗物质的绝对稳定

R-宇称守恒的超对称理论

 $R = (-1)^{3(B-L)+2S}$

最小超对称模型过程 $gg \rightarrow t\bar{t}$

最小超对称模型过程 $gg \rightarrow \tilde{t}\tilde{t}$

一般性的费曼顶点

Stop-夸克对的产生和衰变

67
Stop-夸克对的产生和衰变

Stop-夸克对的产生和衰变

69

最小超对称模型:5个标量粒子 $\Phi_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix}$ $\Phi_2 = \begin{pmatrix} H_2^+ \\ H_2^0 \end{pmatrix}$

 $\langle \Phi_1 \rangle = \begin{pmatrix} v_1 \\ 0 \end{pmatrix} \quad \langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ v_2 \end{pmatrix} \longrightarrow h, H, A, H^+, H^-$

Count degree of freedom:

Massless gauge bosons have 2 transverse d.o.f. Massive gauge bosons also have longitudinal d.o.f.

Before SSB		After SSB	
Massless $W_{\mu}^{i=1,2,3}, B_{\mu}$	8	Massive W^{\pm}, Z	9
Complex Φ_u, Φ_d	8	Massless Y	2
Total	16	Complex h, H, A, H^{\pm}	5
		Total	16

荷电希格斯粒子: 确凿无疑的新物理信号

 $H^{\pm}H^{\mp}$ production

 $H^{\pm}A/H/h$ production

$H^{-}t$ production

Neutralino: Lightest SUSY Particle (LSP)

暗物质候选者

3. 新费米子

如果自然界只有3代费米子,那我们需要知道为什么。

CKM混合矩阵

 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \\ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{pmatrix}$

幺正性被放宽 —— $V_{tb} < 1$

手征性费米子——规范反常问题

标准模型中每一代费米子都消除规范反常

□ <u>Chiral doublet</u>

 $-\mathcal{L}_Q = Y_U^{ij} \bar{Q}_L \tilde{\Phi} U_R + Y_D^{ij} \bar{Q}_L \Phi D_R + h.c.$

□ SU(2) doublet

$$-\mathcal{L}_{Q} = Y_{t} \overline{q_{0L}} \widetilde{\Phi} t_{0R} + Y_{T} \overline{Q_{0L}} \widetilde{\Phi} t_{0R} + Y_{B} \overline{Q_{0L}} \Phi b_{0R} + M \overline{Q_{0L}} Q_{0R} + \text{H.c.}$$
$$-\mathcal{L}_{Q'} = Y_{t} \overline{q_{0L}} \widetilde{\Phi} t_{0R} + Y_{T} \overline{Q'_{0L}} \Phi t_{0R} + M \overline{Q'_{0L}} Q'_{0R} + \text{H.c.}$$
$$Q_{0L} = \begin{pmatrix} T_{0L} \\ B_{0L} \end{pmatrix}, \ Q_{0R} = \begin{pmatrix} T_{0R} \\ B_{0R} \end{pmatrix} \quad Q'_{0L} = \begin{pmatrix} X_{0L} \\ T_{0L} \end{pmatrix}, \ Q'_{0R} = \begin{pmatrix} X_{0R} \\ T_{0R} \end{pmatrix}$$

SU(2) triplet

Exotic Q=5/3 fermion

78

$$-\mathcal{L}_{\Sigma} = Y_t \,\overline{q_{0L}} \,\widetilde{\Phi} \, t_{0R} + Y_T \,\overline{q_{0L}} \,\tau^a \,\widetilde{\Phi} \,\Sigma_{0R} + M \,\overline{\Sigma_{0L}} \Sigma_{0R} + \text{H.c.}$$
$$-\mathcal{L}_{\Sigma'} = Y_t \,\overline{q_{0L}} \,\widetilde{\Phi} \, t_{0R} + Y_T \,\overline{q_{0L}} \,\tau^a \,\Phi \,\Sigma'_{0R} + M \,\overline{\Sigma'_{0L}} \Sigma'_{0R} + \text{H.c.}$$

$$\Sigma_{0L} = \begin{pmatrix} X_{0L} \\ T_{0L} \\ B_{0L} \end{pmatrix}, \ \Sigma_{0R} = \begin{pmatrix} X_{0R} \\ T_{0R} \\ B_{0R} \end{pmatrix}, \ \Sigma'_{0L} = \begin{pmatrix} T_{0L} \\ B_{0L} \\ X_{0L} \end{pmatrix}, \ \Sigma'_{0R} = \begin{pmatrix} T_{0R} \\ B_{0R} \\ X_{0R} \end{pmatrix}$$

Heavy Quarks, 20-21 Dec 2011

Koji Tsumura (ntu)

Exotic Q=-4/3 fermion

4. 新规范玻色子

统一理论的破缺

81

G(221) Model

$SU(3)_C \times SU(2)_1 \times SU(2)_2 \times U(1)_X$

$\frac{G(33I)}{SU(3)_C} \times SU(3)_W \times U(1)_X$

 $SU(3)_C \otimes SU(2)_1 \otimes SU(2)_2 \otimes U(1)_X$

Model	$SU(2)_1$	$SU(2)_2$	$U(1)_X$
Left-right (LR)	$egin{pmatrix} u_L\ d_L \end{pmatrix}, egin{pmatrix} u_L\ e_L \end{pmatrix} \end{pmatrix}$	$\begin{pmatrix} u_R \\ d_R \end{pmatrix}, \begin{pmatrix} u_R \\ e_R \end{pmatrix}$	$\frac{1}{6}$ for quarks, $-\frac{1}{2}$ for leptons.
Lepto-phobic (LP)	$ \begin{array}{c} \left(\begin{array}{c} u_L\\\\ d_L\end{array}\right), \left(\begin{array}{c} \nu_L\\\\ e_L\end{array}\right) \end{array} $	$ \begin{array}{c} $	$\frac{1}{6} \text{ for quarks,}$ $Y_{\rm SM} \text{ for leptons.}$
Hadro-phobic (HP)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$\begin{pmatrix} \nu_R \\ e_R \end{pmatrix}$	$Y_{\rm SM}$ for quarks, $-\frac{1}{2}$ for leptons.
Fermio-phobic (FP)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$		$Y_{\rm SM}$ for all fermions.
Un-unified (UU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}$	$\begin{pmatrix} \nu_L \\ e_L \end{pmatrix}$	$Y_{\rm SM}$ for all fermions.
Non-universal (NU)	$\begin{pmatrix} u_L \\ d_L \end{pmatrix}_{1^{\text{st}}, 2^{\text{nd}}}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}_{1^{\text{st}}, 2^{\text{nd}}}$	$ \begin{pmatrix} u_L \\ d_L \end{pmatrix}_{3^{\rm rd}}, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}_{3^{\rm rd}} $	$Y_{\rm SM}$ for all fermions.

 $\overline{SU(3)_C\otimes SU(2)_1\otimes SU(2)_2}\otimes \overline{SU(2)_2}$

规范反常相消要求有三代费米子, 第1代+第2代的反常之和抵消第3代反常

Z-prime产生和衰变

W-prime产生和衰变

S	a=udcs		
Model	$SU(3)_1$	$SU(3)_2$	9 G, G, G, C
Classic Axigluon Frampton, Glashow (1987)	$t_R \ b_R \ q_R$	$q_L \ (t,b)_L$	dijet, AFB(t)
New Axigluon Frampton, Shu, Wang (2010)	$q_L t_R b_R$	$(t,b)_L q_R$	dijet, AFB(t)
Topgluon Hill (1991)	$q_L q_R$	$(t,b)_L t_R b_R$	dijet, FCNC
对称性	破缺要求:额约	小的带色标量粒	子 88

色标量粒子产生和衰变

为什么希格斯粒子质量为125GeV? 费米子和玻色子质量起源是否相同? 大CP破坏产生机制? 为何仅有3代夸克和轻子? 是否有4代物质场粒子? 能否把自然界中所有力统一? 是否存在新相互作用? 夸克和轻子是否有内部结构? 暗物质的内禀属性及其相互作用? 什么是暗能量? 是否有额外的空间维度?

....

生逢其时,何其幸也!

